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Abstract: This paper brings analysis of the multiple-valued memory system (MVMS) composed
by a pair of the resonant tunneling diodes (RTD). Ampere-voltage characteristic (AVC) of both
diodes is approximated in operational voltage range as common in practice: by polynomial scalar
function. Mathematical model of MVMS represents autonomous deterministic dynamical system
with three degrees of freedom and smooth vector field. Based on the very recent results achieved
for piecewise-linear MVMS numerical values of the parameters are calculated such that funnel and
double spiral chaotic attractor is observed. Existence of such types of strange attractors is proved
both numerically by using concept of the largest Lyapunov exponents (LLE) and experimentally
by computer-aided simulation of designed lumped circuit using only commercially available
active elements.
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1. Introduction

A general property of chaos is long-time unpredictability; i.e., random-like evolution of dynamical
system even if the describing mathematical model does not contain stochastic functions or parameters.
Because of its nature, chaotic behavior was often misinterpreted as noise. The first mention of this
kind of the complex solution was in [1] where Lorenz noticed the extreme sensitivity of autonomous
deterministic dynamics to tiny changes of the initial conditions. After this very milestone, chaos started
to be reported in many distinct scientific fields as well as daily life situations. Chaotic motion has
been observed in chemical reactions [2], classical mechanics [3], hydrodynamics [4], brain activity [5],
models of biological populations [6], economy [7] and, of course, in many lumped circuits.

Two basic vector field mechanisms are required for evolution of chaos: stretching and folding.
The first mechanism is responsible for exponential divergence of two neighboring state trajectories
and second one bounds strange attractor within a finite state space volume. Pioneering work
showing the presence of robust chaotic oscillation within dynamics of simple electronic circuit is [8].
So far, the so-called Chua´s oscillator was subject of laboratory demonstrations, deep numerical
investigations and many research studies [9–11]. Several interesting strange attractors associated
with different vector field local geometries have been localized within the dynamics of three-segment
piecewise-linear Chua systems [12–14]. However, the inventors of Chua´s oscillator built it intentionally
to construct a vector field capable of generating chaotic waveforms. Progress in computational power
together with development of the parallel processing allows chaos localization in standard functional
blocks of radiofrequency subsystems such as in harmonic oscillators [15,16], frequency filters [17,18],
phase-locked loops [19], power [20] and dc-dc [21] converters, etc. From a practical point of view, chaos
represents an unwanted operational regime that needs to be avoided. It can be recognized among
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regular behavior because of the specific features in the frequency domain: continuous and broadband
frequency spectrum. However, an approach that is more sophisticated is to derive a set of describing
differential equations and utilize the concept of LLE to find regions of chaotic solutions [22].

Searching for chaos in a mathematical model that describes simplified real electronic memory
block is also topic of this paper. Three programs were utilized for the numerical analysis of MVMS:
Matlab 2015 for the search-through-optimization algorithm including CUDA-based parallelization,
Mathcad 15 for graphical visualization of results and Orcad Pspice 16 for circuit verification. The
content of this paper is divided into four sections with the logical sequence: model description,
numerical analysis, circuit realization and verification; both through simulation and measurement.

2. Dynamical Model of Fundamental MVMS

Basic mathematical model of MVMS [23,24] is given in Figure 1 and can be described by three
first-order ordinary differential equations in the following form:

C1
dv1

dt
= i− f1(v1) C2

dv2

dt
= i− f2(v2) L

di
dt

= vbias − v1 − v2 − R·i (1)

where the state vector is x = (v1, v2, i)T, C1 and C2 is parasitic capacitance of first and second RTD,
L and R is summarized (RTDs are connected in series) lead inductance and resistance, respectively.
Details about modeling of high frequency RTD including typical values of parasitic elements can be
found in [25]. We can express both nonlinear functions (for k = 1, 2) as:

fk(x) = ak(x− dk)
3 + bk(x− dk) + ck (2)

Entropy 2018, 20, x  2 of 23 

 

It can be recognized among regular behavior because of the specific features in the frequency domain: 

continuous and broadband frequency spectrum. However, an approach that is more sophisticated is 

to derive a set of describing differential equations and utilize the concept of LLE to find regions of 

chaotic solutions [22]. 

Searching for chaos in a mathematical model that describes simplified real electronic memory 

block is also topic of this paper. Three programs were utilized for the numerical analysis of MVMS: 

Matlab 2015 for the search-through-optimization algorithm including CUDA-based parallelization, 

Mathcad 15 for graphical visualization of results and Orcad Pspice 16 for circuit verification. The 

content of this paper is divided into four sections with the logical sequence: model description, 

numerical analysis, circuit realization and verification; both through simulation and measurement. 

