Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy
Abstract
1. Introduction
2. Methods
2.1. INPEFA Curve Inflection Points and Trend Recognition for Sequence Boundary Identification
2.2. Morlet Wavelet Transform Is Used for Sequence Unit Classification
2.3. Establishment of a Low-Frequency Initial Model Constrained by High-Frequency Stratigraphy
2.4. Sedimentary Facies-Controlled Model
- (1)
- Braided-river delta-front subfacies: High-frequency, strong-amplitude, high-continuity sheet-drape reflections. Lithology is dominated by fine sandstone/sandstone strips or local fine conglomerate with light-gray to brown mudstone interbeds and multi-period normal-grading cycles, consistent with a proximal distributary-mouth-bar setting.
- (2)
- Shallow shore lake subfacies: Medium-frequency, weak-amplitude, wedge-divergent reflections. Mud-dominated successions contain thin sandy/muddy bands and show alternating gray-green and dark-gray mudstone. Sparse Planolites-type bioturbation indicates episodic oxygenation in this marginal lacustrine environment situated between the delta front and sublacustrine fan.
- (3)
- Deep lake to semi-deep lake subfacies: Medium frequency, weak amplitude, medium continuity, and parallel sheet seismic facies are reflected as mudstone along the source direction and horizontal bedding.
- (4)
- Outer sublacustrine fan subfacies: The high-frequency, medium-amplitude, and highly continuous parallel sheet-like seismic reflections correspond to fine-grained sandstones in the provenance direction
. - (5)
- Medium fan subfacies (sublacustrine fan): Low frequency, weak amplitude, poor continuity, and chaotic filling seismic facies are reflected as fine conglomerate in the direction of source, abrupt top–bottom contact, and mudstone tear debris.
2.5. Geostatistical Inversion
3. Example
3.1. Establishment of the Initial Low-Frequency Model
3.2. Comparison of Inversion Results Using Different Initial Low-Frequency Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LFM | Low-Frequency Model |
INPEFA | Integrated Prediction Error Filter Analysis |
PEFA | Prediction Error Filter Analysis |
RV | Real Value |
MESA | Maximum Entropy Spectral Analysis |
GR | Gamma Ray |
HFSF | High-Frequency Stratigraphic Framework |
SGS | Sequential Gaussian simulation |
References
- Hu, Y.; Xiao, J.; He, W.; Gao, X. Application of high frequency lake level change in the prediction of tight sandstone thin reservoir by sedimentary simulation. Mar. Pet. Geol. 2021, 128, 105049. [Google Scholar] [CrossRef]
- Fu, C.; Li, S.; Li, S.; Xu, J. Spatial-temporal evolution of the source-to-sink system in the northwestern South China Sea from the Eocene to the Miocene. Glob. Planet. Change 2022, 214, 103851. [Google Scholar] [CrossRef]
- Gu, Y.; Yin, X.; Zhang, J.; Gu, Y.; Liu, Z. Prediction of reservoir physical parameters based on adaptive step size stochastic inversion. Geoenergy Sci. Eng. 2023, 223, 211455. [Google Scholar] [CrossRef]
- Hu, W.; Wu, C.; Liang, J.; Hu, F.; Cai, F.; Chai, H.; Zou, Q. Tectonic transport characteristics and their influences on hydrocarbon accumulation in Beibuwan Basin. Oil Gas Geol. 2011, 32, 920–927. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Fan, C.; Hu, L.; Dai, L.; Zhao, S. On the Evolution Process of the Beibu Gulf Basin and Forming Mechanism of Local Structures. Acta Geol. Sin. 2018, 92, 2028–2039. [Google Scholar] [CrossRef]
- Hao, X.; Ren, Y.; Xu, X.; Liu, H.; Yang, X. Composition Characteristics and Geochemical Significance of Aromatic Hydrocarbon in Crude Oils in Eastern Wushi Sag, Beibu Gulf Basin. Xinjiang Pet. Geol. 2016, 37, 1. [Google Scholar] [CrossRef]
