Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = reservoir physical property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2448 KiB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Viewed by 160
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

22 pages, 11338 KiB  
Article
Genesis of Clastic Reservoirs in the First Member of Yaojia Formation, Northern Songliao Basin
by Junhui Li, Qiang Zheng, Yu Cai, Huaye Liu, Tianxin Hu and Haiguang Wu
Minerals 2025, 15(8), 795; https://doi.org/10.3390/min15080795 - 29 Jul 2025
Viewed by 196
Abstract
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary [...] Read more.
This study focuses on the clastic reservoir in the first member of Yaojia Formation within Qijia-Gulong Sag, Songliao Basin. The results indicate that the reservoir in the study area develops within a shallow-water delta sedimentary system. The dominant sedimentary microfacies comprise underwater distributary channels, mouth bars, and sheet sands. Among these, the underwater distributary channel microfacies exhibits primary porosity ranging from 15.97% to 17.71%, showing the optimal reservoir quality, whereas the sheet sand microfacies has a porosity of only 7.45% to 12.08%, indicating inferior physical properties. During diagenesis, compaction notably decreases primary porosity via particle rearrangement and elastic deformation, while calcite cementation and quartz overgrowth further occlude pore throats. Although dissolution can generate secondary porosity (locally up to 40%), the precipitation of clay minerals tends to block pore throats, leading to “ineffective porosity” (permeability generally < 5 mD) and overall low-porosity and low-permeability characteristics. Carbon–oxygen isotope analysis reveals a deficiency in organic acid supply in the study area, restricting the intensity of dissolution alteration. Reservoir quality evolution is dominantly governed by the combined controls of sedimentary microfacies and diagenesis. This study emphasizes that, within shallow-water delta sedimentary settings, the material composition of sedimentary microfacies and the dynamic equilibrium of diagenetic processes jointly govern reservoir property variations. This insight provides critical theoretical support for understanding diagenetic evolution mechanisms in clastic reservoirs and enabling precise prediction of high-quality reservoir distribution. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

26 pages, 4890 KiB  
Article
Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy
by Zhichao Li, Ming Li, Guochang Liu, Yanlei Dong, Yannan Wang and Yaqi Wang
J. Mar. Sci. Eng. 2025, 13(8), 1390; https://doi.org/10.3390/jmse13081390 - 22 Jul 2025
Viewed by 205
Abstract
The central and deep reservoirs of the Wushi Sag in the Beibu Gulf Basin, China, are characterized by structurally complex settings, strong heterogeneity, multiple controlling factors for physical properties of reservoirs, rapid lateral variations in reservoir thickness and petrophysical properties, and limited seismic [...] Read more.
The central and deep reservoirs of the Wushi Sag in the Beibu Gulf Basin, China, are characterized by structurally complex settings, strong heterogeneity, multiple controlling factors for physical properties of reservoirs, rapid lateral variations in reservoir thickness and petrophysical properties, and limited seismic resolution. To address these challenges, this study integrates the INPEFA inflection point technique and Morlet wavelet transform to delineate system tracts and construct a High-Frequency Stratigraphic Framework (HFSF). Sedimentary facies are identified through the integration of core descriptions and seismic data, enabling the mapping of facies distributions. The vertical constraints provided by the stratigraphic framework, combined with the lateral control from facies distribution, which, based on identification with logging data and geological data, support the construction of a geologically consistent low-frequency initial model. Subsequently, geostatistical seismic inversion is performed to derive acoustic impedance and lithological distributions within the central and deep reservoirs. Compared with the traditional methods, the accuracy of the inversion results of this method is 8% higher resolution than that of the conventional methods, with improved vertical resolution to 3 m, and enhances the lateral continuity matched with the sedimentary facies structure. This integrated workflow provides a robust basis for predicting the spatial distribution of sandstone reservoirs in the Wushi Sag’s deeper stratigraphic intervals. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 6480 KiB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 429
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 5746 KiB  
Article
Gas Prediction in Tight Sandstone Reservoirs Based on a Seismic Dispersion Attribute Derived from Frequency-Dependent AVO Inversion
by Laidong Hu, Mingchun Chen and Han Jin
Processes 2025, 13(7), 2210; https://doi.org/10.3390/pr13072210 - 10 Jul 2025
Viewed by 235
Abstract
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion [...] Read more.
Accurate gas prediction is crucial for identifying gas-bearing zones in tight sandstone reservoirs. Traditional seismic techniques, primarily grounded in elastic theory, often overlook inelastic dispersion effects inherent to such formations. To overcome this limitation, we introduce a gas prediction approach utilizing a dispersion attribute derived from frequency-dependent inversion based on an AVO equation parameterized by a gas indicator and related properties. Rock physics modeling, based on multi-scale fracture theory, reveals the frequency-dependent gas indicator is highly responsive to variations in porosity and gas saturation. Seismic AVO simulations exhibit distinguishable signatures corresponding to these variations, supporting the potential to estimate reservoir properties from pre-stack seismic data. Synthetic data tests confirm that the values of the proposed dispersion attribute increase with increasing porosity and gas saturation. Additionally, the calculated dispersion attribute exhibits a strong positive correlation with gas content, validating its effectiveness for gas evaluation. Field application results further demonstrate that the proposed dispersion attribute shows prominent anomalies in sandstone reservoirs with high gas content. Compared to the conventional P-wave dispersion attribute, the proposed dispersion attribute exhibits superior reliability in detecting gas-rich zones. These results demonstrate the utility of the method in predicting gas-bearing regions in tight sandstone reservoirs. Full article
Show Figures

