Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = residential heat supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2071 KB  
Article
Performance Investigation of a Dew-Point Evaporative Air Cooler with Segmented Heat Exchange Design
by Peng Xu and Jianing Sai
Buildings 2026, 16(3), 477; https://doi.org/10.3390/buildings16030477 - 23 Jan 2026
Abstract
A dew-point evaporative air cooler incorporating a novel segmented heat exchange design, demarcated according to the humidity state of moist air, is proposed. The system employs a porous fibrous material to create a wetted evaporative surface, which is continuously maintained in a moistened [...] Read more.
A dew-point evaporative air cooler incorporating a novel segmented heat exchange design, demarcated according to the humidity state of moist air, is proposed. The system employs a porous fibrous material to create a wetted evaporative surface, which is continuously maintained in a moistened condition through a self-wicking water supply mechanism to enhance latent heat transfer. Circular fins are installed on the heat exchanger’s partition surface once the moist air reaches saturation, thereby improving sensible heat exchange between the dry and wet channels. The performance of a prototype was evaluated under controlled conditions in a standard enthalpy chamber. Experimental results indicate that, under typical summer conditions (inlet dry-bulb and wet-bulb temperatures of 33.8 °C and 25.4 °C, respectively), with an air mass flow ratio of 0.7 and an air velocity of 1.5 m/s, the wet-bulb effectiveness reaches 114.4% and the dew-point effectiveness achieves 84.8%. The maximum temperature reduction occurs in the sensible heat exchange section, reaching up to 6.1 °C, demonstrating its substantial sensible heat recovery capability. The device exhibits an energy efficiency ratio (EER) ranging from 9.1 to 31.8. The proposed compact configuration not only enhances energy efficiency but also reduces material costs by approximately 15.4%, providing a valuable reference for the future development of dew-point evaporative cooling systems in residential buildings. Full article
21 pages, 4447 KB  
Article
Numerical Investigation of a Multi-Year Sand-Based Thermal Energy Storage System for Building Space Heating Application
by Sandeep Bandarwadkar and Tadas Zdankus
Buildings 2026, 16(2), 321; https://doi.org/10.3390/buildings16020321 - 12 Jan 2026
Viewed by 134
Abstract
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. [...] Read more.
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. An iterative co-design couples collector sizing with the seasonal charging target and a 3D COMSOL Multiphysics model of a 300 m3 sand-filled, phenolic foam-insulated system, with a 1D conjugate model of a copper pipe heat-exchanger network. The system was charged from March to September and discharged from October to February under measured-weather boundary conditions across three consecutive annual cycles. During the first year, the storage supplied the entire winter heating demand, though 35.2% of the input energy was lost through conduction, resulting in an end-of-cycle average sand temperature slightly below the initial state. In subsequent years, both the peak sand temperature and the residual end-of-cycle temperature increased by 3.7 °C and 3.2 °C, respectively, by the third year, indicating cumulative thermal recovery and improved retention. Meanwhile, the peak conductive losses rate decreased by 98 W, and cumulative annual losses decreased by 781.4 kWh in the third year, with an average annual reduction of 4.15%. These results highlight the progressive self-conditioning of the surrounding soil and demonstrate that a low-cost, sand-based storage system can sustain a complete seasonal heating supply with declining losses, offering a robust and scalable approach for residential building heating applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 828 KB  
Article
Integrating Circular Economy Principles into Energy-Efficient Retrofitting of Post-1950 UK Housing Stock: A Pathway to Sustainable Decarbonisation
by Louis Gyoh, Obas John Ebohon, Juanlan Zhou and Deinsam Dan Ogan
Buildings 2026, 16(2), 262; https://doi.org/10.3390/buildings16020262 - 7 Jan 2026
Viewed by 214
Abstract
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and [...] Read more.
The UK’s net-zero by 2050 commitment necessitates urgent housing sector decarbonisation, as residential buildings contribute approximately 17% of national emissions. Post-1950 construction prioritised speed over efficiency, creating energy-deficient housing stock that challenges climate objectives. Current retrofit policies focus primarily on technological solutions—insulation and heating upgrades—while neglecting broader sustainability considerations. This research advocates systematically integrating Circular Economy (CE) principles into residential retrofit practices. CE approaches emphasise material circularity, waste minimisation, adaptive design, and a lifecycle assessment, delivering superior environmental and economic outcomes compared to conventional methods. The investigation employs mixed-methods research combining a systematic literature analysis, policy review, stakeholder engagement, and a retrofit implementation evaluation across diverse UK contexts. Key barriers identified include regulatory constraints, workforce capability gaps, and supply chain fragmentation, alongside critical transition enablers. An evidence-based decision-making framework emerges from this analysis, aligning retrofit interventions with CE principles. This framework guides policymakers, industry professionals, and researchers in the development of strategies that simultaneously improve energy-efficiency, maximise material reuse, reduce embodied emissions, and enhance environmental and economic sustainability. The findings advance a holistic, systems-oriented approach, positioning housing as a pivotal catalyst in the UK’s transition toward a circular, low-carbon built environment, moving beyond isolated technological fixes toward a comprehensive sustainability transformation. Full article
(This article belongs to the Special Issue Advancements in Net-Zero-Energy Buildings)
Show Figures