- Yuan, X.; Yao, G.; Jiang, P.; Lu, J. Provenance Analysis for Liushagang Formation of Wushi Depression, Beibuwan Basin, the South China Sea. Earth Sci. 2017, 42, 2040–2054. [Google Scholar] [CrossRef]
- Fu, N.; Liu, J. Hydrocarbon generation and accumulation characteristics of three type source rocks of Liu2 segment in Beibuwan Basin. J. Nat. Gas Geosci. 2018, 29, 932–941. [Google Scholar]
- Sun, L.; Ren, Y.; Qi, Y.; Yu, X.; Li, S.; Zhang, H.; Gao, M.; Yang, K. Analysis of Eocene reservoir characteristics and main controlling factors in Wushi sag, Beibuwan basin. China Offshore Oil Gas 2021, 2, 56–66. [Google Scholar]
- Wu, K.; Liu, Y.; Hu, D.; Liu, Y.; Zhang, S.; Cui, L. Types and evolution of faults in the east area of the Wushi Sag, Beibuwan Basin. J. Geomech. 2021, 27, 52–62. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Yang, C.; Qi, Z.; Ma, H.; Wang, M.; Chen, J. Sedimentary Model and Its Architectural Characteristics of Delta under the Control of Fault-Rupture-Sag Coupling in Wushi Sag. Spec. Oil Gas Reserv. 2022, 29, 34–41. [Google Scholar]
- Zeng, X.; Zou, M.; Zhang, H.; Yu, J.; Chen, X.; Mo, F. Main controls on the distribution of the 3rd member of Liushagang Formation in eastern Wushi Sag, Beibu Gulf Basin. Pet. Geol. Exp. 2016, 38, 757–764. [Google Scholar] [CrossRef]
- Jia, W.; Zong, Z.; Lan, T. Elastic impedance inversion incorporating fusion initial model and kernel Fisher discriminant analysis approach. J. Pet. Sci. Eng. 2023, 220 Pt B, 111235. [Google Scholar] [CrossRef]
- Jia, W.; Zong, Z.; Qin, D.; Lan, T. Integrated well-log data and seismic inversion results for prediction of hydrocarbon source rock distribution in W segment, Pearl River Mouth Basin, China. Geoenergy Sci. Eng. 2023, 230, 212233. [Google Scholar] [CrossRef]
- Chen, T.; Zou, B.; Wang, Y.; Cai, H.; Yu, G.; Hu, G. An initial model construction method constrained by stratigraphic sequence representation for pre-stack seismic inversion. Geophys. Prospect. 2024, 72, 2829–2843. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, G.; Wang, X.; Wu, Y.; Deng, Z.; Chen, Q.; Xiao, W.; Huang, H.; Tang, Y. Thin reservoir seismic prediction method based on high resolution sequence constraint. Prog. Geophys. 2024, 39, 606–619. [Google Scholar] [CrossRef]
- Neal, J.E.; Abreu, V.; Bohacs, K.M.; Feldman, H.R.; Pederson, K.H. Accommodation succession (δA/δS) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation. J. Geol. Soc. Lond. 2016, 173, 803–816. [Google Scholar] [CrossRef]
- Xu, C.; Gong, C.; Ronald, J.S.; Zhang, X.; Guan, D.; Li, D. Predicting the occurrence and development of regionally extensive sublacustrine fans in the Oligocene Bohai Bay Basin: From sequence stratigraphy to source-to-sink systems. AAPG Bull. 2025, 109, 307–334. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, X.; Tang, P.; Yang, B.; Chen, D.; Deng, M.; Zhao, G. Division of the Sequence Stratigraphy of the Sinian Qigebrak Formation in the Northwest Tarim Basin-Evidence from the High-resolution Analysis of Depositional Facies and the Fischer Plot. Acta Sedimentol. Sin. 2024, 40, 1. [Google Scholar] [CrossRef]
- Zhu, P.; Ma, T.; Wang, X.; Li, X.; Dong, Y.; Yang, W.; Teng, Z. Wavelet transform coupled with Fischer plots for sequence stratigraphy: A case study in the Linxing area, Ordos Basin, China. Geoenergy Sci. Eng. 2023, 231 Pt A, 212306. [Google Scholar] [CrossRef]
- Hu, Y.; He, W.; Guo, B. Combining sedimentary forward modeling with sequential Gauss simulation for fine prediction of tight sandstone reservoir. Mar. Pet. Geol. 2020, 112, 104044. [Google Scholar] [CrossRef]