Figure 1

20 pages, 3658 KiB  
Article
A Fully Coupled Numerical Simulation Model for Bottom-Water Gas Reservoirs Integrating Horizontal Wellbore, ICD Screens, and Zonal Water Control: Development, Validation, and Optimization Strategies
by Yongsheng An, Zhongwen Sun, Yiran Kang and Guangning Yang
Energies 2025, 18(14), 3607; https://doi.org/10.3390/en18143607 - 8 Jul 2025
Viewed by 231
Abstract
To address the challenges of water coning and early water breakthrough commonly encountered during the development of bottom-water gas reservoirs, this study establishes a fully coupled numerical simulation model integrating a horizontal wellbore, inflow control device (ICD) screens, and a zonal water control [...] Read more.
To address the challenges of water coning and early water breakthrough commonly encountered during the development of bottom-water gas reservoirs, this study establishes a fully coupled numerical simulation model integrating a horizontal wellbore, inflow control device (ICD) screens, and a zonal water control system. A novel “dual inflow performance index” method is introduced for the first time, enabling separate calculation of the pressure drops induced by gas and water phases flowing through the ICDs, thereby improving the accuracy of pressure simulations throughout the production lifecycle. The model divides the entire production system into four physically distinct subsystems, the bottom-water gas reservoir, ICD screens, production compartments, and the horizontal wellbore, which are dynamically coupled through transient interflow exchange. Based on geological parameters from the SPE10 dataset, the model simulates realistic production scenarios. The results show that the proposed model accurately captures the time-dependent increase in ICD pressure drop as fluid properties evolve during production. Moreover, the zonal water control method outperforms the single ICD-based control strategy in water control performance, achieving a 23% reduction in cumulative water production. Additionally, the water control intensity of the ICD screens increases nonlinearly with the reduction in the number of openings. In highly heterogeneous reservoirs with significant permeability contrast, effective suppression of water coning can only be achieved by setting a minimal number of openings in the high-permeability compartments, resulting in up to a 15% reduction in cumulative water production. The timing of production compartment shutdown exerts a significant influence on water control performance. The optimal strategy is to first identify the water breakthrough point through unconstrained production simulation as production with all eight ICD screen openings fully open and then shut down the high-permeability production compartment around this critical time. This approach can suppress cumulative water production by up to 27%. Overall, the proposed model offers a practical and robust tool for optimizing completion design and water control strategies in complex bottom-water gas reservoirs. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 295
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 6249 KiB  
Article
Application of the NOA-Optimized Random Forest Algorithm to Fluid Identification—Low-Porosity and Low-Permeability Reservoirs
by Qunying Tang, Yangdi Lu, Xiaojing Yang, Yuping Li, Wei Zhang, Qiangqiang Yang, Zhen Tian and Rui Deng
Processes 2025, 13(7), 2132; https://doi.org/10.3390/pr13072132 - 4 Jul 2025
Viewed by 313
Abstract
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical [...] Read more.
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical properties, and complex pore structure, and as a result the fine calculation of logging reservoir parameters faces great challenges. In addition, the crude oil in this area has high viscosity, the formation water salinity is low, and the oil reservoir resistivity shows significant spatial variability in the horizontal direction, which further increases the difficulty of oil and water reservoir identification and affects the accuracy of oil saturation calculation. Targeting the above problems, the Nutcracker Optimization Algorithm (NOA) was used to optimize the hyperparameters of the random forest classification model, and then the optimal hyperparameters were input into the random forest model, and the conventional logging curve and oil test data were combined to identify and classify the reservoir fluids, with the final accuracy reaching 94.92%. Compared with the traditional Hingle map intersection method, the accuracy of this method is improved by 14.92%, which verifies the reliability of the model for fluid identification of low-porosity and low-permeability reservoirs in the research block and provides reference significance for the next oil test and production test layer in this block. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization, 2nd Edition)
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 289
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

