Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = resonant tunneling diodes (RTD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4129 KiB  
Article
Resonant Tunnelling and Intersubband Optical Properties of ZnO/ZnMgO Semiconductor Heterostructures: Impact of Doping and Layer Structure Variation
by Aleksandar Atić, Xizhe Wang, Nikola Vuković, Novak Stanojević, Aleksandar Demić, Dragan Indjin and Jelena Radovanović
Materials 2024, 17(4), 927; https://doi.org/10.3390/ma17040927 - 17 Feb 2024
Cited by 3 | Viewed by 1728
Abstract
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). [...] Read more.
ZnO-based heterostructures are up-and-coming candidates for terahertz (THz) optoelectronic devices, largely owing to their innate material attributes. The significant ZnO LO-phonon energy plays a pivotal role in mitigating thermally induced LO-phonon scattering, potentially significantly elevating the temperature performance of quantum cascade lasers (QCLs). In this work, we calculate the electronic structure and absorption of ZnO/ZnMgO multiple semiconductor quantum wells (MQWs) and the current density–voltage characteristics of nonpolar m-plane ZnO/ZnMgO double-barrier resonant tunnelling diodes (RTDs). Both MQWs and RTDs are considered here as two building blocks of a QCL. We show how the doping, Mg percentage and layer thickness affect the absorption of MQWs at room temperature. We confirm that in the high doping concentrations regime, a full quantum treatment that includes the depolarisation shift effect must be considered, as it shifts mid-infrared absorption peak energy for several tens of meV. Furthermore, we also focus on the performance of RTDs for various parameter changes and conclude that, to maximise the peak-to-valley ratio (PVR), the optimal doping density of the analysed ZnO/Zn88Mg12O double-barrier RTD should be approximately 1018 cm3, whilst the optimal barrier thickness should be 1.3 nm, with a Mg mole fraction of ~9%. Full article
(This article belongs to the Special Issue Special Edition on Semiconductor Materials and Optics)
Show Figures

Figure 1

17 pages, 4020 KiB  
Review
Single-Photon Counting with Semiconductor Resonant Tunneling Devices
by Andreas Pfenning, Sebastian Krüger, Fauzia Jabeen, Lukas Worschech, Fabian Hartmann and Sven Höfling
Nanomaterials 2022, 12(14), 2358; https://doi.org/10.3390/nano12142358 - 9 Jul 2022
Cited by 10 | Viewed by 3222
Abstract
Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector [...] Read more.
Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown. Full article
(This article belongs to the Special Issue Semiconductor and Nanophotonic Devices)
Show Figures

Figure 1

11 pages, 2735 KiB  
Review
An Overview of Terahertz Imaging with Resonant Tunneling Diodes
by Jue Wang, Mira Naftaly and Edward Wasige
Appl. Sci. 2022, 12(8), 3822; https://doi.org/10.3390/app12083822 - 10 Apr 2022
Cited by 24 | Viewed by 6352
Abstract
Terahertz (THz) imaging is a rapidly growing application motivated by industrial demands including harmless (non-ionizing) security imaging, multilayer paint quality control within the automotive industry, insulating foam non-invasive testing in aerospace, and biomedical diagnostics. One of the key components in the imaging system [...] Read more.
Terahertz (THz) imaging is a rapidly growing application motivated by industrial demands including harmless (non-ionizing) security imaging, multilayer paint quality control within the automotive industry, insulating foam non-invasive testing in aerospace, and biomedical diagnostics. One of the key components in the imaging system is the source and detector. This paper gives a brief overview of room temperature THz transceiver technology for imaging applications based on the emerging resonant tunneling diode (RTD) devices. The reported results demonstrate that RTD technology is a very promising candidate to realize compact, low-cost THz imaging systems. Full article
(This article belongs to the Special Issue Terahertz Applications for Nondestructive Testing)
Show Figures

Figure 1

14 pages, 1893 KiB  
Article
Discrete Fourier Transform Radar in the Terahertz-Wave Range Based on a Resonant-Tunneling-Diode Oscillator
by Hiroki Konno, Adrian Dobroiu, Safumi Suzuki, Masahiro Asada and Hiroshi Ito
Sensors 2021, 21(13), 4367; https://doi.org/10.3390/s21134367 - 25 Jun 2021
Cited by 13 | Viewed by 2672
Abstract
We used a resonant-tunneling-diode (RTD) oscillator as the source of a terahertz-wave radar based on the principle of the swept-source optical coherence tomography (SS-OCT). Unlike similar reports in the terahertz range, we apply the stepwise frequency modulation to a subcarrier obtained by amplitude [...] Read more.
We used a resonant-tunneling-diode (RTD) oscillator as the source of a terahertz-wave radar based on the principle of the swept-source optical coherence tomography (SS-OCT). Unlike similar reports in the terahertz range, we apply the stepwise frequency modulation to a subcarrier obtained by amplitude modulation instead of tuning the terahertz carrier frequency. Additionally, we replace the usual optical interference with electrical mixing and, by using a quadrature mixer, we can discriminate between negative and positive optical path differences, which doubles the measurement range without increasing the measurement time. To measure the distance to multiple targets simultaneously, the terahertz wave is modulated in amplitude at a series of frequencies; the signal returning from the target is detected and homodyne mixed with the original modulation signal. A series of voltages is obtained; by Fourier transformation the distance to each target is retrieved. Experimental results on one and two targets are shown. Full article
(This article belongs to the Special Issue Terahertz and Millimeter Wave Sensing and Applications)
Show Figures