Figure 1

27 pages, 4502 KB  
Article
Energy Performance Evaluation and Optimization of a Residential SOFC-CGS in a Typical Passive-Designed Village House in Xi’an, China
by Yaolong Hou, Han Chang, Yidan Fan, Xiangxue Zhang, Yuxuan Xiong, Bo Zhang and Sanhe Wan
Buildings 2026, 16(1), 59; https://doi.org/10.3390/buildings16010059 - 23 Dec 2025
Viewed by 383
Abstract
Due to the increasingly severe energy crisis and extreme climate conditions in recent years, the development and use of alternative clean energy sources have become increasingly important. This study evaluates the energy performance of applying residential solid oxide fuel cells (SOFCs) in a [...] Read more.
Due to the increasingly severe energy crisis and extreme climate conditions in recent years, the development and use of alternative clean energy sources have become increasingly important. This study evaluates the energy performance of applying residential solid oxide fuel cells (SOFCs) in a typical passive-designed residential village house in Xi’an. Furthermore, the study integrates photovoltaic (PV) systems and storage batteries with a solid oxide fuel cell co-generation system (SOFC-CGS) to enhance its overall energy performance. The results show that when the SOFC-CGS operates independently, it can provide stable electricity. However, due to its limited capacity, it only meets 43% of the total energy demand and cannot fully satisfy the heating requirements. In this energy supply scenario, the SOFC-CGS heating efficiency reaches 25%, the power generation efficiency reaches 42%, and the overall efficiency reaches 67%. After integrating the PV battery system with the SOFC-CGS, the addition of photovoltaic and battery systems boosts the energy self-sufficiency rate by 32 percent, reaching 75%. In other words, this clean energy combination can cover 75% of the household’s traditional energy consumption. In addition, the heating efficiency increases by 2 percentage points to 27%, the power generation efficiency rises by 4 percent to 46%, and the overall system efficiency improves by 6 percent to reach 73%. Furthermore, the utilization rate of the photovoltaic battery system also rises from 25% to 73%: an increase of 48 percent. Therefore, according to the analysis results, integrating PV and storage batteries with the SOFC-CGS proves to be a profitable and efficient solution for application in passive-designed village houses in Xi’an. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 3891 KB  
Article
Energetic and Economic Assessment of a Solar Thermally Driven Innovative Tri-Generation Unit for Different Use Cases and Climates
by Uli Jakob, Michael Strobel and Luca Ziegele
Sustainability 2025, 17(24), 10924; https://doi.org/10.3390/su172410924 - 6 Dec 2025
Viewed by 309
Abstract
The energy sector is currently under enormous transition, moving from fossil fuels to renewable energies and integrating energy efficiency measures. This transition can hold opportunities for new and innovative energy systems. This study presents an energetic and economic assessment of an innovative tri-generation [...] Read more.
The energy sector is currently under enormous transition, moving from fossil fuels to renewable energies and integrating energy efficiency measures. This transition can hold opportunities for new and innovative energy systems. This study presents an energetic and economic assessment of an innovative tri-generation unit working with a two-phase thermodynamic cycle. The tri-generation unit is driven by heat and is capable of providing heat at lower level, cold, and electricity to end users. The use cases—residential, day-use offices, commercial retail, and manufacturing industry—are integrated in a dynamic simulation model, indicating the operation mode of the unit. The results show that the tri-generation unit is able to provide heat and cold with an Energy Utilization Factor of 35% to 68%, depending on the use case. Solar thermal has a limited to potential to supply the unit with heat, due to the high temperature of 180 °C and the required unit operation at nighttime. The economic comparison indicates that the driving heat must be as low as possible and that savings through self-consumption is most relevant. Full article
(This article belongs to the Topic Advances in Solar Heating and Cooling, 2nd Edition)
Show Figures