22 pages, 5413 KiB  
Article
Quantitative Analysis of the Influence of Volatile Matter Content in Coal Samples on the Fractal Dimension of Their Nanopore Characteristics
by Lin Sun, Shoule Zhao, Jianghao Wei, Yunfeng Li, Dun Wu and Caifang Wu
Appl. Sci. 2025, 15(13), 7236; https://doi.org/10.3390/app15137236 - 27 Jun 2025
Viewed by 306
Abstract
As a crucial energy source and chemical raw material, coal’s micro-pore structure holds a pivotal influence on the occurrence and development of coalbed methane (CBM). This study systematically analyzed the nano-pore structure, surface roughness, and fractal characteristics of six coal samples with varying [...] Read more.
As a crucial energy source and chemical raw material, coal’s micro-pore structure holds a pivotal influence on the occurrence and development of coalbed methane (CBM). This study systematically analyzed the nano-pore structure, surface roughness, and fractal characteristics of six coal samples with varying volatile matter content (Vdaf) using Atomic Force Microscopy (AFM) combined with Scanning Electron Microscopy (SEM), revealing the correlation between volatile matter and the micro-physical properties of coal. Through AFM three-dimensional topographical observations, it was found that coal samples with higher volatile matter exhibited significant gorge-like undulations on their surfaces, with pores predominantly being irregular macropores, whereas low volatile matter coal samples had smoother surfaces with dense and regular pores. Additionally, the surface roughness parameters (Ra, Rq) of coal positively correlated with volatile matter content. Meanwhile, quantitative analysis of nano-pore parameters using Gwyddion software showed that an increase in volatile matter led to a decline in pore count, shape factor, and area porosity, while the average pore diameter increased. The fractal dimension of samples with different volatile matter contents was calculated, revealing a decrease in fractal dimension with rising volatile matter. Nano-ring analysis indicated that the total number of nano-rings was significantly higher in low volatile matter coal samples compared to high volatile matter ones, but the nano-ring roughness (Rr) increased with volatile matter content. SEM images further validated the AFM results. Through multi-scale characterization and quantitative analysis, this study clarified the extent to which volatile matter affects the nano-pore structure and surface properties of coal, providing critical data support for efficient CBM development and reservoir evaluation. Full article
Show Figures

Figure 1

31 pages, 3056 KiB  
Review
A Review of Key Challenges and Evaluation of Well Integrity in CO2 Storage: Insights from Texas Potential CCS Fields
by Bassel Eissa, Marshall Watson, Nachiket Arbad, Hossein Emadi, Sugan Thiyagarajan, Abdel Rehman Baig, Abdulrahman Shahin and Mahmoud Abdellatif
Sustainability 2025, 17(13), 5911; https://doi.org/10.3390/su17135911 - 26 Jun 2025
Viewed by 793
Abstract
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells [...] Read more.
Increasing concern over climate change has made Carbon Capture and Storage (CCS) an important tool. Operators use deep geologic reservoirs as a form of favorable geological storage for long-term CO2 sequestration. However, the success of CCS hinges on the integrity of wells penetrating these formations, particularly legacy wells, which often exhibit significant uncertainties regarding cement tops in the annular space between the casing and formation, especially around or below the primary seal. Misalignment of cement plugs with the primary seal increases the risk of CO2 migrating beyond the seal, potentially creating pathways for fluid flow into upper formations, including underground sources of drinking water (USDW). These wells may not be leaking but might fail to meet the legal requirements of some federal and state agencies such as the Environmental Protection Agency (EPA), Railroad Commission of Texas (RRC), California CalGEM, and Pennsylvania DEP. This review evaluates the impact of CO2 exposure on cement and casing integrity including the fluid transport mechanisms, fracture behaviors, and operational stresses such as cyclic loading. Findings revealed that slow fluid circulation and confining pressure, primarily from overburden stress, promote self-sealing through mineral precipitation and elastic crack closure, enhancing well integrity. Sustained casing pressure can be a good indicator of well integrity status. While full-physics models provide accurate leakage prediction, surrogate models offer faster results as risk assessment tools. Comprehensive data collection on wellbore conditions, cement and casing properties, and environmental factors is essential to enhance predictive models, refine risk assessments, and develop effective remediation strategies for the long-term success of CCS projects. Full article
Show Figures