- Yuan, R.; Zhu, R.; Qu, J.; Wu, J.; You, X.; Sun, Y.; Zhou, Y. Utilizing Integrated Prediction Error Filter Analysis (INPEFA) to divide base-level cycle of fan-deltas: A case study of the Triassic Baikouquan Formation in Mabei Slope Area, Mahu Depression, Junggar Basin, China. Open Geosci. 2018, 10, 79–86. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Xie, R. Application of INPEFA technology to sequence stratigraphy of the third member of Funing Formation, Nanhua block, Qintong Sag, North Jiangsu Basin. Pet. Geol. Exp. 2018, 40, 871–876. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, Y.; Xie, J.; Guo, F.; Zhang, S. Application and comparison of INPEFA technique and wavelet transform in sequence stratigraphic division: A case study in the third member of Dongying formation in Dawangzhuang area, Raoyang sag. China Sci. 2021, 05, 494–501. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, Z.; Liu, H.; Liu, K.; Liu, Q. Progress and developing tendency of technologies and methods used to recognise sequence stratigraphic units based on the well-log data. Geol. Sci. Technol. Inf. 2011, 30, 29–36. [Google Scholar] [CrossRef]
- Fu, Z.; Yin, C.; Chen, T.; Ji, Y.; Liao, J. Using the wavelet transform for seismic wave impedance inversion. Geophysics 2024, 89, R387–R397. [Google Scholar] [CrossRef]
- Lin, Z.; Liao, J.; Liu, X.; Wang, P.; Gao, Y.; Li, J. A high resolution inversion method for fluid factor with dynamic dry-rock VP/VS ratio squared. Pet. Sci. 2023, 20, 2822–2834. [Google Scholar] [CrossRef]
- Dong, H.; Liu, J.; Li, Y.; Shi, C. The division of Triassic sequence and analysis of lacustrine level changes in Tarim Basin Based on Wavelet Transform. Sci. Technol. Eng. 2023, 23, 54–65. [Google Scholar] [CrossRef]
- Bi, Z.; Wu, X.; Li, Y.; Yan, S.; Zhang, S.; Si, H. Geologic-time-based interpolation of borehole data for building high-resolution models: Methods and applications. Geophysics 2022, 87, IM67–IM80. [Google Scholar] [CrossRef]
- Dong, S.; Zeng, L.; Du, X.; He, J.; Sun, F. Lithofacies identification in carbonate reservoirs by multiple kernel Fisher discriminant analysis using conventional well logs: A case study in A oilfield, Zagros Basin, Iraq. J. Pet. Sci. Eng. 2022, 210, 110081. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Z.; Zeng, L. Lithology identification using kernel Fisher discriminant analysis with well logs. J. Pet. Sci. Eng. 2016, 143, 95–102. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Chen, X.; Zhou, L.; Guo, K. Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation. Interpret.-J. SUB 2017, 5, SE1–SE10. [Google Scholar] [CrossRef]
- Sarah, K.S.; James, A.M.; Octavian, C.; Shahin, E.D.; Nakarí, D. High-resolution sequence stratigraphic framework for the late Albian Viking Formation in central Alberta. Mar. Pet. Geol. 2022, 139, 105627. [Google Scholar] [CrossRef]
- Yan, J.; Cai, J.; Zhao, M.; Zheng, D. Advances in the study of sequence stratigraphic division and correlation using well log information. J. Stratigr. 2009, 33, 441–450. [Google Scholar] [CrossRef]
- Hesam, K.A. Estimation of Petroleum Reservoir Parameters Using an Integrated Approach Neural Network, Principal Component Analysis and Fisher Discriminant Analysis. Pet. Sci. Technol. 2013, 315, 530–539. [Google Scholar] [CrossRef]
- Yuan, H.; Qu, X.; Bao, K. Complex frequency domain seismic inversion method for well-free area based on geological model. Oil Geophys. Prospect. 2024, 59, 558–566. [Google Scholar] [CrossRef]
- Sun, Q.; Zong, Z. Building initial model for seismic inversion based on semi-supervised learning. Geophys. Prospect. 2024, 72, 1800–1815. [Google Scholar] [CrossRef]
- Srivastava, R.; Sen, M. Stochastic inversion of prestack seismic data using fractal-based initial models. Geophysics 2010, 75, R47–R59. [Google Scholar] [CrossRef]