Figure 1

23 pages, 4394 KB  
Article
Dynamic Regulation and Renewable Integration for Low-Carbon District Heating Networks
by Frantisek Vranay, Daniela Kaposztasova and Zuzana Vranayova
Sustainability 2025, 17(23), 10713; https://doi.org/10.3390/su172310713 - 29 Nov 2025
Viewed by 503
Abstract
Integration of renewable energy sources into existing residential and communal district heating systems requires technical adjustments and corrections. Measures aimed at reducing heat consumption at the points of delivery have a similar impact. This study aims, through simplified partial models (in heating mode), [...] Read more.
Integration of renewable energy sources into existing residential and communal district heating systems requires technical adjustments and corrections. Measures aimed at reducing heat consumption at the points of delivery have a similar impact. This study aims, through simplified partial models (in heating mode), to present the relationships between these modifications and their potential effects on operational problems and deficiencies. The main parameters assessed in the design and correction of systems are temperature differentials, derived flow rates, pumping work, and control methods. Within the chain of heat source–primary distribution–secondary distribution–consumers, the analysis focuses on secondary circuits with consumers. A simplified multi-building network model was used to compare static and dynamic control strategies under temperature regimes of 70/50 °C, 60/40 °C, and 40/30 °C. The results show that dynamic control based on variable-frequency pumps, weather-compensated supply regulation, and optimized temperature differences between supply and return lines (ΔT) reduces pumping energy by 30–40% and increases heat delivery efficiency by up to 10%. A significant reduction in CO2 emissions is also observed due to decreased pumping work, reduced heat losses in the distribution network, and the integration of renewable energy sources. The savings depend on the type and extent of RES utilization. The implementation of dynamic control in these systems significantly improves exergy efficiency, operational stability, and the potential for low-temperature operation, thus providing a practical framework for the modernization of district heating networks. Full article
(This article belongs to the Special Issue Sustainable Building: Renewable and Green Energy Efficiency)
Show Figures

Figure 1

19 pages, 3511 KB  
Article
A Hybrid Earth–Air Heat Exchanger with a Subsurface Water Tank: Experimental Validation in a Hot–Arid Climate
by Safieddine Ounis, Okba Boucherit, Abdelhafid Moummi, Tallal Abdel Karim Bouzir, Djihed Berkouk, Fabrizio Leonforte, Claudio Del Pero and Mohammed M. Gomaa
Sustainability 2025, 17(22), 10216; https://doi.org/10.3390/su172210216 - 14 Nov 2025
Viewed by 771
Abstract
Earth–Air Heat Exchangers (EAHEs) exploit stable subsurface temperatures to pre-condition supply air. To address limitations of conventional systems in hot–arid climates, this study investigates the performance of a hybrid EAHE prototype combining a serpentine subsurface pipe with a buried water tank. Installed in [...] Read more.
Earth–Air Heat Exchangers (EAHEs) exploit stable subsurface temperatures to pre-condition supply air. To address limitations of conventional systems in hot–arid climates, this study investigates the performance of a hybrid EAHE prototype combining a serpentine subsurface pipe with a buried water tank. Installed in a residential building in Lichana, Biskra (Algeria), the system was designed to enhance land compactness, thermal stability, and soil–water heat harvesting. Experimental monitoring was conducted across 13 intervals strategically spanning seasonal transitions and extremes and was complemented by calibrated numerical simulations. From over 30,000 data points, outlet trajectories, thermal efficiency, Coefficient of Performance (COP), and energy savings were assessed against a straight-pipe baseline. Results showed that the hybrid EAHE delivered smoother outlet profiles under moderate gradients while the baseline achieved larger instantaneous ΔT. Thermal efficiencies exceeded 90% during high-gradient episodes and averaged above 70% annually. COP values scaled with the inlet–soil gradient, ranging from 1.5 to 4.0. Cumulative recovered energy reached 80.6 kWh (3.92 kWh/day), while the heat pump electricity referred to a temperature-dependent ASHP totaled 34.59 kWh (1.40 kWh/day). Accounting for the EAHE fan yields a net saving of 25.46 kWh across the campaign, only one interval (5) was net-negative, underscoring the value of bypass/fan shut-off under weak gradients. Overall, the hybrid EAHE emerges as a footprint-efficient option for arid housing, provided operation is dynamically controlled. Future work will focus on controlling logic and soil–moisture interactions to maximize net performance. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

