Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,560)

Search Parameters:
Keywords = resilient ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 942 KB  
Review
Climate Change, Fish and Shellfish, and Parasite Dynamics: A Comprehensive Review
by Fernando Atroch, Luis Filipe Rangel, Camilo Ayra-Pardo and Maria João Santos
J. Mar. Sci. Eng. 2026, 14(2), 167; https://doi.org/10.3390/jmse14020167 - 13 Jan 2026
Abstract
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite [...] Read more.
Anthropogenic climate change represents a critical and complex threat to the health and resilience of aquatic ecosystems. This review aims to critically synthesise and evaluate the synergetic and antagonistic mechanisms through which rising water temperature, the most prominent climatic factor, modulates the host–parasite relationship. The systematic literature review was conducted across a high-impact database (Web of Science), focusing on the extraction and qualitative analysis of data concerning infection dynamics and both host and parasite interactions. The findings demonstrate that thermal stress imposes a dual penalty on host–parasite systems: (1) it confers a critical thermal advantage to direct-life cycle parasites, significantly accelerating their virulence, reproduction, and infective capacity; (2) simultaneously, it severely compromises the immunocompetence and physiological resilience of piscine hosts, often through immunometabolic trade-offs and inflammatory dysfunction. This toxic synergy is the root cause of the exponential disease prevalence/intensity of parasites and fish mass mortality events, directly impacting biodiversity and global aquaculture sustainability. In contrast, it may also cause the disruption of the transmission chains to threaten complex life cycle parasites with localised extinction. We conclude that climate mitigation must be urgently recognised and implemented as a primary strategy for biological risk management to secure aquatic health and global food safety. Full article
(This article belongs to the Special Issue Parasitology of Marine Animals)
Show Figures

Figure 1

28 pages, 1031 KB  
Review
Grasses of Campos Rupestres: Diversity, Functions and Perspectives for Seedling Production and Ecological Restoration
by Alessandra Rodrigues Kozovits, Maurílio Assis Figueiredo and Maria Cristina Teixeira Braga Messias
Grasses 2026, 5(1), 4; https://doi.org/10.3390/grasses5010004 - 13 Jan 2026
Abstract
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They [...] Read more.
The Campos Rupestres, ancient and nutrient-poor mountaintop ecosystems in Brazil, harbor exceptional biodiversity and endemism but face severe threats from mining and urban expansion. Native grasses (Poaceae), represented by nearly 300 documented species—many of them poorly studied—are fundamental elements of these ecosystems. They provide critical ecological services, including soil stabilization, enhancing carbon storage and nutrient cycling, regulating water availability, and resilience to disturbances. This review synthesizes current knowledge on the diversity, functions, and propagation of Campos Rupestres grasses, with emphasis on their potential in ecological restoration. Despite their ecological importance, large-scale use of native grasses remains incipient, constrained by limited knowledge of reproductive biology, low seed viability, and scarce commercial seed availability. Advances in propagation include seedling and plug production, vegetative propagation, and rescue/reintroduction strategies, which have shown promising results in post-mining restoration. However, reliance on seed collection from natural populations risks depleting already limited genetic resources, highlighting the need for ex situ production systems. Expanding research on taxonomy, ecology, and cost-effective propagation methods, alongside supportive policy and market development, is crucial for integrating native grasses as cornerstone species in restoration programs. Bridging these gaps will enhance biodiversity conservation and restoration in one of the world’s most threatened megadiverse systems. Full article
(This article belongs to the Special Issue Feature Papers in Grasses)
Show Figures