2. Dynamical Model of Fundamental MVMS 

Basic mathematical model of MVMS [23,24] is given in Figure 1 and can be described by three 

first-order ordinary differential equations in the following form: 

𝐶1

𝑑𝑣1

𝑑𝑡
= 𝑖 − 𝑓1(𝑣1)          𝐶2

𝑑𝑣2

𝑑𝑡
= 𝑖 − 𝑓2(𝑣2)          𝐿

𝑑𝑖

𝑑𝑡
= 𝑉𝑏𝑖𝑎𝑠 − 𝑣1 − 𝑣2 − 𝑅 ∙ 𝑖 (1) 

where the state vector is x = (v1, v2, i)T, C1 and C2 is parasitic capacitance of first and second RTD, L 

and R is summarized (RTDs are connected in series) lead inductance and resistance, respectively. 

Details about modeling of high frequency RTD including typical values of parasitic elements can be 

found in [25]. We can express both nonlinear functions (for k = 1, 2) as: 

𝑓𝑘(𝑥) = 𝑎𝑘(𝑥 − 𝑑𝑘)3 + 𝑏𝑘(𝑥 − 𝑑𝑘) + 𝑐𝑘. (2) 

 

Figure 1. Basic network configurations of MVMS: original (left schematic), dual (right schematic). 

Thus, AVC of each RTD is a cubic polynomial that should form an N-type curve with a negative 

segment. Fixed points xe are all solutions of the problem dx/dt = 0. For further simplicity, let’s assume 

that R = 0 Ω. We can determine global conditions and position for its existence within state space as 

each solution of system of the nonlinear algebraic equations, namely: 

𝑎1(𝑥𝑒 − 𝑑1)3 + 𝑏1(𝑥𝑒 − 𝑑1) + 𝑐1 = 𝑎2(𝑉𝑏𝑖𝑎𝑠 − 𝑥𝑒 − 𝑑2)3 + 𝑏2(𝑉𝑏𝑖𝑎𝑠 − 𝑥𝑒 − 𝑑2) + 𝑐2 

𝑦𝑒 = 𝑉𝑏𝑖𝑎𝑠 − 𝑥𝑒 

𝑧𝑒 = 𝑎1(𝑥𝑒 − 𝑑1)3 + 𝑏1(𝑥𝑒 − 𝑑1) + 𝑐1 

(3) 

Vector field geometry depends on the eigenvalues; i.e., roots of a characteristic polynomial. It 

can be calculated as det(s·E–J) = 0 where E is the unity matrix and J is the Jacobi matrix: 

𝐉 = (
−𝑏1 − 3𝑎1(𝑥𝑒 − 𝑑1)2 0 1

0 −𝑏2 − 3𝑎2(𝑦𝑒 − 𝑑2)2 1
−1 −1 0

). (4) 

Characteristic polynomial in symbolical form becomes: 

𝑠3 + {3𝑎2𝑉𝑏𝑖𝑎𝑠
2 − 6𝑎2𝑉𝑏𝑖𝑎𝑠(𝑥𝑒 + 𝑑2) + 𝑏1 + 𝑏2 + 3𝑎1(𝑥𝑒

2 + 𝑑1
2) + 3𝑎2(𝑥𝑒

2 + 𝑑2
2) −

6𝑥𝑒(𝑎1𝑑1 − 𝑎2𝑑2)}𝑠2 + {[𝑎1𝑎2(9𝑑1
2 − 18𝑑1𝑥𝑒 + 9𝑥𝑒

2) + 3𝑏1𝑎2]𝑉𝑏𝑖𝑎𝑠
2 + [𝑎1𝑎2(36𝑑1𝑥𝑒

2 −
(5) 

Figure 1. Basic network configurations of MVMS: original (left schematic), dual (right schematic).