18 pages, 2963 KB  
Article
Investment Opportunities for Individual Energy Supply Systems: A UK Household Study
by Julien Garcia Arenas, Mathieu Patin, Patrick Hendrick, Sylvie Bégot, Frédéric Gustin and Valérie Lepiller
Energies 2025, 18(21), 5803; https://doi.org/10.3390/en18215803 - 4 Nov 2025
Viewed by 405
Abstract
The current evolution of the energy context and progress in sustainable energy technologies are enabling the development of new energy supply systems for the residential sector. However, the techno-economic assessment of such energy systems is not straightforward and depends, among others, on the [...] Read more.
The current evolution of the energy context and progress in sustainable energy technologies are enabling the development of new energy supply systems for the residential sector. However, the techno-economic assessment of such energy systems is not straightforward and depends, among others, on the building type, its thermal insulation rate, and user patterns, as well as on the climatic conditions or energy and technology prices. This study therefore aims to develop an investment model for a typical UK household energy system that is applied to a diversity of scenarios to highlight the sensibility of the output results over stochastic input data such as electricity and heat demands, ambient temperature, and global solar irradiation. This dwelling diversity dataset is generated using a thermal–electrical demand model that uses stochastic techniques to model uncertainty. This contribution concludes with a discussion on how end-users can effectively take part in the energy transition while minimizing their energy bill and potentially generate long-term revenues. The main results show stable economic performance, with capital expenditure (CAPEX) ranging from GBP 15,400 to GBP 17,000 and NPV from GBP 21,000 to GBP 26,000 over 2000 individual scenarios. This study also confirms the leveraging effect of policy instruments, such as subsidies, in shifting the optimal system design towards higher shares of renewable and storage technologies, further reducing the reliance on fossil fuels and the impact on distribution systems. Full article
Show Figures

Figure 1

20 pages, 5924 KB  
Article
Lightweight Calculation Method for Heating Loads in Existing Residential Clusters via Spatial Thermal Pattern Decoupling and Matrix Reorganization
by Haofei Cai, Xinqi Yu, Zhongyan Liu, Xin Meng, Junjie Liu, Ziyang Cheng, Shuming Wang, Wei Jiang and Guopeng Yao
Processes 2025, 13(11), 3475; https://doi.org/10.3390/pr13113475 - 29 Oct 2025
Viewed by 638
Abstract
Centralized heating systems in severe cold regions suffer from widespread load estimation deviations due to architectural heterogeneity and a lack of construction drawings, leading to substantial energy waste. This study proposes a lightweight load calculation method that facilitates efficient calculation of heating loads [...] Read more.
Centralized heating systems in severe cold regions suffer from widespread load estimation deviations due to architectural heterogeneity and a lack of construction drawings, leading to substantial energy waste. This study proposes a lightweight load calculation method that facilitates efficient calculation of heating loads for heterogeneous building clusters via spatial thermal pattern decoupling and matrix reorganization. First, a 3 × 3 load characteristic matrix is developed to characterize the spatial variation in thermal demand across different building positions (corner vs. intermediate units × top, middle, and bottom floors), revealing that corner units exhibit higher thermal loads than intermediate units, while top and bottom floors show significantly higher loads than middle floors. Second, two complementary matrices are established: the load characteristic matrix, which represents the building’s thermal behavior, and the structural feature matrix, which encodes the architectural configuration in terms of unit count (a) and floor count (b). Together, they enable rapid hourly load synthesis using only lightweight input parameters. The method is validated on 56 heterogeneous residential buildings in Northeast China. Using a decoupled 4U/6F standard model, the synthesized cluster heating load achieves an R2 of 0.88, an RMSE of 24.15 GJ, a MAPE of 4.94%, and a Mean Percentage Error (MPE) of −0.82% against actual heating supply data, demonstrating high accuracy and negligible systematic bias—particularly during cold waves. This approach allows the seasonal variation in heat demand across an entire residential area to be estimated even in the absence of detailed construction drawings, offering practical guidance for operational heating management. Full article
(This article belongs to the Special Issue Model Predictive Control of Heating and Cooling Systems)
Show Figures