Figure 1

24 pages, 1882 KB  
Systematic Review
Global Shifts in Fire Regimes Under Climate Change: Patterns, Drivers, and Ecological Implications Across Biomes
by Ana Paula Oliveira and Paulo Gil Martins
Forests 2026, 17(1), 104; https://doi.org/10.3390/f17010104 - 13 Jan 2026
Abstract
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and [...] Read more.
Wildfire regimes are undergoing rapid transformation under anthropogenic climate change, with major implications for biodiversity, carbon cycling, and ecosystem resilience. This systematic review synthesizes findings from 42 studies across global, continental, and regional scales to assess emerging patterns in fire frequency, intensity, and seasonality, and to identify climatic, ecological, and anthropogenic drivers shaping these changes. Across biomes, evidence shows increasingly fire-conducive conditions driven by rising temperatures, vapor-pressure deficit, and intensifying drought, with climate model projections indicating amplification of extreme fire weather this century. Boreal ecosystems show heightened fire danger and carbon-cycle vulnerability; Mediterranean and Iberian regions face extended fire seasons and faster spread rates; tropical forests, particularly the Amazon, are shifting toward more flammable states due to drought–fragmentation interactions; and savannas display divergent moisture- and fuel-limited dynamics influenced by climate and land use. These results highlight the emergence of biome-specific fire–climate–fuel feedback that may push certain ecosystems toward alternative stable states. The review underscores the need for improved attribution frameworks, integration of fire–vegetation–carbon feedback into Earth system models, and development of adaptive, regionally tailored fire-management strategies. Full article
(This article belongs to the Special Issue Forest Fire: Landscape Patterns, Risk Prediction and Fuels Management)
Show Figures

Graphical abstract

20 pages, 1985 KB  
Systematic Review
Evaluating the Effectiveness of Environmental Impact Assessment in Flood-Prone Areas: A Systematic Review of Methodologies, Hydrological Integration, and Policy Evolution
by Phumzile Nosipho Nxumalo, Phindile T. Z. Sabela-Rikhotso, Daniel Kibirige, Philile Mbatha and Nicholas Byaruhanga
Sustainability 2026, 18(2), 768; https://doi.org/10.3390/su18020768 - 12 Jan 2026
Abstract
Environmental Impact Assessments (EIAs) are crucial for mitigating flood risks in vulnerable ecosystems, yet their effective application remains inconsistent. This study synthesises global literature to systematically map EIA methodologies, evaluate the extent of hydrological integration, and analyse the evolution of practices against policy [...] Read more.
Environmental Impact Assessments (EIAs) are crucial for mitigating flood risks in vulnerable ecosystems, yet their effective application remains inconsistent. This study synthesises global literature to systematically map EIA methodologies, evaluate the extent of hydrological integration, and analyse the evolution of practices against policy frameworks for flood-prone areas. A scoping review of 144 peer-reviewed articles, conference papers, and one book chapter (2005–2025) was conducted using PRISMA protocols, complemented by bibliometric analysis. Quantitative findings reveal a significant gap where 72% of studies lacked specialised hydrological impact assessments (HIAs), with only 28% incorporating them. Post-2016, advanced tools like GIS, remote sensing, and hydrological modelling were used in less than 32% of studies, revealing reliance on outdated checklist methods. In South Africa, despite wetlands covering 7.7% of its territory, merely 12% of studies applied flood modelling. Furthermore, 40% of EIAs conducted after 2016 excluded climate adaptation strategies, undermining resilience. The literature is geographically skewed, with developed nations dominating publications at a 3:1 ratio over African contributions. The study’s novelty is its systematic global mapping of global EIA practices for flood-prone areas and its proposal for mandatory HIAs, predictive modelling, and strengthened policy enforcement. Practically, these reforms can transform EIAs from reactive compliance tools into proactive instruments for disaster risk reduction and climate resilience, directly supporting Sustainable Development Goals 11 (Sustainable Cities), 13 (Climate Action), and 15 (Life on Land). This is essential for guiding future policy and improving EIA efficacy in the face of rapid urbanisation and climate change. Full article
Show Figures

Figure 1

44 pages, 3186 KB  
Article
Social Responsibility of Science in the Sustainable Development of Mining and Post-Mining Areas
by Lucyna Florkowska and Izabela Bryt-Nitarska
Appl. Sci. 2026, 16(2), 776; https://doi.org/10.3390/app16020776 - 12 Jan 2026
Abstract
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable [...] Read more.
Ensuring the long-term sustainability of mining and post-mining practices is crucial for balancing resource extraction with environmental and social responsibilities. This study critically examines the role of science in addressing the complex challenges posed by mining, particularly in the context of the Sustainable Development Goals (SDGs). It identifies key responsibilities for science, including the development of sustainable extraction technologies, innovative land reclamation and ecosystem restoration strategies, and equitable frameworks for resource distribution that prioritize affected communities. The study emphasizes the importance of interdisciplinary approaches, the concept of Responsible Research and Innovation (RRI), and effective knowledge dissemination to minimize adverse impacts while enhancing mining’s contribution to renewable energy transitions. By exploring the interplay between mining, renewable energy, and sustainable development, this study underscores the transformative potential of science to balance humanity’s resource needs with ecological preservation and social equity. The findings offer actionable insights for aligning mining practices with sustainability principles, fostering resilience and equity in mining-impacted regions. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