Thus, AVC of each RTD is a cubic polynomial that should form an N-type curve with a negative
segment. Fixed points xe are all solutions of the problem dx/dt = 0. For further simplicity, let’s assume
that R = 0 Ω. We can determine global conditions and position for its existence within state space as
each solution of system of the nonlinear algebraic equations, namely:

a1(xe − d1)
3 + b1(xe − d1) + c1 = a2(Vbias − xe − d2)

3 + b2(Vbias − xe − d2) + c2

ye = Vbias − xe

ze = a1(xe − d1)
3 + b1(xe − d1) + c1

(3)

Vector field geometry depends on the eigenvalues; i.e., roots of a characteristic polynomial. It can
be calculated as det(s·E–J) = 0 where E is the unity matrix and J is the Jacobi matrix:

J =

 −b1 − 3a1(xe − d1)
2 0 1

0 −b2 − 3a2(ye − d2)
2 1

−1 −1 0

. (4)
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Characteristic polynomial in symbolical form becomes:
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Obviously, symbolical expressions for the individual eigenvalues are very complicated and cannot
further contribute to the better understanding of a vector field configuration and chaos evolution;
check well-known Cardan rules. In situation, where xe and ye coordinate of equilibrium point is close
to offset voltages represented by d1 and d2, characteristic polynomial simplifies into the relation:

s3 + (b1 + b2)s2 + (b1b2 + 2)s + b1 + b2 = 0, (6)

and the eigenvalues depend only on linear part of polynomial approximation of AVCs of RTDs.
Until very recently, analysis of MVMS was focused only on a high-frequency modeling of RTDs,

influence of a pulse driving force on overall stability [26] and global dynamics [27] and specification of
the boundary planes [28]. However, existence of chaos has not been uncovered and examined.

3. Numerical Results and Discussion

Numerical values of MVMS parameters can be obtained by the optimization technique described
in [29]. In this case, the mathematical model of MVMS was considered piecewise-linear. Such kind
of a vector field allows better understanding of chaos evolution, allows partial analytic solution
and makes linear analysis generally more powerful. However, situation when AVCs of both RTDs
are approximated by the polynomial functions is closer to reality. Thus, our problem stands as
follows: couple of three-segment piecewise-linear functions needs to be transformed into the cubic
(or higher-order if necessary) polynomial functions without losing robust chaotic solution having
numerically close metric fractal dimension (Kaplan-Yorke is preferred over capacity because of rapid
and precise calculation). For more details, readers should consult [30] where the inverse problem has
been successfully solved. Finally, chaotic attractor like the so-called Rossler attractor [31] was localized.

Searching within smooth vector field (1) and by considering default normalized values C1 = 11 F,
C2 = 37 F, L = 100 mH and R = 0 Ω leads to the following optimal values of the cubic polynomials (2):

a1 = 648.5, b1 = −23.1, c1 = −0.13, d1 = 0.3, a2 = 58.1, b2 = −21.9, c2 = −0.65, d2 = 0.5. (7)

Adopting these values and fourth-order Runge-Kutta numerical integration process we get the
reference chaotic orbits provided in Figure 2. Accordingly to Equation (3) we have three fixed points:
first located in position xe = (0.046, 0.704, −4.768)T and characterized by eigenvalues λ1 = −101.241,
λ2 = 0.062, λ3 = 13.915, second equilibria in position xe = (0.292, 0.458, 0.043)T having set of the
eigenvalues λ1 = 0.09, λ2 = 22.97, λ3 = 21.72 and xe = (0.55, 0.2, 4.299)T with local behavior given by
eigenvalues λ1 = −99, λ2 = 0.13, λ3 = 7.146. This is an interesting geometric configuration of the vector
field: a funnel-type strange attractor generated by saddle-node equilibria with the stability index 1, 0
and 0; saddle-focuses are completely missing. Developed optimization algorithm can be utilized to
maximize unpredictability of a dynamical flow and increase system entropy. Starting with values (7)
the following set of numerical values was obtained:

a1 = 680, b1 = −23, c1 = −0.13, d1 = 0.3, a2 = 55, b2 = −25, c2 = −0.65, d2 = 0.5, (8)
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leading to a double-hook [12] like chaotic attractor visualized by means of Figure 3. The position
of the first fixed point changes slightly to xe = (0.045, 0.705, −5.48)T as well as the corresponding
eigenvalues λ1 = −109.037, λ2 = 0.049, λ3 = 13.915. The second equilibrium moves into position xe =
(0.29, 0.46, 0.089)T and possesses the set of eigenvalues λ1 = 0.084, λ2 = 22.764, λ3 = 24.817. Finally, the
last fixed point moves towards position xe = (0.554, 0.196, 5.31)T where the local behavior will be given
by the eigenvalues λ1 = −109.953, λ2 = 0.085, λ3 = 10.596. The mentioned equilibria together with
important state space sections are provided in Figure 4. Note that local geometries of a vector field
are not affected since, in a closed neighborhood of the fixed points, dynamical movement is given by
three eigenvectors as in the case of a funnel chaotic attractor. Also note that one direction of the flow
(along the eigenvector associated with λ1) is strongly attracting; this nature is evident from Figure 5.
Interesting fragments of the bifurcation diagrams are depicted in Figure 6.
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rotation (no deformations of axis system). Numerical integration with final time 104 and time step 0.01.
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Figure 4. Important geometric structures located within state space: v1–v2 plane projection of function
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fixed points of dynamical flow. Discovered chaotic attractor put into the context of vector field.

