Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (964)

Search Parameters:
Keywords = removal of pharmaceuticals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1165 KiB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

20 pages, 2618 KiB  
Article
Advanced Oxidation of Dexamethasone by Activated Peroxo Compounds in Water Matrices: A Comparative Study
by Liina Onga, Niina Dulova and Eneliis Kattel-Salusoo
Water 2025, 17(15), 2303; https://doi.org/10.3390/w17152303 - 3 Aug 2025
Viewed by 219
Abstract
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, [...] Read more.
The continuous occurrence of steroidal pharmaceutical dexamethasone (DXM) in aqueous environments indicates the need for an efficient removal technology. The frequent detection of DXM in surface water could be substantially reduced by the application of photo-induced advanced oxidation technology. In the present study, Fe2+ and UVA-light activated peroxo compounds were applied for the degradation and mineralization of a glucocorticoid, 25.5 µM DXM, in ultrapure water (UPW). The treatment efficacies were validated in real spring water (SW). A 120 min target pollutant degradation followed pseudo first-order reaction kinetics when an oxidant/Fe2+ dose 10/1 or/and UVA irradiation were applied. Acidic conditions (a pH of 3) were found to be more favorable for DXM oxidation (≥99%) regardless of the activated peroxo compound. Full conversion of DXM was not achieved, as the maximum TOC removal reached 70% in UPW by the UVA/H2O2/Fe2+ system (molar ratio of 10/1) at a pH of 3. The higher efficacy of peroxymonosulfate-based oxidation in SW could be induced by chlorine, bicarbonate, and carbonate ions; however, it is not applicable for peroxydisulfate and hydrogen peroxide. Overall, consistently higher efficacies for HO-dominated oxidation systems were observed. The findings from the current paper could complement the knowledge of oxidative removal of low-level DXM in real water matrices. Full article
Show Figures

Figure 1

26 pages, 5007 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 - 1 Aug 2025
Viewed by 258
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of −0.46 mA·cm−2 at −0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 281
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

23 pages, 1929 KiB  
Article
Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
by Emilia Bączkowska, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek and Małgorzata Szopińska
Resources 2025, 14(8), 123; https://doi.org/10.3390/resources14080123 - 29 Jul 2025
Viewed by 266
Abstract
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus [...] Read more.
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus was on the municipal wastewater treatment plant in Jastrzębia Góra, located in a region exposed to seasonal tourist pressure and discharging effluent into the Czarna Wda River. A total of 90 wastewater samples were collected during five monitoring campaigns (July, September 2021; February, May, July 2022) and analysed for 13 pharmaceuticals and personal care products (PPCPs) using ultra-high-performance liquid chromatography tandem mass spectrometry with electrospray ionisation (UHPLC-ESI-MS/MS). The monitoring included both untreated (UTWW) and treated wastewater (TWW) to assess the PPCP removal efficiency and persistence. The highest concentrations in the treated wastewater were observed for metoprolol (up to 472.9 ng/L), diclofenac (up to 3030 ng/L), trimethoprim (up to 603.6 ng/L) and carbamazepine (up to 2221 ng/L). A risk quotient (RQ) analysis identified diclofenac and LI-CBZ as priority substances for monitoring. Multivariate analyses (PCA, HCA) revealed co-occurrence patterns and seasonal trends. The results underline the need for advanced treatment solutions and targeted monitoring, especially in sensitive coastal catchments with variable micropollutant presence. Full article
Show Figures