30 pages, 22514 KB  
Article
Spatiotemporal Heterogeneity Analysis of Net Primary Productivity in Nanjing’s Urban Green Spaces Based on the DLCC–NPP Model: A Long-Term and Multi-Scenario Approach
by Yuhao Fang, Yuyang Liu, Yuan Wang, Yilun Cao and Yuning Cheng
ISPRS Int. J. Geo-Inf. 2026, 15(1), 38; https://doi.org/10.3390/ijgi15010038 - 12 Jan 2026
Abstract
In the context of the “Dual Carbon” goals, accurately predicting the spatiotemporal evolution of urban Net Primary Productivity (NPP) is crucial for resilient urban planning. While recent studies have coupled land use models with ecosystem models to project NPP dynamics, they often face [...] Read more.
In the context of the “Dual Carbon” goals, accurately predicting the spatiotemporal evolution of urban Net Primary Productivity (NPP) is crucial for resilient urban planning. While recent studies have coupled land use models with ecosystem models to project NPP dynamics, they often face challenges in acquiring high-resolution future vegetation parameters and typically overlook the stability of NPP under changing climates. To address these gaps, this study focuses on Nanjing and develops a long-term, multi-scenario analysis framework based on the Dynamic Land Cover–Climate Model (DLCC–NPP). This framework innovatively integrates the PLUS model with a Random Forest (RF) algorithm. By establishing a direct statistical mapping between macro-climate/micro-land cover and NPP, the RF model functions as a statistical downscaling tool. This approach bypasses the uncertainty accumulation associated with simulating future vegetation indices, enabling precise spatiotemporal NPP prediction at a 30 m resolution. Using this approach, we systematically analyzed the NPP dynamics from 2004 to 2044 under three SSP scenarios. The results revealed that Nanjing’s NPP exhibited a fluctuating upward trend, with urban forests contributing the highest productivity (mean NPP ~266.15 gC/m2). Crucially, the volatility analysis highlighted divergent response characteristics: forests demonstrated the highest stability and “buffering effect,” whereas grasslands and croplands showed high volatility and sensitivity to climate fluctuations. Spatially, a distinct “stable high-NPP core, decreasing periphery” pattern was identified, driven by the interaction of urban expansion and ecological conservation policies. In conclusion, the DLCC–NPP framework effectively overcomes the data scarcity bottleneck in future simulations and characterizes the spatiotemporal heterogeneity of vegetation carbon fixation in urban ecosystems, providing scientific support for optimizing green space patterns and enhancing urban ecological resilience in high-density cities. Full article
Show Figures

Figure 1

35 pages, 7433 KB  
Article
Post-Fire Forest Pulse Recovery: Superiority of Generalized Additive Models (GAM) in Long-Term Landsat Time-Series Analysis
by Nima Arij, Shirin Malihi and Abbas Kiani
Sensors 2026, 26(2), 493; https://doi.org/10.3390/s26020493 - 12 Jan 2026
Abstract
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) [...] Read more.
Wildfires are increasing globally and pose major challenges for assessing post-fire vegetation recovery and ecosystem resilience. We analyzed long-term Landsat time series in two contrasting fire-prone ecosystems in the United States and Australia. Vegetation area was extracted using the Enhanced Vegetation Index (EVI) with Otsu thresholding. Recovery to pre-fire baseline levels was modeled using linear, logistic, locally estimated scatterplot smoothing (LOESS), and generalized additive models (GAM), and their performance was compared using multiple metrics. The results indicated rapid recovery of Australian forests to baseline levels, whereas this was not the case for forests in the United States. Among climatic factors, temperature was the dominant parameter in Australia (Spearman ρ = 0.513, p < 10−8), while no climatic variable significantly influenced recovery in California. Methodologically, GAM consistently performed best in both regions due to its success in capturing multiphase and heterogeneous recovery patterns, yielding the lowest values of AIC (United States: 142.89; Australia: 46.70) and RMSE_cv (United States: 112.86; Australia: 2.26). Linear and logistic models failed to capture complex recovery dynamics, whereas LOESS was highly sensitive to noise and unstable for long-term prediction. These findings indicate that post-fire recovery is inherently nonlinear and ecosystem-specific and that simple models are insufficient for accurate estimation, with GAM emerging as an appropriate method for assessing vegetation recovery using remote sensing data. This study provides a transferable approach using remote sensing and GAM to monitor forest resilience under accelerating global fire regimes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