Figure 1

21 pages, 3962 KB  
Article
Improving Thermal Performance of Solar Heating Systems
by Sebastian Pater and Krzysztof Kupiec
Appl. Sci. 2025, 15(20), 11118; https://doi.org/10.3390/app152011118 - 16 Oct 2025
Viewed by 966
Abstract
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the [...] Read more.
The solar energy reaching the immediate surroundings of a single-family house throughout the year is sufficient to repeatedly and fully cover its heating needs during the heating season in a temperate climate. Nevertheless, modern technology is not yet able to fully solve the problem of thermal self-sufficiency in single-family houses. It is therefore advisable to seek solutions that improve the thermal efficiency of domestic solar installations. Efficient use of solar radiation heat accumulated during the summer months for heating requires the use of high-volume storage tanks. Another option is to discharge excess heat outside the system during the summer. This publication focuses on the latter solution. A model of the solar heating system for a residential building and pool with a storage tank powered by solar energy has been developed. Simulation calculations were performed, showing that the removal of excess heat is a beneficial solution, especially when this energy can be used to heat water in the pool. The calculations concerned the heating of a single-family house in a temperate climate. Lowering the temperature of the water in the storage tank reduces heat losses from the tank to the environment (ground), while supplying the solar collectors with lower-temperature fluid increases the driving force of the heat transfer process. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

36 pages, 4952 KB  
Article
Analysis of the Profitability of Heating a Retrofitted Building with an Air Heat Pump in Polish Climatic Conditions
by Aleksander Iwaszczuk, Jarosław Baran and Natalia Iwaszczuk
Energies 2025, 18(20), 5413; https://doi.org/10.3390/en18205413 - 14 Oct 2025
Cited by 1 | Viewed by 2474
Abstract
The transformation of energy systems towards low emission is one of the key assumptions of the climate and energy policy of the European Union and many countries around the world. These changes include not only the power and transport sectors but also the [...] Read more.
The transformation of energy systems towards low emission is one of the key assumptions of the climate and energy policy of the European Union and many countries around the world. These changes include not only the power and transport sectors but also the heating of residential buildings, which consume significant amounts of energy and emit large amounts of greenhouse gases. This article presents a detailed comparative analysis of the costs of heating using an air-to-water heat pump and a condensing gas boiler. The study concerned a retrofitted single-family building from the 1990s, located in southern Poland. The calculations were made taking into account daily meteorological data for two full heating seasons: 2022/2023 and 2023/2024. This approach made it possible to more precisely reproduce real operating conditions. The study was conducted for various configurations of the central heating system: surface and radiator. The following parameters were also taken into account: (1) variable heat pump parameters, such as supply temperature LWT and coefficient of performance COP; (2) current tariffs for electricity and natural gas; and (3) forecasted tariffs for electricity and natural gas in the conditions of market liberalization and phasing out of protective mechanisms. A comparison of the two heating seasons revealed lower costs with a heat pump. In some cases, the cost of heat generated by a gas boiler was over 100% higher than with a heat pump. This applies to both heating seasons. Under the current tariffs, the calculated gas cost for the first season was PLN 6856 (EUR 1605) (1 EUR = 4.27 PLN) compared to heat pump heating costs ranging from PLN 3191 to PLN 4576 (EUR 747 to 1072). For future gas and electricity tariffs, the costs were PLN 8227 (EUR 1926) for gas and PLN 3841 to PLN 5304 (EUR 899 to 1242) for a heat pump. Similarly, for the second heating season, these values were PLN 6055 (EUR 1418) for gas heating and PLN 2741–3917 (EUR 642–917) for a heat pump under the current tariffs, and PLN 7267 (EUR 1702) and PLN 3307–4540 (EUR 774–1064) under future tariffs. This means percentage savings of between approximately 33% and 55%, depending on the heating type and tariff. Therefore, the obtained results indicate the higher profitability of using an air heat pump compared to a gas boiler. This advantage was maintained in all the discussed scenarios, and its scale depended on the type of installation, supply temperature, and the selected electricity tariff. The highest economic profitability was noted for low-temperature systems. These results can provide a basis for making rational investment and design decisions in the context of the energy transformation of single-family housing. Full article
Show Figures