Figure 1

10 pages, 2785 KiB  
Article
Analysis of Excitability in Resonant Tunneling Diode-Photodetectors
by Weikang Zhang, Abdullah Al-Khalidi, José Figueiredo, Qusay Raghib Ali Al-Taai, Edward Wasige and Robert H. Hadfield
Nanomaterials 2021, 11(6), 1590; https://doi.org/10.3390/nano11061590 - 17 Jun 2021
Cited by 11 | Viewed by 3194
Abstract
We investigate the dynamic behaviour of resonant tunneling diode-photodetectors (RTD-PDs) in which the excitability can be activated by either electrical noise or optical signals. In both cases, we find the characteristics of the stochastic spiking behavior are not only dependent on the biasing [...] Read more.
We investigate the dynamic behaviour of resonant tunneling diode-photodetectors (RTD-PDs) in which the excitability can be activated by either electrical noise or optical signals. In both cases, we find the characteristics of the stochastic spiking behavior are not only dependent on the biasing positions but also controlled by the intensity of the input perturbations. Additionally, we explore the ability of RTD-PDs to perform optical signal transmission and neuromorphic spike generation simultaneously. These versatile functions indicate the possibility of making use of RTD-PDs for innovative applications, such as optoelectronic neuromorphic circuits for spike-encoded signaling and data processing. Full article
(This article belongs to the Special Issue Semiconductor and Nanophotonic Devices)
Show Figures

Figure 1

21 pages, 10209 KiB  
Article
Simulation and Modeling of Novel Electronic Device Architectures with NESS (Nano-Electronic Simulation Software): A Modular Nano TCAD Simulation Framework
by Cristina Medina-Bailon, Tapas Dutta, Ali Rezaei, Daniel Nagy, Fikru Adamu-Lema, Vihar P. Georgiev and Asen Asenov
Micromachines 2021, 12(6), 680; https://doi.org/10.3390/mi12060680 - 10 Jun 2021
Cited by 15 | Viewed by 6044
Abstract
The modeling of nano-electronic devices is a cost-effective approach for optimizing the semiconductor device performance and for guiding the fabrication technology. In this paper, we present the capabilities of the new flexible multi-scale nano TCAD simulation software called Nano-Electronic Simulation Software (NESS). NESS [...] Read more.
The modeling of nano-electronic devices is a cost-effective approach for optimizing the semiconductor device performance and for guiding the fabrication technology. In this paper, we present the capabilities of the new flexible multi-scale nano TCAD simulation software called Nano-Electronic Simulation Software (NESS). NESS is designed to study the charge transport in contemporary and novel ultra-scaled semiconductor devices. In order to simulate the charge transport in such ultra-scaled devices with complex architectures and design, we have developed numerous simulation modules based on various simulation approaches. Currently, NESS contains a drift-diffusion, Kubo–Greenwood, and non-equilibrium Green’s function (NEGF) modules. All modules are numerical solvers which are implemented in the C++ programming language, and all of them are linked and solved self-consistently with the Poisson equation. Here, we have deployed some of those modules to showcase the capabilities of NESS to simulate advanced nano-scale semiconductor devices. The devices simulated in this paper are chosen to represent the current state-of-the-art and future technologies where quantum mechanical effects play an important role. Our examples include ultra-scaled nanowire transistors, tunnel transistors, resonant tunneling diodes, and negative capacitance transistors. Our results show that NESS is a robust, fast, and reliable simulation platform which can accurately predict and describe the underlying physics in novel ultra-scaled electronic devices. Full article
(This article belongs to the Special Issue Emerging CMOS Devices)
Show Figures