6 pages, 554 KB  
Editorial
Exploring the Interplay Between Molecular Signaling and Ecosystem Resilience in Plants Under Salt and Water Stress
by Alexandre Maniçoba da Rosa Ferraz Jardim and Toshik Iarley da Silva
Plants 2026, 15(2), 229; https://doi.org/10.3390/plants15020229 - 12 Jan 2026
Abstract
Plants represent the cornerstone of terrestrial ecosystems and the foundation of global food security, playing a pivotal role in achieving the United Nations’ Sustainable Development Goal 2 (Zero Hunger) [...] Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

18 pages, 495 KB  
Article
Environmental Dynamics and Digital Transformation in Lower-Middle-Class Hospitals: Evidence from Indonesia
by Faisal Binsar, Mohammad Hamsal, Mohammad Ichsan, Sri Bramantoro Abdinagoro and Diena Dwidienawati
Healthcare 2026, 14(2), 182; https://doi.org/10.3390/healthcare14020182 - 12 Jan 2026
Abstract
Background/Objectives: Digital transformation is increasingly essential for healthcare organizations to improve operational efficiency and service quality. However, in developing countries such as Indonesia, many lower-middle-class hospitals lag due to limited financial, human, and infrastructural resources. This study examines how environmental dynamism—comprising regulatory [...] Read more.
Background/Objectives: Digital transformation is increasingly essential for healthcare organizations to improve operational efficiency and service quality. However, in developing countries such as Indonesia, many lower-middle-class hospitals lag due to limited financial, human, and infrastructural resources. This study examines how environmental dynamism—comprising regulatory changes, market pressures, and technological shifts—affects the digital capabilities of these hospitals. Methods: A quantitative, cross-sectional survey was conducted in Class C and D hospitals across Indonesia. Respondents included hospital directors, deputy directors, and IT heads. Data were collected through structured questionnaires measuring environmental dynamism and digital capability using a six-point Likert scale. Reliability testing yielded Cronbach’s alpha values above 0.96 for both constructs. Correlation analysis was performed to examine the relationship between environmental dynamism and digital capability. Results: Findings reveal a weak positive correlation (r = 0.1816) between environmental dynamism and digital capability. Although external factors such as policy regulations and technological competition encourage digital adoption, hospitals with limited internal resources struggle to translate these pressures into sustainable transformation. Key challenges include low ICT budgets, inconsistent staff training, and insufficient infrastructure. Conclusions: The results suggest that environmental change alone cannot drive digital readiness without internal capacity development. To foster resilient digital healthcare ecosystems, policy interventions should integrate regulatory frameworks with practical support programs that strengthen resources, leadership, and human capital in lower-middle-class hospitals. Full article
Show Figures