Figure 1

16 pages, 3308 KiB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 271
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 699
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 7169 KiB  
Article
Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology
by Nkechi Ezeogu, Petr Mikulášek, Chijioke Elijah Onu, Obinna Anike and Jiří Cuhorka
Membranes 2025, 15(8), 222; https://doi.org/10.3390/membranes15080222 - 24 Jul 2025
Viewed by 378
Abstract
The integration of computational intelligence techniques into pharmaceutical wastewater treatment offers promising opportunities to improve process efficiency and minimize operational costs. This study compares the predictive capabilities of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models in forecasting the rejection efficiencies [...] Read more.
The integration of computational intelligence techniques into pharmaceutical wastewater treatment offers promising opportunities to improve process efficiency and minimize operational costs. This study compares the predictive capabilities of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models in forecasting the rejection efficiencies of caffeine and paracetamol using AFC 40 and AFC 80 nanofiltration (NF) membranes. Experiments were conducted under varying operating conditions, including transmembrane pressure, feed concentration, and flow rate. The predictive performance of both models was evaluated using statistical metrics such as the Coefficient of Determination (R2), Root Mean Square Error (RMSE), Marquardt’s Percentage Squared Error Deviation (MPSED), Hybrid fractional error function (HYBRID), and Average Absolute Deviation (AAD). Both models demonstrated strong predictive accuracy, with R2 values of 0.9867 and 0.9832 for RSM and ANN, respectively, in AFC 40 membranes, and 0.9769 and 0.9922 in AFC 80 membranes. While both approaches closely matched the experimental results, the ANN model consistently yielded lower error values and higher R2 values, indicating superior predictive performance. These findings support the application of ANNs as a robust modelling tool in optimizing NF membrane processes for pharmaceutical removal. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 771
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

46 pages, 3474 KiB  
Review
Alzheimer’s Disease Etiology Hypotheses and Therapeutic Strategies: A Perspective
by Naomi Scarano, Francesca Musumeci, Beatrice Casini, Chiara Brullo, Pasqualina D’Ursi, Paola Fossa, Silvia Schenone and Elena Cichero
Int. J. Mol. Sci. 2025, 26(14), 6980; https://doi.org/10.3390/ijms26146980 - 20 Jul 2025
Viewed by 923
Abstract
Alzheimer’s disease (AD) is a progressive, complex, multifactorial, neurodegenerative disease and accounts for most cases of dementia. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and monoclonal antibodies. However, these medications were gradually discovered to be ineffective in removing the root of [...] Read more.
Alzheimer’s disease (AD) is a progressive, complex, multifactorial, neurodegenerative disease and accounts for most cases of dementia. The currently approved therapy includes cholinesterase inhibitors, NMDA-receptor antagonists and monoclonal antibodies. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis, having only symptomatic effects. Thus, the priority remains prevention and clarifying AD etiology. A better understanding of the neuroprotective mechanisms undertaken by specific genes is crucial to guide the design of novel therapeutic agents via selective ligands and precision medicine. In this review, we present a perspective of the physiological phase of the AD spectrum, of risk factors in AD with a focus on therapeutic approaches in three categories: neurotransmitters/ion modulations, peptide deposit control and aspecific treatments, followed by a discussion of treatment limitations. An overview of innovative strategies and non-pharmaceutical ancillary support is given. Full article
(This article belongs to the Special Issue Molecular Insight into Alzheimer’s Disease)
Show Figures