Figure 1

19 pages, 6764 KiB  
Review
Terahertz Emitter Using Resonant-Tunneling Diode and Applications
by Masahiro Asada and Safumi Suzuki
Sensors 2021, 21(4), 1384; https://doi.org/10.3390/s21041384 - 16 Feb 2021
Cited by 108 | Viewed by 9702
Abstract
A compact source is important for various applications utilizing terahertz (THz) waves. In this paper, the recent progress in resonant-tunneling diode (RTD) THz oscillators, which are compact semiconductor THz sources, is reviewed, including principles and characteristics of oscillation, studies addressing high-frequency and high [...] Read more.
A compact source is important for various applications utilizing terahertz (THz) waves. In this paper, the recent progress in resonant-tunneling diode (RTD) THz oscillators, which are compact semiconductor THz sources, is reviewed, including principles and characteristics of oscillation, studies addressing high-frequency and high output power, a structure which can easily be fabricated, frequency tuning, spectral narrowing, different polarizations, and select applications. At present, fundamental oscillation up to 1.98 THz and output power of 0.7 mW at 1 THz by a large-scale array have been reported. For high-frequency and high output power, structures integrated with cylindrical and rectangular cavities have been proposed. Using oscillators integrated with varactor diodes and their arrays, wide electrical tuning of 400–900 GHz has been demonstrated. For spectral narrowing, a line width as narrow as 1 Hz has been obtained, through use of a phase-locked loop system with a frequency-tunable oscillator. Basic research for various applications—including imaging, spectroscopy, high-capacity wireless communication, and radar systems—of RTD oscillators has been carried out. Some recent results relating to these applications are discussed. Full article
(This article belongs to the Special Issue Terahertz Emitters and Detectors)
Show Figures

Figure 1

12 pages, 2837 KiB  
Article
Subcarrier Frequency-Modulated Continuous-Wave Radar in the Terahertz Range Based on a Resonant-Tunneling-Diode Oscillator
by Adrian Dobroiu, Yusuke Shirakawa, Safumi Suzuki, Masahiro Asada and Hiroshi Ito
Sensors 2020, 20(23), 6848; https://doi.org/10.3390/s20236848 - 30 Nov 2020
Cited by 15 | Viewed by 2951
Abstract
We introduce a new principle for distance measurement in the terahertz-wave range using a resonant-tunneling-diode (RTD) oscillator as a source at 511 GHz and relying on the frequency-modulated continuous-wave (FMCW) radar technique. Unlike the usual FMCW radar, where the sawtooth frequency modulation is [...] Read more.
We introduce a new principle for distance measurement in the terahertz-wave range using a resonant-tunneling-diode (RTD) oscillator as a source at 511 GHz and relying on the frequency-modulated continuous-wave (FMCW) radar technique. Unlike the usual FMCW radar, where the sawtooth frequency modulation is applied to the carrier, we propose applying it to a subcarrier obtained by amplitude modulation; this is advantageous when the source cannot be controlled precisely in oscillation frequency, but can easily be modulated in amplitude, as is the case of the RTD oscillator. The detailed principle and a series of proof-of-concept experimental results are presented. Full article
(This article belongs to the Special Issue Terahertz Imaging and Sensors)
Show Figures

Graphical abstract

10 pages, 4474 KiB  
Article
Highly Integrated Resonant Tunneling Diode with Rectangular Waveguide Output for W-Band Communication System
by Caixia Wang, Yuan Yao, Hang Jiang, Tao Xiu, Mohsin A. Shah Syedd, Junsheng Yu and Xiaodong Chen
Electronics 2020, 9(3), 485; https://doi.org/10.3390/electronics9030485 - 15 Mar 2020
Viewed by 3198
Abstract
A packaged resonant tunneling diode (RTD) with rectangular waveguide output for highly integrated wireless communication is proposed. The output signal of the RTD chip is radiated to the rectangular waveguide through an E plane probe transformer. Next, the RTD chip is electrically connected [...] Read more.
A packaged resonant tunneling diode (RTD) with rectangular waveguide output for highly integrated wireless communication is proposed. The output signal of the RTD chip is radiated to the rectangular waveguide through an E plane probe transformer. Next, the RTD chip is electrically connected to the transformer by using gold wire bonding. The packaged RTD exhibits an oscillation frequency of 92 GHz, while the maximum radio frequency (RF) output power is −7 dBm. A miniaturized and high data rate wireless communication system with a 7 Gbps on–off keying (OOK) module by using the RTD is demonstrated, and the bit error rate (BER) of the 7 Gbps is below 3.8 × 10−3. Full article
(This article belongs to the Collection Millimeter and Terahertz Wireless Communications)
Show Figures

