Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Solution Preparation
2.2. Experimental Set-Up and Procedures
2.3. Pharmaceutical Rejection Tests
2.4. Experimental Design
2.4.1. Modelling of NF Membranes Using RSM
2.4.2. Modelling of NF Membranes Using ANN
3. Results and Discussion
3.1. Development and Validation
3.1.1. ANOVA for Reduced Quadratic Model
3.1.2. Regression Equation
3.1.3. Effects of Transmembrane Pressure, Feed Concentration, and Flow Rate on Caffeine and Paracetamol Rejection Using RSM Plots
3.2. Predictive Modelling Using ANN
Training, Testing, and Validation of ANN Model
3.3. Comparative Study of RSM and ANN Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Gupta, B.; Gupta, A.K. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. Environ. Res. 2019, 176, 108542. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Qi, P.S.; Liu, Y.Z. A Review on Advanced Treatment of Pharmaceutical Wastewater. IOP Conf. Ser. Earth Environ. Sci. 2017, 63, 12025. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Khayet, M.; Seman, M.N.A.; Hilal, N. Response surface modeling and optimization of composite nanofiltration modified membranes. J. Membr. Sci. 2010, 349, 113–122. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Mohammad, A.W.; Darwish, N.A. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 2005, 184, 315–326. [Google Scholar] [CrossRef]
- Anike, O.; Cuhorka, J.; Ezeogu, N.; Mikulášek, P. Separation of Antibiotics Using Two Commercial Nanofiltration Membranes—Experimental Study and Modelling. Membranes 2024, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration, FDA. Don’t Overuse Acetaminophen. Available online: https://www.fda.gov/consumers/consumer-updates/dont-overuse-acetaminophen (accessed on 24 October 2024).
- Ivanova, D.; Tzvetkov, G.; Kaneva, N. Degradation of Paracetamol in Distilled and Drinking Water via Ag/ZnO Photocatalysis under UV and Natural Sunlight. Water 2023, 15, 3549. [Google Scholar] [CrossRef]
- Emami, M.R.S.; Amiri, M.K.; Zaferani, S.P.G. Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM. Korean J. Chem. Eng. 2021, 38, 316–325. [Google Scholar] [CrossRef]
- Alghooneh, A.; Razavi, S.M.A.; Mousavi, S.M. Nanofiltration treatment of tomato paste processing wastewater: Process modeling and optimization using response surface methodology. Desalination Water Treat. 2016, 57, 9609–9621. [Google Scholar] [CrossRef]
- Mojarrad, M.; Noroozi, A.; Zeinivand, A.; Kazemzadeh, P. Response surface methodology for optimization of simultaneous Cr (VI) and as (V) removal from contaminated water by nanofiltration process. Environ. Prog. Sustain. Energy 2018, 37, 434–443. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Shojaeimehr, T.; Rahimpour, F.; Shirvani, B. PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: Fabrication and performance optimization in dye removal by RSM. J. Hazard. Mater. 2015, 298, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; K, A.; Nair, A.; Ram, S.; Agarwal, S.; Ali, J.; Singh, R.; Garg, M.C. Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water. J. Environ. Manag. 2021, 278, 111497. [Google Scholar] [CrossRef] [PubMed]
- Abadikhah, H.; Zokaee Ashtiani, F.; Fouladitajar, A. Nanofiltration of oily wastewater containing salt; experimental studies and optimization using response surface methodology. Desalination Water Treat. 2015, 56, 2783–2796. [Google Scholar] [CrossRef]