Entropy 2018, 20, x  5 of 23 

 

Figure 4. Important geometric structures located within state space: v1–v2 plane projection of function 

f1(v1) (orange), function f2(v2) (green) and v1 = Vbias − v2 (blue line), intersections of these planes are fixed 

points of dynamical flow. Discovered chaotic attractor put into the context of vector field. 

 

Figure 5. Graphical visualization of a dynamical behavior near the fixed points (red dots): equilibrium 

xe = 0.046 (left two images), for fixed point located at xe = 0.292 (middle two plots) and fixed point with 

xe = 0.55 (right two state portraits). 

 

Figure 6. Gallery of one-dimensional bifurcation diagrams calculated with respect to the polynomial 

approximation of AVCs of RTDs; individual plots from left to right: horizontal axis represented by 

parameter range a1 ∈  (600, 700) calculated with step Δ = 0.1; parameter range b1 ∈  (−30, 0) 

established with step Δ = 0.01; parameter range c1 ∈ (−1.5, 0) together with step Δ = 0.001; parameter 

a2 ∈ (30, 100) with step Δ = 0.1; parameter b2 ∈ (−25, −20) together with step Δ = 0.01 and parameter 

c2 ∈ (−4, 0) with step Δ = 0.01. 

Here, transient motion has been removed and plane x = d1 has been used for individual slices. 

These are plotted against parameters ak, bk and ck of polynomial approximations of AVC of k-th RTD. 

Parameters a1 and a2 can burn or bury chaotic attractor since these affect eigenvalues in “outer” parts 

of the active vector field (given by size of the state attractor) while geometry around “middle” fixed 

point remains almost unchanged. 

Figure 7 shows numerical calculation of a gained energy with small time step with respect to the 

state space location; red regions mark large increment while dark blue stands for a small evolution. 

As stated before, chaotic solution is sensitive to the changes of parameters ak, bk, ck and dk, where 

k = 1, 2. If we consider these values variable we create eight-dimensional hyperspace in which chaos 

alternates with periodic orbits or fixed-point solution. Two-dimensional subspaces hewed-out from 

such hyperspace are provided in Figure 8. Each graph is composed of 101 × 101 = 10,201 points, 

calculation routine deals with time interval t ∈ (100, 104), random initial conditions inside basin of 

attraction and Gram-Smith orthogonalization [32]. Here, dark blue represents a trivial solution, light 

blue a limit cycle, green color stands for weak chaos and yellow marks strong chaotic behavior. Note 

that LLE for set of values (7) can be found in each visualized plot.  

Figure 5. Graphical visualization of a dynamical behavior near the fixed points (red dots): equilibrium
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xe = 0.55 (right two state portraits).
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Figure 6. Gallery of one-dimensional bifurcation diagrams calculated with respect to the polynomial
approximation of AVCs of RTDs; individual plots from left to right: horizontal axis represented by
parameter range a1 ∈ (600, 700) calculated with step ∆ = 0.1; parameter range b1 ∈ (−30, 0) established
with step ∆ = 0.01; parameter range c1 ∈ (−1.5, 0) together with step ∆ = 0.001; parameter a2 ∈ (30, 100)
with step ∆ = 0.1; parameter b2 ∈ (−25, −20) together with step ∆ = 0.01 and parameter c2 ∈ (−4, 0)
with step ∆ = 0.01.
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Here, transient motion has been removed and plane x = d1 has been used for individual slices.
These are plotted against parameters ak, bk and ck of polynomial approximations of AVC of k-th RTD.
Parameters a1 and a2 can burn or bury chaotic attractor since these affect eigenvalues in “outer” parts
of the active vector field (given by size of the state attractor) while geometry around “middle” fixed
point remains almost unchanged.

Figure 7 shows numerical calculation of a gained energy with small time step with respect to the
state space location; red regions mark large increment while dark blue stands for a small evolution.
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Figure 7. Rainbow-scaled contour plots of short-time evolution of MVMS energy for the state space
slices forming unity cube (left to right): z0 = −5, z0 = −4, z0 = −3, z0 = −2, z0 = −1, z0 = 0, z0 = 1, z0 = 2,
z0 = 3, z0 = 4, z0 = 5.