Figure 1

30 pages, 4983 KB  
Article
Decoding Multi-Scale Environmental Configurations for Older Adults’ Walkability with Explainable Machine Learning
by Chenxi Su, Zhengyan Chen, Yuxuan Cheng, Shaofeng Chen, Wenting Li and Zheng Ding
Sustainability 2025, 17(18), 8499; https://doi.org/10.3390/su17188499 - 22 Sep 2025
Viewed by 1070
Abstract
The rapid growth of the aging population, alongside functional decline and more older adults living independently, has increased demand for age-friendly infrastructure and walkable communities. This study proposes a quantitative framework to assess how multi-scale built environments influence older adults’ walkability, addressing the [...] Read more.
The rapid growth of the aging population, alongside functional decline and more older adults living independently, has increased demand for age-friendly infrastructure and walkable communities. This study proposes a quantitative framework to assess how multi-scale built environments influence older adults’ walkability, addressing the scarcity of scalable and interpretable models in age-friendly urban research. By combining the cumulative opportunity method, street-scene semantic segmentation, XGBoost, and GeoSHapley-based spatial effect analysis, the study finds that (1) significant spatial disparities in walkability exist in Xiamen’s central urban area. Over half of the communities (54.46%) failed to meet the minimum threshold (20 points) within the 15 min community life circle (15-min CLC), indicating inadequate infrastructure. The primary issue is low coverage of older adults’ welfare facilities (only 16.26% of communities are within a 15 min walk). Despite renovations in Jinhu Community, walkability remains low, highlighting persistent disparities. (2) Communities with abundant green space are predominantly newly developed areas (64.06%). However, these areas provide fewer facilities on average (2.3) than older communities (5.7), resulting in a “green space–service mismatch”, where visually appealing environments lack essential services. (3) Human perception variables such as safety, traffic flow, and closure positively influence walkability, while visual complexity, heat risk, exposure, and greenness have negative effects. (4) There is a clear supply and demand mismatch. Central districts combine high walkability with substantial older adults’ service demand. Newly built residential areas in the periphery and north have low density and insufficient pedestrian facilities. They fail to meet daily accessibility needs, revealing delays in age-friendly development. This framework, integrating nonlinear modeling and spatial analysis, reveals spatial non-stationarity and optimal thresholds in how the built environment influences walkability. Beyond methodological contributions, this study offers guidance for planners and policymakers to optimize infrastructure allocation, promote equitable, age-friendly cities, and enhance the health and wellbeing of older residents. Full article
Show Figures

Figure 1

20 pages, 4502 KB  
Article
Virtual Energy Replication Framework for Predicting Residential PV Power, Heat Pump Load, and Thermal Comfort Using Weather Forecast Data
by Daud Mustafa Minhas, Muhammad Usman, Irtaza Bashir Raja, Aneela Wakeel, Muzaffar Ali and Georg Frey
Energies 2025, 18(18), 5036; https://doi.org/10.3390/en18185036 - 22 Sep 2025
Cited by 2 | Viewed by 609
Abstract
It is essential to balance energy supply and demand in residential buildings through accurate forecasting of energy use due to varying daily and seasonal residential building loads. This study demonstrates a data-driven Virtual Energy Replication Framework (VERF) to predict the behavior of residential [...] Read more.
It is essential to balance energy supply and demand in residential buildings through accurate forecasting of energy use due to varying daily and seasonal residential building loads. This study demonstrates a data-driven Virtual Energy Replication Framework (VERF) to predict the behavior of residential buildings using weather forecast data. The framework integrates supervised machine learning models and time-ahead weather parameters to estimate photovoltaic (PV) power production, heat pump energy consumption, and indoor thermal comfort. The accuracy of prediction models is validated using TRNSYS simulations of a typical household in Saarbrucken, Germany, a temperate oceanic climate region. The XGBoost model exhibits the highest reliability, achieving a root mean square error (RMSE) of 0.003 kW for PV power generation and 0.025 kW for heat pump energy use, with R2 scores of 0.94 and 0.87, respectively. XGBoost and random forest regression models perform well in predicting PV generation and HP electricity load, with mean prediction errors of 5.27–6% and 0–7.7%, respectively. In addition, the thermal comfort index (PPD) is predicted with an RMSE of 1.84 kW and an R2 score of 0.80 using the XGBoost model. The mean prediction error remains between 2.4% (XGBoost regression) and −11.5% (lasso regression) throughout the forecasted data. Because the framework requires no real-time instrumentation or detailed energy modelling, it is scalable and adaptable for smart building energy systems, and has particular value for Building-Integrated Photovoltaics (BIPV) demonstration projects on account of its predictive load-matching capabilities. The research findings justify the applicability of VERF for efficient and sustainable energy management using weather-informed prediction models in residential buildings. Full article
(This article belongs to the Special Issue Application of Machine Learning Tools for Energy System)
Show Figures