Figure 1

27 pages, 4623 KiB  
Article
Preparation and Application of Wetland-Plant-Derived Biochar for Tetracycline Antibiotic Adsorption in Water
by Qingyun Chen, Hao Tong, Xing Gao, Peng Li, Jiaqi Li, Haifeng Zhuang and Suqing Wu
Sustainability 2025, 17(14), 6625; https://doi.org/10.3390/su17146625 - 20 Jul 2025
Viewed by 341
Abstract
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for [...] Read more.
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for rapid removal of antibiotics in water. In this study, abundant and renewable wetland plants (lotus leaves, Arundo donax, and canna lilies) were utilized as raw materials to prepare biochar through slow pyrolysis combined with KOH chemical activation. The prepared biochar was employed to adsorb typical tetracycline (TC) antibiotics (TC-HCl, CTC-HCl, OTC-HCl) from water. The results showed that the optimum biochar (LBC-600 (1:3)) was prepared at a pyrolysis temperature of 600 °C with the mass ratio of KOH to lotus leaf of 1:3. The optimum pH for the adsorption of the three antibiotics were 5, 4, and 3, respectively. The highest adsorption rates reached 93.32%, 81.44%, and 83.76% for TC-HCl, CTC-HCl, and OTC-HCl with 0.6 g/L of biochar, respectively. At an initial antibiotic concentration of 80 mg·L−1, the maximum adsorption capacities achieved 40.17, 27.76, and 24.6 mg·g−1 for TC-HCl, CTC-HCl, and OTC-HCl, respectively. The adsorption process conformed to the pseudo-second-order kinetic and Langmuir isotherm models, indicating that it was a spontaneous endothermic process and primarily involved monolayer chemical adsorption. This study transformed wetland plant waste into adsorbent and applied it for antibiotic removal, providing a valuable resource utilization strategy and technical support for recycling wetland plant residues and antibiotic removal from water environments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

43 pages, 1241 KiB  
Review
A Comprehensive Review of Agricultural Residue-Derived Bioadsorbents for Emerging Contaminant Removal
by Janaína Oliveira Gonçalves, André Rodríguez Leones, Bruna Silva de Farias, Mariele Dalmolin da Silva, Débora Pez Jaeschke, Sibele Santos Fernandes, Anelise Christ Ribeiro, Tito Roberto Santanna Cadaval and Luiz Antonio de Almeida Pinto
Water 2025, 17(14), 2141; https://doi.org/10.3390/w17142141 - 18 Jul 2025
Viewed by 534
Abstract
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the [...] Read more.
The increasing presence of ECs in aquatic environments has drawn significant attention to the need for innovative, accessible, and sustainable solutions in wastewater treatment. This review provides a comprehensive overview of the use of agricultural residues—often discarded and undervalued—as raw materials for the development of efficient bioadsorbents. Based on a wide range of recent studies, this work presents various types of materials, such as rice husks, sugarcane bagasse, and açaí seeds, that can be transformed through thermal and chemical treatments into advanced bioadsorbents capable of removing pharmaceuticals, pesticides, dyes, and in some cases, even addressing highly persistent pollutants such as PFASs. The main objectives of this review are to (1) assess agricultural-residue-derived bioadsorbents for the removal of ECs; (2) examine physical and chemical modification techniques that enhance adsorption performance; (3) evaluate their scalability and applicability in real-world treatment systems. The review also highlights key adsorption mechanisms—such as π–π interactions, hydrogen bonding, and ion exchange—alongside the influence of parameters like pH and ionic strength. The review also explores the kinetic, isothermal, and thermodynamic aspects of the adsorption processes, highlighting both the efficiency and reusability potential of these materials. This work uniquely integrates microwave-assisted pyrolysis, magnetic functionalization, and hybrid systems, offering a roadmap for sustainable water remediation. Finally, comparative performance analyses, applications using real wastewater, regeneration strategies, and the integration of these bioadsorbents into continuous treatment systems are presented, reinforcing their promising role in advancing sustainable water remediation technologies. Full article
Show Figures