As stated before, chaotic solution is sensitive to the changes of parameters ak, bk, ck and dk, where k =
1, 2. If we consider these values variable we create eight-dimensional hyperspace in which chaos alternates
with periodic orbits or fixed-point solution. Two-dimensional subspaces hewed-out from such hyperspace
are provided in Figure 8. Each graph is composed of 101× 101 = 10,201 points, calculation routine deals
with time interval t ∈ (100, 104), random initial conditions inside basin of attraction and Gram-Smith
orthogonalization [32]. Here, dark blue represents a trivial solution, light blue a limit cycle, green color
stands for weak chaos and yellow marks strong chaotic behavior. Note that LLE for set of values (7) can be
found in each visualized plot.

Maximal merit of LLE is 0.089 for a value set (7) and 0.103 for (8) and associated Kaplan–Yorke
dimension [33] is 2.016 and 2.021 respectively. Specification of sufficiently large “chaotic” area is
important also from practical viewpoint; as will be clarified later.
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4. Circuitry Realization of MVMS-Based Chaotic Oscillators

Design of analog equivalent circuit is common way how to prove existence of structurally stable
strange attractors within the dynamics of a prescribed set of ordinary differential equations. Realization
of such the so-called chaotic oscillators is a simple and straightforward task that we can solve by
using several approaches [34–38], both using discrete components and in integrated form. A favorite
method that allows us to utilize commercially available active elements follows the concept of analog
computers. Thus, only three building blocks are required for circuit construction: inverting summing
integrator, summing amplifier and, in the case of a polynomial nonlinearity, four-segment analog
multiplier. Fully analog circuit implementation is shown in Figure 9.
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Figure 9. Chaotic oscillator designed to audio band based on integrator block schematic associated
with mathematical model of MVMS, numerical values of passive network components are included.

Note that this circuit synthesis requires many active devices: two TL084, two AD844 and a single
four channel four quadrant analog multiplier MLT04. Supply voltage is symmetrical ±15 V but, for
MLT04, this voltage is lowered to ±5 V. Majority of the analog realizations of the chaotic systems
with a polynomial nonlinearity utilize AD633, i.e., single channel multiplier. It is possible also in
our case but with the cost of eight active devices. Dynamical range for correct operation of MLT04 is
only ±2 V. However, prescribed strange attractor is smaller in v1–v2 dimension. Advantage of this
circuit is that individual MVMS parameters can be adjusted independently using potentiometers.
Theoretically, using different decomposition of the polynomial functions, total number of the active
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elements can be lowered to four. Proposed chaotic oscillator is uniquely described by the following set
of the differential equations:

dv1
dt = − 1

C2

[
− v3

R1
− Rb

Ra

(
v1 − Rd

Rd+Rc
Vcc

){
1

R8
− Rz3

Rz4

(
Rb
Ra

)3
K2
(

v1 − Rd
Rd+Rc

Vcc

)
1

R7

}
− Vc1

Rx

]
dv2
dt = − 1

C3

[
− v3

R2
− R f

Re

(
v2 − Rh

Rh+Rg
Vcc

){
1

R10
− Rz1

Rz2

( R f
Re

)3
K2
(

v2 − Rh
Rh+Rg

Vcc

)
1

R9

}
− Vc2

Ry

]
dv3
dt = 1

C1

[
− R5

R6

(
v1
R4

+ v2
R5

)
+ Vbias

Rbias

] (9)

where VC1, VC2 and Vbias are independent dc voltage sources and K = 0.4 is internally-trimmed scaling
constant of the analog multiplier cells MLT04. Fundamental time constant of this chaotic oscillator is
chosen to be τ = R·Cv = 103·10−7 = 100 µs.