- Gasemloo, S.; Khosravi, M.; Sohrabi, M.R.; Dastmalchi, S.; Gharbani, P. Response surface methodology (RSM) modeling to improve removal of Cr (VI) ions from tannery wastewater using sulfated carboxymethyl cellulose nanofilter. J. Clean. Prod. 2019, 208, 736–742. [Google Scholar] [CrossRef]
- Rajkumar, K.; Muthukumar, M. Response surface optimization of electro-oxidation process for the treatment of C.I. Reactive Yellow 186 dye: Reaction pathways. Appl. Water Sci. 2017, 7, 637–652. [Google Scholar] [CrossRef]
- Koç, B.; Kaymak-Ertekİn, F. Response surface methodology and food processing applications. GIDA-J. Food 2010, 35, 63–70. [Google Scholar]
- Aydar, A.Y. Utilization of response surface methodology in optimization of extraction of plant materials. In Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes; InTech: Rijeka, Croatia, 2018; Volume 7, pp. 157–169. [Google Scholar]
- Jomy, J.; Prabhu, D. Custom design approach of design of experiment as a tool for the optimisation of parameters for corrosion inhibition study of (+)-arabinogalactan on AISI 5140 steel. Corros. Eng. Sci. Technol. 2024, 60, 62–76. [Google Scholar] [CrossRef]
- Peydayesh, M.; Bagheri, M.; Mohammadi, T.; Bakhtiari, O. Fabrication optimization of polyethersulfone (PES)/polyvinylpyrrolidone (PVP) nanofiltration membranes using Box–Behnken response surface method. RSC Adv. 2017, 7, 24995–25008. [Google Scholar] [CrossRef]
- Okonkwo, C.P.; Ajiwe, V.I.E.; Obiadi, M.C.; Okwu, M.O.; Ayogu, J.I. Production of biodiesel from the novel non-edible seed of Chrysobalanus icaco using natural heterogeneous catalyst: Modeling and prediction using Artificial Neural Network. J. Clean. Prod. 2023, 385, 135631. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K.; Samuel, O.D.; Omoregbee, H.O.; Ivbanikaro, A.E. Predictive Ability of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) to Approximate Biogas Yield in a Modular Biodigester; Springer International Publishing: Cham, Switzerland, 2021; pp. 202–215. [Google Scholar]
- Al-Abri, M.; Hilal, N. Artificial neural network simulation of combined humic substance coagulation and membrane filtration. Chem. Eng. J. 2008, 141, 27–34. [Google Scholar] [CrossRef]
- Ibrahim, M.; Haider, A.; Lim, J.W.; Mainali, B.; Aslam, M.; Kumar, M.; Shahid, M.K. Artificial neural network modeling for the prediction, estimation, and treatment of diverse wastewaters: A comprehensive review and future perspective. Chemosphere 2024, 362, 142860. [Google Scholar] [CrossRef] [PubMed]
- Addar, F.Z.; Farah, M.; Belfaquir, M.; Tahaikt, M.; Taky, M.; Elmidaoui, A. Comparison of response surface method and artificial neural network in predicting fluoride removal by nanofiltration. Desalination Water Treat. 2023, 297, 215–226. [Google Scholar]
- Aydiner, C.; Demir, I.; Yildiz, E. Modeling of flux decline in crossflow microfiltration using neural networks: The case of phosphate removal. J. Membr. Sci. 2005, 248, 53–62. [Google Scholar] [CrossRef]
- Abbi, B.; Touazit, A.; Gliti, O.; Igouzal, M.; Pontie, M.; Lemenand, T.; Charki, A. Modelling Salt Rejection in Nanofiltration and Reverse Osmosis Membranes Using the Spiegler-Kedem Model Enhanced by a Bio-Inspired Metaheuristic Algorithms: Particle Swarm Optimization and Grey Wolf Optimization. J. Sustain. Dev. Energy Water Environ. Syst.—JSDEWES 2025, 13, 1130565. [Google Scholar] [CrossRef]
- Scaffaro, R.; Gammino, M.; Maio, A. Hierarchically Structured Hybrid Membranes for Continuous Wastewater Treatment via the Integration of Adsorption and Membrane Ultrafiltration Mechanisms. Polymers 2023, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Gammino, M. 3D wet-electrospun “branch leaf” graphene oxide polycaprolactone fibers structure for enhancing oil-water separation treatment performance in a multi-scale design. Sustain. Mater. Technol. 2025, 43, e01200. [Google Scholar] [CrossRef]