Figure 1

29 pages, 18465 KB  
Review
Optimizing Urban Green Space Ecosystem Services for Resilient and Sustainable Cities: Research Landscape, Evolutionary Trajectories, and Future Directions
by Junhui Sun, Jun Xia and Luling Qu
Forests 2026, 17(1), 97; https://doi.org/10.3390/f17010097 - 11 Jan 2026
Viewed by 48
Abstract
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this [...] Read more.
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this study systematically analyzes 861 relevant publications indexed in the Web of Science Core Collection from 2005 to 2025. Using bibliometric analysis and scientific knowledge mapping methods, the research examines publication characteristics, spatial distribution patterns, collaboration networks, knowledge bases, research hotspots, and thematic evolution trajectories. The results reveal a rapid upward trend in this field over the past two decades, with the gradual formation of a multidisciplinary knowledge system centered on environmental science and urban research. China, the United States, and several European countries have emerged as key nodes in global knowledge production and collaboration networks. Keyword co-occurrence and cluster analyses indicate that research themes are mainly concentrated in four clusters: (1) ecological foundations and green process orientation, (2) nature-based solutions and blue–green infrastructure configuration, (3) social needs and environmental justice, and (4) macro-level policies and the sustainable development agenda. Overall, the field has evolved from a focus on ecological processes and individual service functions toward a comprehensive transition emphasizing climate resilience, human well-being, and multi-actor governance. Based on these findings, this study constructs a knowledge ecosystem framework encompassing knowledge base, knowledge structure, research hotspots, frontier trends, and future pathways. It further identifies prospective research directions, including climate change adaptation, integrated planning of blue–green infrastructure, refined monitoring driven by remote sensing and spatial big data, and the embedding of urban green space ecosystem services into the Sustainable Development Goals and multi-level governance systems. These insights provide data support and decision-making references for deepening theoretical understanding of Urban Green Space Ecosystem Services (UGSES), improving urban green infrastructure planning, and enhancing urban resilience governance capacity. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
28 pages, 1060 KB  
Review
Application of Reproductive Toxicity Caused by Endocrine Disruptors in Rotifers: A Review
by Guangyan Liang, Shenyu Liu, Shan Wang and Yuxue Qin
Biology 2026, 15(2), 128; https://doi.org/10.3390/biology15020128 - 11 Jan 2026
Viewed by 54
Abstract
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes [...] Read more.
Endocrine-disrupting chemicals (EDCs), widespread in aquatic environments, interfere with endocrine function in organisms and threaten ecosystem stability. Rotifers, critical live feed for marine fish, shrimp, and crab larvae, link EDC-induced reproductive impairment to marine ecosystem stability and aquaculture sustainability. This PRISMA-compliant review synthesizes key findings, consequences, and gaps in EDC–rotifer reproductive toxicity research. Traditional EDCs (heavy metals, per- and polyfluoroalkyl substances (PFASs), phenols, phthalate esters, polybrominated diphenyl ethers (PBDEs), and steroid hormones) and emerging EDCs (disinfection byproducts, microplastics, pharmaceutical metabolites) induce distinct reproductive harm—e.g., Hg2+ shows extreme toxicity (24 h LC50 = 4.51 μg L−1 in Brachionus plicatilis), BDE-47 damages ovaries, and microplastics cause transgenerational delays. Rotifer species and exposure duration affect sensitivity (e.g., BDE-47: 96 h LC50 = 0.163 mg L−1 vs. 24 h LC50 > 22 mg L−1 in B. plicatilis). Oxidative stress is a universal mechanism, and combined EDC exposure produces context-dependent synergistic/antagonistic effects. EDC-induced impairment reduces rotifer population density, alters structure, and propagates through food webs, threatening aquaculture and biodiversity; transgenerational toxicity (e.g., 4-nonylphenol: F1 inhibition 28% vs. 12% in F0) weakens resilience. This review supports EDC risk assessment, with gaps including long-term low-concentration data, transgenerational mechanisms, EDC–microbiome interactions, and emerging PFAS toxicity—priorities for future research. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
39 pages, 1731 KB  
Review
Analysis of Major Global Oil Spill Incidents: Part 1—Environmental and Ecological Impacts
by Panagiota Keramea, George Zodiatis and Georgios Sylaios
J. Mar. Sci. Eng. 2026, 14(2), 153; https://doi.org/10.3390/jmse14020153 - 11 Jan 2026
Viewed by 83
Abstract
Oil spills remain among the most severe anthropogenic threats to marine ecosystems, with consequences that span ecological, socio-economic, and human health domains. While numerous studies have investigated individual accidents such as Exxon Valdez, Prestige, and Deepwater Horizon, systematic comparative analyses across multiple large-scale [...] Read more.
Oil spills remain among the most severe anthropogenic threats to marine ecosystems, with consequences that span ecological, socio-economic, and human health domains. While numerous studies have investigated individual accidents such as Exxon Valdez, Prestige, and Deepwater Horizon, systematic comparative analyses across multiple large-scale incidents remain limited. This review addresses this critical gap by synthesizing findings from fourteen major oil spills worldwide. It examines the roles of oil type and environmental conditions, emphasizing impacts on fish, seabirds, shoreline habitats, and benthic organisms, as well as on long-term ecosystem recovery. Across cases, coastal waters, shorelines, and benthic communities consistently emerged as the most impacted habitats, reflecting both the persistence of oil in nearshore environments and the challenges of long-term restoration. Biologically, all trophic levels were affected: plankton, fish, seabirds, and benthic invertebrates were highly vulnerable, while marine mammals and reptiles suffered population-level effects. By integrating cross-case evidence, this review highlights recurring patterns, key uncertainties, and long-lasting ecosystem disruptions that persist decades after acute events. The Deepwater Horizon spill stands out as the most ecologically severe incident, whereas earlier spills such as Exxon Valdez, Erika, and Prestige remain benchmarks for ecological damage. Thus, this state-of-the-art review provides the most comprehensive comparative assessment of oil spill impacts to date and offers technical recommendations for enhancing preparedness, response, and resilience in the face of future spills. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