Of course, it is also possible to build both analog networks provided in Figure 1 directly. Instead
of nonlinear two-ports we must construct a couple of resistors with polynomial AVC; systematic design
towards these network elements can be found in [39,40]. Circuitry realization of original MVMS with
state vector x = (v1, v2, i)T is demonstrated by means of Figure 10; i.e., the state variables are voltages
across grounded capacitors and current flowing through the inductor. Note that both polynomial
function (2) need to be rewritten into the form i = f (v) = a·v3 + b·v2 + c·v + d. Thus, a new set of the
dimensionless ordinary differential equations to be implemented as lumped analog electronic circuit
as follows:

dx
dt = −z− 648·x3 − 583·x2 − 152·x− 10.7 dy

dt = z− 58·y3 + 87·y2 − 20·y− 3.3
dz
dt = x− y + 0.75

(10)
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second-generation current-conveyors, numerical values of the circuit components are included.
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Now assume that impedance and frequency norm are 105 and 104, respectively. Such values lead
to the nominal inductance 1H. This simplified concept of chaotic oscillators is given in Figure 10 and
described by following set of the ordinary differential equations:

C1
dv1
dt + iL +

v3
1

Ra1
+

v2
1

Ra2
+ v1

Ra3
+ VX

Ra4
= 0

C2
dv2
dt +

v3
2

Rb1
+ v2

Rb3
+ VY

Rb4
= iL +

v2
2

Rb2

L diL
dt + RSiL + v2 = v1 + Vbias

(11)

where a small value RS can still model lead to resistances of both RTDs that are parts of MVMS in
Figure 1.

Note that this kind of realization utilizes second generation current conveyors implemented by
using ideal voltage-controlled voltage-source E and current-controlled current-source F. A positive
variant of this active three-port element is commercially available as the AD844 while a negative variant
is EL2082 (only one negative device is required). In practice, the inductor should be substituted by the
synthetic equivalent; i.e., active floating gyrator (Antoniou’s sub-circuit) with a capacitive load, check
Figure 11. In this case, the number of the active elements raises to eight: a single TL084, six AD844s and
a single MLT04. Dynamical behavior is uniquely determined by the following mathematical model:

dv1
dt = 1

C1

[
−i− K2v3

1
Ra1+Rin

− Kv2
1

Ra2+Rin
− v1

Ra3
− Vx

Ra4+Rin

]
dv2
dt = 1

C2

[
−i− K2v3

2
Rb1+Rin

− Kv2
2

Rb2+Rin
− v2

Rb3
− Vy

Rb4+Rin

]
di
dt =

Rg2
Rg1Rg3Rg4Cg1

[v1 − v2 + Vbias]

(12)

where Rin represents input resistance of current input terminal of AD844. Its typical value is 50 Ω and,
due to the high values of the polynomial coefficients and in the case of small impedance norm chosen,
it cannot be generally neglected. On the other hand, we must avoid output current saturation of each
AD844 and consider frequency limitations of each active device. Thus, choice of both normalization
factors is always a compromise. Thanks to the symmetry inside floating Antoniou’s structure Rg5

= Rg3, Rg7 = Rg1, Rg6 = Rg2 and Cg2 = Cg1. Behavior of this chaotic oscillator is extremely sensitive
to the working resistors connected in the nonlinear two-terminal devices. Thus, calculated values
were specified by Orcad Pspice optimizer where fitness functions (several should be defined to create
tolerance channel) are absolute difference between polynomials in (11) and actual input resistance of
designed circuit. Corresponding dc sweep analysis were estimated for input voltages from 0 V to 2 V
with step 10 mV.
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Figure 11. Chaotic system obtained directly from fundamental MVMS network with floating synthetic
inductor, numerical values of the passive circuit components are included, ready for verification.

Last circuitry implementation is provided in Figure 12; namely dual network to the original
MVMS. Impedance norm is chosen to be 103 and frequency normalization factor is 105. To get the
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reasonable values of the resistors further impedance rescaling is possible. Set of describing differential
equations can be expressed as follows:

diL1
dt = 1

L1

[
−Rs1iL1 + rT2

{
(rT1iL1)

3

R1
+ rT1iL1

R3
− V1

R4

}
− rT3

(rT1iL1)
2

R2

]
diL2
dt = 1

L2

[
−Rs2iL2 + rT5

{
(rT4iL2)

3

R5
+ rT4iL2

R7
− V2

R8

}
− rT6

(rT4iL2)
2

R6

]
dvZ
dt = 1

CX

(
− vZ

Rp
− iL1 − iL2 + I1

) (13)

where rTk is trans-resistance of k-h ideal current-controlled voltage-source and I1 is independent dc
current source.
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Figure 12. Hypothetic analog circuit realization dual to original MVMS network with ideal controlled
sources: trans-resistance of output current-to-voltage conversion is considered as global parameter.

Polynomial nonlinearity is implemented by ideal multiplication using block MULT. Current
flowing through both inductors can be sensed via small resistor RS1 and RS2 respectively. However,
these resistors represent error terms that are inserted into describing differential equations; similarly
as a parasitic shunt resistor Rp. Such parasitic properties change global dynamics, can boost system
dimensionality (not in this situation) and desired chaotic behavior can eventually disappear.