Figure 1

15 pages, 3462 KB  
Article
Numerical Assessment of Electric Underfloor Heating Enhanced by Photovoltaic Integration
by Hana Charvátová, Aleš Procházka, Martin Zálešák and Vladimír Mařík
Sensors 2025, 25(18), 5916; https://doi.org/10.3390/s25185916 - 22 Sep 2025
Viewed by 1301
Abstract
The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations [...] Read more.
The integration of electric underfloor heating systems with photovoltaic (PV) panels presents a promising approach to enhance thermal efficiency and energy sustainability in residential heating. This study investigates the performance of such hybrid systems under different energy supply scenarios. Numerical modeling and simulations were employed to evaluate underfloor heating performance using three electricity sources: standard electric supply, solar-generated energy, and a combined configuration. Solar irradiance sensors were utilized to collect input solar radiation data, which served as a critical parameter for numerical modeling and simulations. The set outdoor air temperature used in the analysis represents an average value calculated from data measured by environmental sensors at the location of the building during the monitored period. Key metrics included indoor air temperature, time to thermal stability, and heat loss relative to outdoor conditions. The combined electric and solar-powered system demonstrated thermal efficiency, improving indoor air temperature by up to 63.6% compared to an unheated room and achieving thermal stability within 22 h. Solar-only configuration showed moderate improvements. Heat loss analysis revealed a strong correlation with indoor–outdoor temperature differentials. Hybrid underfloor heating systems integrating PV panels significantly enhance indoor thermal comfort and energy efficiency. These findings support the adoption of renewable energy technologies in residential heating, contributing to sustainable energy transitions. Full article
Show Figures

Figure 1

28 pages, 1374 KB  
Article
Can Removing Policy Burdens Improve SOEs’ ESG Performance? Evidence from China
by Peiyu Zhao and Jiajun Xu
Sustainability 2025, 17(18), 8315; https://doi.org/10.3390/su17188315 - 16 Sep 2025
Viewed by 1299
Abstract
Against the backdrop of the global sustainable development agenda and deepening reforms of China’s state-owned enterprises (SOEs), the restrictive effect of policy burdens on the long-term development capacity of SOEs has become increasingly prominent. How to break this constraint through policy reforms has [...] Read more.
Against the backdrop of the global sustainable development agenda and deepening reforms of China’s state-owned enterprises (SOEs), the restrictive effect of policy burdens on the long-term development capacity of SOEs has become increasingly prominent. How to break this constraint through policy reforms has become critical. This study takes China’s policy on the transfer of heating, power, water supply, and estate in the residential quarters of SOE employees (HPWET) as a quasi-natural experiment. Employing data from 2012 to 2024 on Chinese A-share SOEs listed in Shanghai and Shenzhen, combined with the staggered difference-in-differences method, to explore the impact of removing policy burdens (RPB) on the ESG performance of SOEs and the underlying mechanisms. Results show that RPB significantly improves SOEs’ ESG performance, with an average increase of 14.2% in the ESG performance of SOEs in the treatment group. This effect is more pronounced in large SOEs, those in regions with higher levels of technology marketization, and SOEs in light-pollution industries. Mechanism tests indicate that the improvement of the green innovation level, the reduction in political connections, and the optimization of the corporate governance environment are the core paths of action. This study further broadens the research perspective on SOE policy burdens, enriches the understanding of macro-policy drivers of the ESG performance, and provides new empirical evidence for emerging economies to break through the bottleneck of ESG development in SOEs through institutional reforms. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

Back to TopTop