- Wu, W.; Li, Q.; Pei, J.; Ning, S.; Tong, L.; Liu, W.; Feng, Z. Seismic sedimentology, facies analyses, and high-quality reservoir predictions in fan deltas: A case study of the Triassic Baikouquan Formation on the western slope of the Mahu Sag in Chinese Junggar Basin. Mar. Pet. Geol. 2020, 120, 104546. [Google Scholar] [CrossRef]
- Xu, X.; Hu, L.; Man, Y.; Xue, H.; Li, A. Sand control model and exploration practice for East Wushi Sag strike slope. J. Southwest Pet. Univ., Sci. Technol. Ed. 2017, 39, 77–84. [Google Scholar]
- Li, J.; Chen, Z.; Wang, L.; Liu, L.; Li, J. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones. Lithol. Reserv. 2017, 29, 110–117. [Google Scholar] [CrossRef]
- Leisi, A.; Shad, M.N. Three-dimensional shear wave velocity prediction by integrating post-stack seismic attributes and well logs: Application on Asmari formation in Iran. J. Pet. Explor. Prod. Technol. 2024, 14, 2399–2411. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Zhang, M.; Wang, Y.; Feng, B.; Liang, M. Structurally Constrained Initial Impedance Modeling for Poststack Seismic Inversion. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5906310. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Liu, J.; Gong, W.; Zhang, W. Two-step facies-constrained inversion in prediction of carbonate rock fault-controlled reservoirs with post stack seismic in No.8 structure of Shunbei block, Tarim Basin. Nat. Gas Geosci. 2023, 11, 1961–1970. [Google Scholar] [CrossRef]
- Liu, Z.; Song, W.; Chen, X.; Li, W.; Li, Z.; Liu, G. High-resolution reservoir prediction method based on data-driven and model-based approaches. Geophys. Prospect. 2024, 72, 1971–1984. [Google Scholar] [CrossRef]
- Michael, R.; Bahk, J.J.; Kim, H.S.; Scholz, N.A.; Yoo, D.G.; Kim, W.S.; Ryu, B.J.; Lee, S.R. Seismic facies analyses as aid in regional gas hydrate assessments, Part-II: Prediction of reservoir properties, gas hydrate petroleum system analysis, and Monte Carlo simulation. Mar. Pet. Geol. 2013, 47, 269–290. [Google Scholar] [CrossRef]
- Catuneanu, O. Principles of Sequence Stratigraphy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; p. 496. [Google Scholar]
- Chen, T.; Liang, J.; Li, P.; Cai, H.; Hu, G.; Wang, Y. Geostatistical seismic inversion constrained by reservoir sedimentary structural features. Geophysics 2022, 87, 1942–2156. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Li, S.; Wang, M.; Sun, Z.; Yu, T. Application of INPEFA Technique to Research High Resolution Sequence Stratigraphy:as an Example of Youfangzhuang Area Chang 4+5in Ordos Basin. Period. Ocean Univ. China 2015, 45, 101–106. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Xie, J.; Xia, Y.; He, Y. Application of the Wavelet Transform and INPEFA in Sequence Stratigraphy. ACS Omega 2023, 8, 3441–3451. [Google Scholar] [CrossRef]
- Chen, X.; Tian, X.; Shi, J.; Wang, X.; Xiong, Y.; Wang, K.; Wang, N.; Zhang, H.; Zhao, H.; Qian, H. Sequence Stratigraphic Division Based on Wavelet Transform and Its Control on Favorable Reservoirs in the Hechuan-Tongnan Area of the Sichuan Basin: A Case Study of the Fourth Member of the Dengying Formation in the Sinian System. Pet. Geol. Oilfield Dev. Daqing 2025, 44, 41–49. [Google Scholar] [CrossRef]
- Hu, D.; Deng, Y.; Zhang, J.; Zuo, Q.; He, W. Palaeogene fault system and hydrocarbon accumulation in East Wushi Sag. J. Southwest Pet. Univ. Sci. Technol. Ed. 2016, 38, 27–36. [Google Scholar]
- Chen, J.; Chen, X.; Liu, X.; Chen, S.; Li, C. Lithofacies Discrimination Based On Adaptive Kernel Function of Support Vector Machines. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Li, J.; Zhou, L.; Li, C. Reservoir Properties Prediction Based on Support Vector Regression with Optimized Parameters by Quantum Particle Swarm. In Proceedings of the 81st EAGE Conference and Exhibition 2019, London, UK, 3–6 June 2019; Volume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Liu, X.; Shao, G.; Yuan, C.; Chen, X.; Li, J.; Chen, Y. Mixture of relevance vector regression experts for reservoir properties prediction. J. Pet. Sci. Eng. 2022, 214, 110498. [Google Scholar] [CrossRef]