Figure 1

32 pages, 8552 KiB  
Article
Pore Structure Quantitative Characterization of Tight Sandstones Based on Deep Learning and Fractal Analysis
by Xinglei Song, Congjun Feng, Teng Li, Qin Zhang, Jiaqi Zhou and Mengsi Sun
Fractal Fract. 2025, 9(6), 372; https://doi.org/10.3390/fractalfract9060372 - 9 Jun 2025
Viewed by 543
Abstract
Sandstone reservoirs exhibit strong heterogeneity and complex microscopic pore structures, presenting challenges for quantitative characterization. This study investigates the Chang 8 tight sandstone reservoir in the Jiyuan, Ordos Basin through analyses of its physical properties, high-pressure mercury injection (HPMI), casting thin sections (CTS), [...] Read more.
Sandstone reservoirs exhibit strong heterogeneity and complex microscopic pore structures, presenting challenges for quantitative characterization. This study investigates the Chang 8 tight sandstone reservoir in the Jiyuan, Ordos Basin through analyses of its physical properties, high-pressure mercury injection (HPMI), casting thin sections (CTS), and scanning electron microscopy (SEM). Deep learning techniques were employed to extract the geometric parameters of the pores from the SEM images. Fractal geometry was applied for the combined quantitative characterization of pore parameters and fractal dimensions of the tight sandstone. This study also analyzed the correlations between the fractal dimensions, sample properties, pore structure, geometric parameters, and mineral content. The results indicate that the HPMI-derived fractal dimension (DMIP) reflects pore connectivity and permeability. DMIP gradually increases from Type I to Type III reservoirs, indicating deteriorating pore connectivity and increasing reservoir heterogeneity. The average fractal dimensions of the small and large pore-throats are 2.16 and 2.52, respectively, indicating greater complexity in the large pore-throat structures. The SEM-derived fractal dimension (DSEM) reflects the diversity of pore shapes and the complexity of the micro-scale geometries. As the reservoir quality decreases, the pore structure becomes more complex, and the pore morphology exhibits increased irregularity. DMIP and DSEM values range from 2.21 to 2.49 and 1.01 to 1.28, respectively, providing a comprehensive quantitative characterization of multiple pore structure characteristics. The fractal dimension shows negative correlations with permeability, porosity, median radius, maximum mercury intrusion saturation, mercury withdrawal efficiency, and sorting factor, while showing a positive correlation with median and displacement pressures. Among these factors, the correlations with the maximum mercury intrusion saturation and sorting factor are the strongest (R2 > 0.8). Additionally, the fractal dimension is negatively correlated with pore circularity and major axis length, but positively correlated with pore perimeter, aspect ratio, and solidity. A higher proportion of circular pores and fewer irregular or long-strip pores correspond to lower fractal dimensions. Furthermore, mineral composition influences the fractal dimension, showing negative correlations with feldspar, quartz, and chlorite concentrations, and a positive correlation with carbonate content. This study provides new perspectives for the quantitative characterization of pore structures in tight sandstone reservoirs, enhances the understanding of low-permeability formation reservoir performance, and establishes a theoretical foundation for reservoir evaluation and exploration development in the study area. Full article
Show Figures