- Samuel, O.D.; Okwu, M.O. Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) in modelling of waste coconut oil ethyl esters production. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1049–1061. [Google Scholar] [CrossRef]
- Silva, G.F.; Camargo, F.L.; Ferreira, A.L.O. Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Process. Technol. 2011, 92, 407–413. [Google Scholar] [CrossRef]
- Onu, C.E.; Nwabanne, J.T.; Ohale, P.E.; Asadu, C.O. Comparative analysis of RSM, ANN and ANFIS and the mechanistic modeling in eriochrome black-T dye adsorption using modified clay. S. Afr. J. Chem. Eng. 2021, 36, 24–42. [Google Scholar] [CrossRef]
- Addar, F.; Qaid, S.; Zeggar, H.; El Hajji, H.; Tahaikt, M.; Elmidaoui, A.; Taky, M. Ultrafiltration of Moroccan Valencia orange juice: Juice quality, optimization by custom designs and membranefouling. Sustain. Agri Food Environ. Res.-Discontin. 2023, 11. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, A. Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology. Chem. Eng. J. 2010, 162, 186–193. [Google Scholar] [CrossRef]
- Gherasim, C.-V.; Mikulášek, P. Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration. Desalination 2014, 343, 67–74. [Google Scholar] [CrossRef]
- Fang, J.; Deng, B. Arsenic Rejection by Nanofiltration Membranes: Effect of Operating Parameters and Model Analysis. Environ. Eng. Sci. 2014, 31, 496–506. [Google Scholar] [CrossRef]
- Ghorbani, A.; Bayati, B.; Drioli, E.; Macedonio, F.; Kikhavani, T.; Frappa, M. Modeling of Nanofiltration Process Using DSPM-DE Model for Purification of Amine Solution. Membranes 2021, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ivars, J.; Martella, L.; Massella, M.; Carbonell-Alcaina, C.; Alcaina-Miranda, M.-I.; Iborra-Clar, M.-I. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res. 2017, 125, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Onu, C.E.; Ohale, P.E.; Ekwueme, B.N.; Obiora-Okafo, I.A.; Okey-Onyesolu, C.F.; Onu, C.P.; Ezema, C.A.; Onu, O.O. Modeling, optimization, and adsorptive studies of bromocresol green dye removal using acid functionalized corn cob. Clean. Chem. Eng. 2022, 4, 100067. [Google Scholar] [CrossRef]
- Arulsudar, N.; Subramanian, N.; Murthy, R. Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. J. Pharm. Pharm. Sci 2005, 8, 243–258. [Google Scholar] [PubMed]
- Fetimi, A.; Dâas, A.; Benguerba, Y.; Merouani, S.; Hamachi, M.; Kebiche-Senhadji, O.; Hamdaoui, O. Optimization and prediction of safranin-O cationic dye removal from aqueous solution by emulsion liquid membrane (ELM) using artificial neural network-particle swarm optimization (ANN-PSO) hybrid model and response surface methodology (RSM). J. Environ. Chem. Eng. 2021, 9, 105837. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Nwabanne, J.T.; Aniagor, C.O.; Okey-Onyesolu, C.F.; Ohale, N.J. A comparative optimization and modeling of ammonia–nitrogen adsorption from abattoir wastewater using a novel iron-functionalized crab shell. Appl. Water Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
Factor or Independent Variable | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
X1 (pressure, bar) | 10 | 15 | 20 | 25 | 30 |
X2 (feed concentration, mg/L) | 5 | 10 | 20 | - | - |
X3 (feed flow rate, L/min) | 5 | 10 | 15 | - | - |