- Lyu, P.; Liu, C.; Yan, K.; Zhang, J. Study on the seismic facies of the Shahezi formation in Xujiaweizi fault depression in Songliao basin. Geol. Resour. 2014, 23, 330–334. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Li, J.; Zhou, X.; Chen, Y. Facies Identification Based on Multikernel Relevance Vector Machine. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7269–7282. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Li, J.; Chen, X.; Li, Q.; Chen, Y. Semi-supervised deep autoencoder for seismic facies classification. Geophys. Prospect. 2021, 69, 1295–1315. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, L.; Chen, X.; Li, J. Lithofacies identification using support vector machine based on local deep multi-kernel learning. Pet. Sci 2020, 17, 954–966. [Google Scholar] [CrossRef]
- Nurul, A.M.; Meor, H.A. Seismic geomorphological analysis of channel types: A case study from the Miocene Malay Basin. J. Geophys. Eng. 2023, 20, 159–171. [Google Scholar] [CrossRef]
- Feng, R.; Stefan, M.L.; Dries, G.; Erika, A. Reservoir lithology classification based on seismic inversion results by Hidden Markov Models: Applying prior geological information. Mar. Pet. Geol. 2018, 93, 218–229. [Google Scholar] [CrossRef]
- Maurya, S.P.; Richa; Singh, K.H.; Mahadasu, P.; Ajay, P.S.; Hema, G.; Kushwaha, P.K.; Raghav, S. Prediction of acoustic impedance and density porosity using seismic inversion, and geostatistical methods on Krishna Godavari basin, India: A case study. J. Appl. Geophys. 2023, 219, 105237. [Google Scholar] [CrossRef]
- Fang, G.; Enhedelihai, A.N.; Li, Y.E.; Tan, Y.; Cheng, A. Quantifying tunneling risks ahead of TBM using Bayesian inference on continuous seismic data. Tunn. Undergr. Space Technol. 2024, 147, 105702. [Google Scholar] [CrossRef]
- Chen, L.; Liu, X.; Zhou, H.; Zhang, H.; Lyu, F.; Mo, Q. Identification of Carbonate Cave Reservoirs Based on Variational Bayesian Principal Component Analysis. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5922910. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Li, J.; Zhou, L.; Guo, K. Reservoir physical property prediction based on kernel-Bayes discriminant method. Acta Pet. Sin. 2016, 37, 878–886. [Google Scholar]
- Yang, Z.; Gao, Z.; Liu, X. Seismic impedance inversion of coal field with reflectivity method based on Bayesian theory. Coal Geol. Explor. 2020, 48, 204–210. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Li, Z.; Zhou, C.; Wang, Z. AVO Uncertainty Inversion Based on Multitask Variational Bayesian Neural Network. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5925816. [Google Scholar] [CrossRef]
- Amira, Z.; Adnen, A.; Nesserine, B.; Mohamed, A.B.; Mohamed, H.I. Integrated seismic inversion for clastic reservoir characterization: Case of the upper Silurian reservoir, Tunisian Ghadames Basin. J. Appl. Geophys. 2023, 219, 105252. [Google Scholar] [CrossRef]
- Garia, S.; Pal, A.K.; Katre, S.; Nayak, S.; Ravi, K.; Nair, A.M. Seismic coloured inversion to explore the hydrocarbon prospectivity of a field in the Upper Assam basin. Explor. Geophys. 2024, 55, 752–774. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, B.; Huang, M.; Chen, S.; Zhao, C. An improved stochastic inversion method for 3D elastic impedance under the prior constraints of random medium parameters. Geoenergy Sci. Eng. 2024, 233, 212421. [Google Scholar] [CrossRef]