Figure 1

36 pages, 23546 KiB  
Article
Tight Sandstone Gas Reservoir Types and Formation Mechanisms in the Second Member of the Xujiahe Formation in the Anyue Area, Sichuan Basin
by Lin Jiang, Xuezhen Sun, Dongxia Chen, Wenzhi Lei, Hanxuan Yang, Yani Deng, Zhenhua Wang, Chenghai Li, Tian Liu, Chao Geng, Tian Gao and Zhipeng Ou
Energies 2025, 18(12), 3009; https://doi.org/10.3390/en18123009 - 6 Jun 2025
Viewed by 489
Abstract
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, [...] Read more.
With the advancement of oil and gas exploration and development, tight sandstone gas has become a major current exploration field. However, the effective development of tight sandstone gas faces significant challenges due to the strong heterogeneity of tight sandstone reservoirs, diverse reservoir types, complex pore structures, and unclear understanding of reservoir formation mechanisms, which brings great difficulties. Clarifying the types and formation mechanisms of tight sandstone reservoirs is vital for guiding oil and gas exploration and development. This study investigates the characteristics, types, and formation mechanisms of tight sandstone gas reservoirs in the Xujiahe Formation (T3X2) of the Anyue area using core observation, cast thin-section identification, scanning electron microscopy, high pressure mercury intrusion, nuclear magnetic resonance, and other experimental methods. It defines the physical property lower limit of T3X2 reservoirs in Anyue, classifies reservoir types, elaborates on the basic characteristics of each type, and analyzes their genetic mechanisms. The results show that T3X2 reservoirs in the Anyue area can be divided into four types. Sedimentary, diagenetic, and tectonic processes are identified as the primary factors controlling reservoir quality, governing the formation mechanisms of different reservoir types. Based on these findings, a reservoir formation mechanism model for T3X2 reservoirs in the Anyue area is established, providing an important basis for subsequent oil and gas exploration and development in the region. Full article
Show Figures

Figure 1

18 pages, 5909 KiB  
Article
Study on Physical Property Prediction Method of Tight Sandstone Reservoir Based on Logging While Drilling Parameters
by Dongyang Xue, Ligang Zhang, Zhaoyi Liu, Hao Li, Junru Li and Chenxu Jiang
Processes 2025, 13(6), 1734; https://doi.org/10.3390/pr13061734 - 1 Jun 2025
Viewed by 399
Abstract
The pore degree prediction method based on well logging interpretation for tight sandstone reservoirs cannot meet the requirements of timeliness and rapidity for well exploration decisions. This paper utilizes the logging parameters during drilling, combined with acoustic time difference experiments, dynamic and static [...] Read more.
The pore degree prediction method based on well logging interpretation for tight sandstone reservoirs cannot meet the requirements of timeliness and rapidity for well exploration decisions. This paper utilizes the logging parameters during drilling, combined with acoustic time difference experiments, dynamic and static parameter experiments, and full-scale drill bit rock-breaking simulation, to reveal the response characteristics of reservoir properties to the feedback information from logging and rock-breaking and establishes a pore degree prediction method. The results show that as the pore degree decreases, the dynamic and static elastic modulus increases, the rate of penetration decreases, the torque increases, the mechanical specific energy increases, and a mathematical relationship model between pore degree and mechanical specific energy is established, achieving real-time drilling prediction of pore degree. The new method has been applied in the NB block, and the coincidence rate with the well-logging interpretation results reaches over 83%. The research results have provided real-time predictions of reservoir pore degrees and improved the efficiency of exploration decisions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 8410 KiB  
Review
CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
by Yinan Cui, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, Yaozu Zhang, Guangrong Zhang, Bei Zhang, Shiqi Liu and Sijian Zheng
Energies 2025, 18(11), 2841; https://doi.org/10.3390/en18112841 - 29 May 2025
Viewed by 447
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from a full-chain perspective (Mechanism, Practices, and Outlook), covering fundamental mechanisms and key engineering practices. It highlights the complex multi-physics processes involved, including competitive adsorption–desorption, diffusion and seepage, thermal effects, stress responses, and geochemical interactions. Recent progress in laboratory experiments, capacity assessments, site evaluations, monitoring techniques, and numerical simulations are systematically reviewed. Field studies indicate that CO2-ECBM performance is strongly influenced by reservoir pressure, temperature, injection rate, and coal seam properties. Structural conditions and multi-field coupling further affect storage efficiency and long-term security. This work also addresses major technical challenges such as real-time monitoring limitations, environmental risks, injection-induced seismicity, and economic constraints. Future research directions emphasize the need to deepen understanding of coupling mechanisms, improve monitoring frameworks, and advance integrated engineering optimization. By synthesizing recent advances and identifying research priorities, this review aims to provide theoretical support and practical guidance for the scalable deployment of CO2-ECBM, contributing to global energy transition and carbon neutrality goals. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

Back to TopTop