32 pages, 42468 KB  
Article
From “Data Silos” to “Collaborative Symbiosis”: How Digital Technologies Empower Rural Built Environment and Landscapes to Bridge Socio-Ecological Divides: Based on a Comparative Study of the Yuanyang Hani Terraces and Yu Village in Anji
by Weiping Zhang and Yian Zhao
Buildings 2026, 16(2), 296; https://doi.org/10.3390/buildings16020296 - 10 Jan 2026
Viewed by 90
Abstract
Rural areas are currently facing a deepening “social-ecological divide,” where the fragmentation of natural, economic, and cultural data—often trapped in “data silos”—hinders effective systemic governance. To bridge this gap, in this study, the Rural Landscape Information Model (RLIM), an integrative framework designed to [...] Read more.
Rural areas are currently facing a deepening “social-ecological divide,” where the fragmentation of natural, economic, and cultural data—often trapped in “data silos”—hinders effective systemic governance. To bridge this gap, in this study, the Rural Landscape Information Model (RLIM), an integrative framework designed to reconfigure rural connections through data fusion, process coordination, and performance feedback, is proposed. We validate the framework’s effectiveness through a comparative analysis of two distinct rural archetypes in China: the innovation-driven Yu Village and the heritage-conservation-oriented Hani Terraces. Our results reveal that digital technologies drive distinct empowerment pathways moderated by regional contexts: (1) In the data domain, heterogeneous resources were successfully integrated into the framework in both cases (achieving a Monitoring Coverage > 80%), yet served divergent strategic ends—comprehensive territorial management in Yu Village versus precision heritage monitoring in the Hani Terraces. (2) In the process domain, digital platforms restructured social interactions differently. Yu Village achieved high individual participation (Participation Rate ≈ 0.85) via mobile governance apps, whereas the Hani Terraces relied on cooperative-mediated engagement to bridge the digital divide for elderly farmers. (3) In the performance domain, the interventions yielded contrasting but positive economic-ecological outcomes. Yu Village realized a 25% growth in tourism revenue through “industrial transformation” (Ecology+), while the Hani Terraces achieved a 12% value enhancement by stabilizing traditional agricultural ecosystems (Culture+). This study contributes a verifiable theoretical model and a set of operational tools, demonstrating that digital technologies are not merely instrumental add-ons but catalysts for fostering resilient, collaborative, and context-specific rural socio-ecological systems, ultimately offering scalable governance strategies for sustainable rural revitalization in the digital era. Full article
(This article belongs to the Special Issue Digital Technologies in Construction and Built Environment)
Show Figures