- Ge, Q.; Cao, H.; Yang, Z.; Li, X.; Yan, X.; Zhang, X.; Wang, Y.; Lu, W. High-resolution seismic impedance inversion integrating the closed-loop convolutional neural network and geostatistics: An application to the thin interbedded reservoir. J. Geophys. Eng. 2022, 19, 550–561. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Chen, X.; Li, C.; Guo, K.; Zhou, L. A stochastic inversion method integrating multi-point geostatistics and sequential Gaussian simulation. Chin. J. Geophys. 2018, 61, 2998–3007. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Chen, X.; Guo, K.; Li, C.; Zhou, L.; Cheng, J. Stochastic inversion of facies and reservoir properties based on multi-point geostatistics. J. Geophys. Eng. 2018, 15, 2455–2468. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, X.; Li, J.; Liao, J. Robust AVO inversion for the fluid factor and shear modulus. Geophysics 2021, 86, R471–R483. [Google Scholar] [CrossRef]
- Singh, R.; Srivastava, A.; Kant, R. Integrated thin layer classification and reservoir characterization using sparse layer reflectivity inversion and radial basis function neural network: A case study. Mar. Geophys. Res. 2024, 45, 3. [Google Scholar] [CrossRef]
Well Name | Member | Lithofacies | Seismic Phase | Sedimentary Facies | |||||
---|---|---|---|---|---|---|---|---|---|
Core Description | Frequency | Amplitude | Continuity | Reflection Characteristics | Seismic Section | Sedimentary Facies | Sedimentary Subfacies | ||
Well 3 | Third members | Gray-white fine conglomerate shows sandy bands | High frequency | Strong amplitude | High continuity | Mat-like drape | Braided-river deltas | Braided-river delta leading edge | |
Well 6 | Second members | Dark gray mudstone, sandy bands, purple mudstone bands | Medium frequency | Weak amplitude | Medium continuity | cuneal emanative | Lake | Shore–shallow lake | |
Well 8 | Second members | The upper part is gray-black mudstone; the lower part is gray-white medium sandstone | Medium frequency | Weak amplitude | Medium continuity | Parallel-matted | Lake | Deep lake | |
Well 8 | Second members | The gray-black fine sandstone has carbonaceous laminae | High frequency | Medium amplitude | High continuity | Parallel | Sublacustrine fan | Outer sublacustrine fan | |
Well 7 | Second members | The upper part is gray-white fine conglomerate; the lower part is gray-black fine conglomerate | Low frequency | Weak amplitude | Poor continuity | Cluttered fill | Sublacustrine fan | Middle sublacustrine fan | |
Well 13 | Second members | Gray-black fine sandstone, microwave-like bedding, carbonaceous lamination developed | Medium frequency | Strong amplitude | High continuity | Parallel-matted | Braided-river deltas | Braided-river delta leading edge |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, M.; Liu, G.; Dong, Y.; Wang, Y.; Wang, Y. Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy. J. Mar. Sci. Eng. 2025, 13, 1390. https://doi.org/10.3390/jmse13081390
Li Z, Li M, Liu G, Dong Y, Wang Y, Wang Y. Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy. Journal of Marine Science and Engineering. 2025; 13(8):1390. https://doi.org/10.3390/jmse13081390
Chicago/Turabian StyleLi, Zhichao, Ming Li, Guochang Liu, Yanlei Dong, Yannan Wang, and Yaqi Wang. 2025. "Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy" Journal of Marine Science and Engineering 13, no. 8: 1390. https://doi.org/10.3390/jmse13081390
APA StyleLi, Z., Li, M., Liu, G., Dong, Y., Wang, Y., & Wang, Y. (2025). Complex Reservoir Lithology Prediction Using Sedimentary Facies-Controlled Seismic Inversion Constrained by High-Frequency Stratigraphy. Journal of Marine Science and Engineering, 13(8), 1390. https://doi.org/10.3390/jmse13081390