Figure 1

12 pages, 2411 KiB  
Article
Resonant Tunneling Diode (RTD) Terahertz Active Transmission Line Oscillator with Graphene-Plasma Wave and Two Graphene Antennas
by Fan Zhao, Changju Zhu, Weilian Guo, Jia Cong, Clarence Augustine T. H. Tee, Le Song and Yelong Zheng
Electronics 2019, 8(10), 1164; https://doi.org/10.3390/electronics8101164 - 14 Oct 2019
Cited by 16 | Viewed by 4725
Abstract
This study describes the design of a resonant tunneling diode (RTD) oscillator (RTD oscillator) with a RTD-gated-graphene-2DEF (two dimensional electron fluid) and demonstrates the functioning of this RTD oscillator through a transmission line simulation model. Impedance of the RTD oscillator changes periodically when [...] Read more.
This study describes the design of a resonant tunneling diode (RTD) oscillator (RTD oscillator) with a RTD-gated-graphene-2DEF (two dimensional electron fluid) and demonstrates the functioning of this RTD oscillator through a transmission line simulation model. Impedance of the RTD oscillator changes periodically when physical dimension of the device is of considerable fraction of the electrical wavelength. As long as impedance matching is achieved, the oscillation frequency is not limited by the size of the device. An RTD oscillator with a graphene film and negative differential resistance (NDR) will produce power amplification. The positive electrode of the DC power supply is modified and designed as an antenna. So, the reflected power can also be radiated to increase RTD oscillator output power. The output analysis shows that through the optimization of the antenna structure, it is possible to increase the RTD oscillator output to 22 mW at 1.9 THz and 20 mW at 6.1 THz respectively. Furthermore, the RTD oscillator has the potential to oscillate at 50 THz with a matching antenna. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

23 pages, 11259 KiB  
Article
Strange Attractors Generated by Multiple-Valued Static Memory Cell with Polynomial Approximation of Resonant Tunneling Diodes
by Jiri Petrzela
Entropy 2018, 20(9), 697; https://doi.org/10.3390/e20090697 - 12 Sep 2018
Cited by 23 | Viewed by 5396
Abstract
This paper brings analysis of the multiple-valued memory system (MVMS) composed by a pair of the resonant tunneling diodes (RTD). Ampere-voltage characteristic (AVC) of both diodes is approximated in operational voltage range as common in practice: by polynomial scalar function. Mathematical model of [...] Read more.
This paper brings analysis of the multiple-valued memory system (MVMS) composed by a pair of the resonant tunneling diodes (RTD). Ampere-voltage characteristic (AVC) of both diodes is approximated in operational voltage range as common in practice: by polynomial scalar function. Mathematical model of MVMS represents autonomous deterministic dynamical system with three degrees of freedom and smooth vector field. Based on the very recent results achieved for piecewise-linear MVMS numerical values of the parameters are calculated such that funnel and double spiral chaotic attractor is observed. Existence of such types of strange attractors is proved both numerically by using concept of the largest Lyapunov exponents (LLE) and experimentally by computer-aided simulation of designed lumped circuit using only commercially available active elements. Full article
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Photo-Detectors Integrated with Resonant Tunneling Diodes
by Bruno Romeira, Luis M. Pessoa, Henrique M. Salgado, Charles N. Ironside and José M. L. Figueiredo
Sensors 2013, 13(7), 9464-9482; https://doi.org/10.3390/s130709464 - 22 Jul 2013
Cited by 50 | Viewed by 12586
Abstract
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias [...] Read more.
We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems. Full article
(This article belongs to the Special Issue Photodetectors)
Show Figures

10 pages, 1260 KiB  
Article
Optimization of the GaAs-on-Si Substrate for Microelectromechanical Systems (MEMS) Sensor Application
by Yunbo Shi, Hao Guo, Haiqiao Ni, Chenyang Xue, Zhichuan Niu, Jun Tang, Jun Liu, Wendong Zhang, Jifang He, Mifeng Li and Ying Yu
Materials 2012, 5(12), 2917-2926; https://doi.org/10.3390/ma5122917 - 17 Dec 2012
Cited by 14 | Viewed by 6109
Abstract
Resonant Tunneling Diodes (RTD) and High Electron Mobility Transistor (HEMT) based on GaAs, as the piezoresistive sensing element, exhibit extremely high sensitivity in the MEMS sensors based on GaAs. To further expand their applications to the fields of MEMS sensors based on Si, [...] Read more.
Resonant Tunneling Diodes (RTD) and High Electron Mobility Transistor (HEMT) based on GaAs, as the piezoresistive sensing element, exhibit extremely high sensitivity in the MEMS sensors based on GaAs. To further expand their applications to the fields of MEMS sensors based on Si, we have studied the optimization of the GaAs epitaxy layers on Si wafers. Matching superlattice and strain superlattice were used, and the surface defect density can be improved by two orders of magnitude. Combing with the Raman spectrum, the residual stress was characterized, and it can be concluded from the experimental results that the residual stress can be reduced by 50%, in comparison with the original substrate. This method gives us a solution to optimize the epitaxy GaAs layers on Si substrate, which will also optimize our future process of integration RTD and HEMT based on GaAs on Si substrate for the MEMS sensor applications. Full article
Show Figures

Figure 1

Back to TopTop