Figure 1

16 pages, 2096 KiB  
Article
Environmental Antidepressants Disrupt Metabolic Pathways in Spirostomum ambiguum and Daphnia magna: Insights from LC-MS-Based Metabolomics
by Artur Jędreas, Sylwia Michorowska, Agata Drobniewska and Joanna Giebułtowicz
Molecules 2025, 30(14), 2952; https://doi.org/10.3390/molecules30142952 - 13 Jul 2025
Viewed by 478
Abstract
Pharmaceuticals such as fluoxetine, paroxetine, sertraline, and mianserin occur in aquatic environments at low yet persistent concentrations due to their incomplete removal in wastewater treatment plants. Although frequently detected, these neuroactive compounds remain underrepresented in ecotoxicological assessments. Given their pharmacodynamic potency, environmentally relevant [...] Read more.
Pharmaceuticals such as fluoxetine, paroxetine, sertraline, and mianserin occur in aquatic environments at low yet persistent concentrations due to their incomplete removal in wastewater treatment plants. Although frequently detected, these neuroactive compounds remain underrepresented in ecotoxicological assessments. Given their pharmacodynamic potency, environmentally relevant concentrations may induce sublethal effects in non-target organisms. In this study, we applied untargeted LC-MS-based metabolomics to investigate the sublethal effects of four widely used antidepressants—paroxetine, sertraline, fluoxetine (SSRIs), and mianserin (TeCA)—on two ecologically relevant freshwater invertebrates: S. ambiguum and D. magna. Organisms were individually exposed to each compound for 48 h at a concentration of 100 µg/L and 25 µg/L, respectively. Untargeted metabolomics captured the sublethal biochemical effects of these antidepressants, revealing both shared disruptions—e.g., in glycerophospholipid metabolism and cysteine and methionine metabolism—and species-specific responses. More pronounced pathway changes observed in D. magna suggest interspecies differences in metabolic capacity or xenobiotic processing mechanisms between taxa. Among the four antidepressants tested, sertraline in D. magna and fluoxetine in S. ambiguum exerted the most extensive metabolomic perturbations, as evidenced by the highest number and pathway impact scores. In D. magna, fluoxetine and mianserin produced similar metabolic profiles, largely overlapping with those of sertraline, whereas paroxetine affected only a single pathway, indicating minimal impact. In S. ambiguum, paroxetine and mianserin elicited comparable responses, also overlapping with those of fluoxetine, while sertraline triggered the fewest changes. These results suggest both compound-specific effects and a conserved metabolic response pattern among the antidepressants used. They also underscore the considerable potential of metabolomics as a powerful and sensitive tool for ecotoxicological risk assessments, particularly when applied across multiple model organisms to capture interspecies variations. However, further research is essential to identify which specific pathway disruptions are most predictive of adverse effects on organismal health. Full article
(This article belongs to the Special Issue Advances in the Mass Spectrometry of Chemical and Biological Samples)
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Article
Is Ozonation Treatment Efficient to Provide Safe Reclaimed Water? Assessing the Effects of Synthetic Wastewater Effluents in Human Cell Models
by Ana Teresa Rocha, Fátima Jesus, Helena Oliveira, João Gomes and Joana Luísa Pereira
Appl. Sci. 2025, 15(14), 7784; https://doi.org/10.3390/app15147784 - 11 Jul 2025
Viewed by 266
Abstract
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect [...] Read more.
Ozonation has been promoted as a successful methodology for recovering effluents from wastewater treatment plants, with special emphasis on wastewater contaminated with pharmaceutical and personal care products (PPCPs). Still, ozonation reactions may generate potentially toxic by-products, jeopardizing human health safety, a critical aspect considering the use of reclaimed water. We aimed at understanding the potential impacts of ozonation on the quality of reclaimed water for human use through cell viability assays with human skin keratinocytes (HaCaT cell line). Under this context, the cytotoxicity of synthetic effluents contaminated with methyl- and propylparaben, paracetamol, sulfamethoxazole, and carbamazepine, both individually and in mixtures, was assessed before and after ozonation. The viability of HaCaT cells decreased after exposure to untreated synthetic effluents, denoting the cytotoxicity of the tested PPCPs singly and more prominently in mixtures (especially in those combining two and three PPCPs). A similar pattern was observed when testing effluents treated with ozonation. Since the parent contaminants were fully removed during ozonation, the observed cytotoxicity relates to degradation by-products and interactive effects among them. This study suggests that ozonation is poorly efficient in reducing cytotoxicity, as required for the safe use of ozone-treated reclaimed water in activities involving direct contact with human skin. Full article
Show Figures

Figure 1

Back to TopTop