Unfortunately, active elements where output voltage is controlled by input current are not
off-the-shelf components. However, trans-resistance amplifier can be constructed using single standard
operational amplifier and feedback resistor. To do this, input is fed directly to − terminal, node + is
connected to ground, resistor between − and OUT. Node OUT also represents output of a designed
transimpedance amplifier. Equivalently, the AD844 can also do the trick. Input can be connected to −
terminal, ground to + terminal, resistor between C and ground and output to OUT. Considering the
latter case, number of the active devices becomes seven: one MLT04 and six AD844.
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Colored plots provided in Figure 8 demonstrate that region of chaos around discovered values (7)
is wide enough to provide a structurally stable strange attractor; both funnel and double-scroll type.
The same analysis was performed for set (8); this strange attractor should be also observable.

5. Circuit Simulation, Experimental Verification and Comparison

As mentioned before, AVC of both nonlinear resistors in Figure 11 should be as precise as possible
to reach desired state space attractor. To fulfil this requirement, build-in Orcad Pspice optimizer can be
adopted; see Figure 13 where optimal AVC of one nonlinear two-terminal device is reached.
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Figure 13. Orcad Pspice optimization toolbox: definitions of the objective functions and requested
maximal errors (upper right field), error graph (upper left), new values of resistors (middle table).

Of course, the operational regime of this nonlinear resistor needs to be limited; in our case to input
voltages into range starting with −0.5 V and ending with 2 V. Note that up to thirteen fitness functions
were supposed to cover predefined operational range. Also note that optimization was stopped while
some objective functions still have nonzero error (expressed in terms of the differential percentages).
Important is the matter of similarity between simulated and numerically integrated strange attractor.

Implementation of the chaotic oscillator based on the integrator block schematic is more robust;
i.e., the desired strange attractor is less vulnerable to the passive component matching: fabrication
series (E12) and component tolerances (1%) were considered for design. We are also experiencing
superior parasitic properties of the voltage-mode active elements: both integrated circuits TL084 and
MLT04 have very high input and very low output resistances. Values of resistors that form external
network connected to AD844 were chosen such that parasitic input and output impedances can be
neglected. This is the main reason why this kind of MVMS realization was picked and forwarded into
practical experiments and undergoes laboratory measurement.

Generally, parasitic properties of the active elements play important role in a design process of
analog chaotic oscillators and, of course, should be minimized. Besides input and output impedances
also roll-off effects of transfer constants need to be analyzed. Several publications have been devoted
to reveal and study problems associated with the parasitic properties of the specific active devices and
how these affect global dynamics; for example [41].

In simulation profile of transient response, final time was set to 1 s and maximal time step 10 µs.
This setup is kept for each simulation mentioned in this section. Circuit simulation associated with
Figure 9 is provided in Figure 14. To transform the funnel into a double-scroll chaotic attractor
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we should change value of the resistors Rz3, Rz1 and R10. Simulation results associated with
direct realization of original MVMS provided in Figure 10 is demonstrated by means of Figure 15.
Computer-aided analysis of chaotic oscillator with idealized controlled sources is showed in Figure 16.
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Figure 14. Orcad Pspice circuit simulation associated with chaotic circuit given in Figure 9: selected
plane projection v3–v2 (blue, upper graph), v2–v1 (red) and v3–v1 (blue) of the chaotic attractor,
generated chaotic signal v1 (red) and v2 (blue) in the time domain, chaotic waveform v1 (red) and
v2 (blue) in the frequency domain. Note that significant frequency components are concentrated in
audio range.
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Figure 15. Orcad Pspice circuit simulation associated with network given in Figure 10: selected plane
projection v1–v2 (blue, upper plot), v1–iL (red) and v2–iL (blue) of chaotic attractor, generated signal v1

(red) and v2 (blue) in time domain, chaotic waveform v1 (red) and v2 (blue) in frequency domain.
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Figure 16. Orcad Pspice circuit simulation associated with network given in Figure 10: plane projection
vZ–iL2 (blue, upper plot), iL2–iL1 (red) and vZ–iL1 (blue) of the observed strange attractor, generated
chaotic signal iL2 (red) and vZ (blue) in the time domain, chaotic waveform iL2 (red) and vZ (blue) in the
frequency domain. Note that generated chaos is not affected by saturation levels of the active devices.