Figure 1

17 pages, 4787 KB  
Article
Lagged Vegetation Responses to Diurnal Asymmetric Warming and Precipitation During the Growing Season in the Yellow River Basin: Patterns and Driving Mechanisms
by Zeyu Zhang, Fengman Fang and Zhiming Zhang
Land 2026, 15(1), 146; https://doi.org/10.3390/land15010146 - 10 Jan 2026
Viewed by 87
Abstract
Diurnally asymmetric warming under global climate change is reshaping terrestrial ecosystems, with important implications for vegetation productivity, biodiversity, and carbon sequestration. However, the mechanisms underlying the delayed and differentiated vegetation responses to daytime and nighttime warming, particularly under interacting precipitation regimes, remain insufficiently [...] Read more.
Diurnally asymmetric warming under global climate change is reshaping terrestrial ecosystems, with important implications for vegetation productivity, biodiversity, and carbon sequestration. However, the mechanisms underlying the delayed and differentiated vegetation responses to daytime and nighttime warming, particularly under interacting precipitation regimes, remain insufficiently understood, limiting accurate assessments of ecosystem resilience under future climate scenarios. Clarifying how vegetation responds dynamically to asymmetric temperature changes and precipitation, including their lagged effects, is therefore essential. Here, we analyzed the spatiotemporal evolution of growing-season Normalized Difference Vegetation Index (NDVI) across the Yellow River Basin from 2001 to 2022 using Theil–Sen median trend estimation and the Mann–Kendall test. We further quantified the lagged responses of NDVI to daytime maximum temperature (Tmax), nighttime minimum temperature (Tmin), and precipitation, and identified their dominant controls using partial correlation analysis and an XGBoost–SHAP framework. Results show that (1) growing-season climate in the YRB experienced pronounced diurnal warming asymmetry: Tmax, Tmin, and precipitation all increased, but Tmin rose substantially faster than Tmax. (2) NDVI exhibited an overall increasing trend, with declines confined to only 2.72% of the basin, mainly in Inner Mongolia, Ningxia, and Qinghai. (3) NDVI responded to Tmax, Tmin, and precipitation with distinct lag times, averaging 43, 16, and 42 days, respectively. (4) Lag times were strongly modulated by topography, soil properties, and hydro-climatic background. Specifically, Tmax lag time shortened with increasing elevation, soil silt content, and slope, while showing a decrease-then-increase pattern with potential evapotranspiration. Tmin lag time lengthened with elevation, soil sand content, and soil pH, but shortened with higher potential evapotranspiration. Precipitation lag time increased with soil silt content and net primary productivity, decreased with soil pH, and varied nonlinearly with elevation (decrease then increase). By explicitly linking diurnal warming asymmetry to vegetation response lags and their environmental controls, this study advances process-based understanding of climate–vegetation interactions in arid and semi-arid regions. The findings provide a transferable framework for improving ecosystem vulnerability assessments and informing adaptive vegetation management and conservation strategies under ongoing asymmetric warming. Full article
Show Figures

Figure 1

33 pages, 2366 KB  
Article
Dynamic Modeling of Bilateral Energy Synergy: A Data-Driven Adaptive Index for China–Korea Hydrogen System Coupling Assessment
by Liekai Bi and Yong Hu
Energies 2026, 19(2), 343; https://doi.org/10.3390/en19020343 - 10 Jan 2026
Viewed by 66
Abstract
The development of cross-border hydrogen energy value chains involves complex interactions between technological, regulatory, and logistical subsystems. Static assessment models often fail to capture the dynamic response of these coupled systems to external perturbations. This study addresses this gap by proposing the Dual [...] Read more.
The development of cross-border hydrogen energy value chains involves complex interactions between technological, regulatory, and logistical subsystems. Static assessment models often fail to capture the dynamic response of these coupled systems to external perturbations. This study addresses this gap by proposing the Dual Carbon Cooperation Index (DCCI), a data-driven framework designed to quantify the synergy efficiency of the China–Korea hydrogen ecosystem. We construct a dynamic state estimation model integrating three coupled dimensions—Technology Synergy, Regulatory Alignment, and Supply Chain Resilience—utilizing an adaptive weighting algorithm (Triple Dynamic Response). Based on multi-source heterogeneous data (2020–2024), the model employs Natural Language Processing (NLP) for vectorizing unstructured regulatory texts and incorporates an exogenous signal detection mechanism (GPR). Empirical results reveal that the ecosystem’s composite synergy score recovered from 0.38 to 0.50, driven by robust supply chain resilience but constrained by high impedance in technological transfer protocols. Crucially, the novel dynamic weighting algorithm significantly reduces state estimation error during high-volatility periods compared to static linear models, as validated by bootstrapping analysis (1000 resamples). The study provides a quantitative engineering tool for monitoring ecosystem coupling stability and proposes a technical roadmap for reducing system constraints through secure IP data architectures and synchronized standard protocols. Full article
(This article belongs to the Special Issue Energy Security, Transition, and Sustainable Development)
Show Figures

Figure 1

Back to TopTop