Existence of observable strange attractors and numerically expected routing-to-chaos scenarios
within dynamics of the fundamental MVMS has been proved experimentally; by its construction on
the bread-board (see Figure 17) and consequent laboratory measurement using the analog oscilloscope.
Due to its simpler realization and increased robustness, only circuitry illustrated by means of Figure 9
was decided for a real measurement. Selected chaotic waveforms in a time domain are provided by
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means of Figure 18. Independent voltage source Vbias = 750 mV in series with Rbias = 1 kΩ can be
replaced by the positive supply voltage +5 V and the fixed series resistance Rbias = 6.7 kΩ. Analogically,
combinations Vc1 =−130 mV, Rx = 1 kΩ and Vc2 =−650 mV, Ry = 1 kΩ can be replaced by the negative
supply voltage −5 V, Rx = 38.5 kΩ and the same voltage −5 V, Ry = 7.7 kΩ respectively.
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Thus, there is no need to introduce three additional independent dc voltage sources into oscillator.
However, to trace route-to-chaos scenarios, MVMS parameters c1 and c2 represented by voltages
Vc1 and Vc2 have been considered as the variables. In practice, two voltage dividers based on
potentiometers followed by two voltage buffers (remaining part of fifth integrated circuit TL084)
did the trick. Since extreme values of Vc1, Vc2 voltages can be managed observed Monge projections
given in Figure 19 (plane v3 vs. v2) originate both inside and outside prescribed bifurcation scheme
pictured in Figure 6 (third and sixth plot). Of course, very small steps of the hand-swept parameters
cannot be captured by the oscilloscope. Different plane projections, namely v3 vs. v1, are shown in
Figure 20. The provided screenshots are centered on captured state attractors not the origin of the state
coordinates. Of course, the mentioned plane projections are not in full one-to-one correspondence with
the theoretical results given in Figure 14, simply because transfer functions of the nonlinear two-ports
cannot be defined precisely using imperfect discrete resistors; it does not get better shape even if
the working resistors are replaced by the standard hand potentiometers. Finally, the sequence of
periodic and chaotic windows with continuous change of the individual coefficients of the polynomials
has been confirmed; roughly proving the correctness of bifurcation diagrams in Figure 6. During
laboratory experiments, unexpected and a very interestingly-shaped strange attractors were identified
(see Figure 21). Unfortunately, numerical values of the mathematical model parameters were not
found, and reference state trajectories cannot be created. Initial conditions need not to be imposed on
the outputs of the inverting integrators (capacitors need not to be pre-charged) since neighborhood of
zero belongs into the basin of attraction for both strange attractors.
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Figure 20. Few selected v3–v1 plane projections measured within dynamics of the integrator-based
implementation MVMS, voltage sources Vc1 and Vc2 are swept, i.e., system parameters c1 and c2 are
considered as variable parameters, change of the voltages starts within bifurcation diagrams provided
by means of Figure 6 but finally goes far beyond it.
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Figure 21. Gallery of interesting (still robust and real-time observable) strange attractors generated by
the integrator-based realization of MVMS, different plane projections, see text for details.

6. Conclusions

Existence of robust chaotic attractors in the smooth vector field of MVMS have been demonstrated
in this paper. This work represents a significant extension of the discoveries discussed in [29]. Both
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referred chaotic attractors are self-excited attractors; hidden attractors were not sought after and, in
the case of analyzed MVMS dynamics, remain a mystery.

The proposed mathematical model: (1) together with the nonlinear functions (2) and parameters
(7) or (8) can be also considered as a new chaotic dynamical system. This is still an up-to-date problem
for many engineers and the topic of many recent scientific papers. However, algebraically much
simpler dynamical systems that exhibit chaotic attractors exist; reading [42–47] is recommended.

Three different circuit realizations are presented. Each was verified by circuit simulation and the
most robust implementation undergoes experimental measurement. Two designed oscillators utilize
off-the-shelf active elements and can serve for various demonstrations.

The fundamental motivation of this work is to show that structurally stable strange attractors
can be observed in smooth dynamical system naturally considered as nonlinear but with non-chaotic
limit sets. However, designed autonomous chaotic oscillators can serve as the core circuits in many
practical applications such as cryptography [48], spread-spectrum modulation techniques [49], useful
signal masking [50,51], random number generators [52,53], etc.

This work also leaves several places for future research. For example, following interesting
questions needs to be answered: Are there some hidden attractors? Are multi-scroll chaotic attractors
observable if many RTD will be connected appropriately? Can MVMS generate chaos if values of the
internal parameters are close to microelectronic memory cell fabricated in common technology?
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