Run | Independent Variables | Caffeine Rejection (AFC 40) | Paracetamol Rejection (AFC 80) | Model Residuals | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(AFC 40) | (AFC 80) | ||||||||||||
X1 [bar] | X2 [mg/L] | X3 [L/min] | YExp. [%] | YRSM [%] | YANN [%] | YExp. [%] | YRSM [%] | YANN [%] | RSM [−] | ANN [−] | RSM [−] | ANN [−] | |
1 | 10 | 20 | 15 | 84.71 | 84.62 | 84.83 | 91.91 | 91.92 | 91.91 | 0.0897 | −0.1195 | −0.0143 | 0.0017 |
2 | 15 | 20 | 15 | 86.65 | 86.69 | 86.26 | 94.01 | 93.95 | 94.01 | −0.0390 | 0.3919 | 0.0576 | −0.0018 |
3 | 20 | 20 | 15 | 87.77 | 88.01 | 87.73 | 95.35 | 95.36 | 95.01 | −0.2369 | 0.0412 | −0.0051 | 0.3413 |
4 | 25 | 20 | 15 | 88.16 | 88.57 | 88.21 | 96.04 | 96.13 | 96.04 | −0.4139 | −0.0512 | −0.0923 | −0.0025 |
5 | 30 | 20 | 15 | 88.29 | 88.39 | 88.29 | 96.48 | 96.28 | 96.48 | −0.1000 | 0.0031 | 0.1958 | −0.0005 |
6 | 10 | 10 | 15 | 85.42 | 84.62 | 85.57 | 89.54 | 90.24 | 89.54 | 0.7997 | −0.1503 | −0.6993 | −0.004 |
7 | 15 | 10 | 15 | 87.19 | 86.69 | 87.15 | 93.00 | 92.58 | 92.48 | 0.5010 | 0.0358 | 0.4154 | 0.5196 |
8 | 20 | 10 | 15 | 88.06 | 88.01 | 87.28 | 94.73 | 94.30 | 94.57 | 0.0531 | 0.7786 | 0.4254 | 0.1625 |
9 | 25 | 10 | 15 | 88.23 | 88.57 | 87.54 | 95.53 | 95.40 | 95.58 | −0.3439 | 0.6924 | 0.1309 | −0.0504 |
10 | 30 | 10 | 15 | 88.45 | 88.39 | 88.80 | 96.51 | 95.87 | 96.03 | 0.0600 | −0.3528 | 0.6418 | 0.4831 |
11 | 10 | 5 | 15 | 85.11 | 84.62 | 85.34 | 89.80 | 89.40 | 89.65 | 0.4897 | −0.2261 | 0.4032 | 0.1533 |
12 | 15 | 5 | 15 | 86.83 | 86.69 | 86.85 | 91.77 | 91.90 | 91.77 | 0.1410 | −0.0179 | −0.1308 | 0.0007 |
13 | 20 | 5 | 15 | 87.77 | 88.01 | 87.98 | 93.55 | 93.78 | 93.11 | −0.2369 | −0.2084 | −0.2293 | 0.4361 |
14 | 25 | 5 | 15 | 88.40 | 88.57 | 88.59 | 94.65 | 95.03 | 94.68 | −0.1739 | −0.185 | −0.3825 | −0.0326 |
15 | 30 | 5 | 15 | 87.80 | 88.39 | 87.91 | 95.39 | 95.66 | 95.39 | −0.5900 | −0.111 | −0.2702 | 0.0018 |
16 | 10 | 20 | 10 | 83.15 | 85.26 | 83.25 | 91.93 | 91.92 | 91.94 | −2.11 | −0.1032 | 0.0057 | −0.0122 |
17 | 15 | 20 | 10 | 83.86 | 84.95 | 83.92 | 94.26 | 93.95 | 94.26 | −1.09 | −0.0642 | 0.3076 | −0.0047 |
18 | 20 | 20 | 10 | 83.68 | 83.89 | 83.63 | 95.48 | 95.36 | 95.49 | −0.2109 | 0.0502 | 0.1249 | −0.0056 |
19 | 25 | 20 | 10 | 83.09 | 82.08 | 83.05 | 96.07 | 96.13 | 96.08 | 1.01 | 0.0375 | −0.0623 | −0.0057 |
20 | 30 | 20 | 10 | 81.92 | 79.52 | 81.51 | 96.39 | 96.28 | 96.39 | 2.40 | 0.4122 | 0.1058 | 0.0003 |
21 | 10 | 20 | 5 | 76.76 | 76.33 | 76.82 | 91.81 | 91.92 | 91.83 | 0.4255 | −0.0613 | −0.1143 | −0.0205 |
22 | 15 | 20 | 5 | 74.83 | 73.65 | 75.05 | 94.11 | 93.95 | 94.11 | 1.18 | −0.2214 | 0.1576 | −0.0002 |
23 | 20 | 20 | 5 | 70.58 | 70.22 | 70.75 | 95.13 | 95.36 | 95.13 | 0.3631 | −0.1731 | −0.2251 | −0.0012 |
24 | 25 | 20 | 5 | 65.62 | 66.03 | 67.81 | 95.61 | 96.13 | 95.60 | −0.4117 | −2.1909 | −0.5223 | 0.0113 |
25 | 30 | 20 | 5 | 59.54 | 61.10 | 65.91 | 96.06 | 96.28 | 95.69 | −1.56 | −6.3702 | −0.2242 | 0.3688 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1389.46 | 5 | 277.89 | 282.59 | <0.0001 | significant |
A-Pressure [X1] | 82.21 | 1 | 82.21 | 83.60 | <0.0001 | |
C-Flow rate [X3] | 1186.82 | 1 | 1186.82 | 1206.90 | <0.0001 | |
AC | 180.66 | 1 | 180.66 | 183.72 | <0.0001 | |
A2 | 9.87 | 1 | 9.87 | 10.03 | 0.0051 | |
C2 | 85.65 | 1 | 85.65 | 87.10 | <0.0001 | |
Residual | 18.68 | 19 | 0.9834 | <0.0001 | ||
Cor Total | 1408.14 | 24 | ||||
R2 | 0.9867 | |||||
Adjusted R2 | 0.9832 | |||||
Predicted R2 | 0.9645 | |||||
Adequate Precision | 58.5621 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 97.84 | 4 | 24.46 | 211.73 | <0.0001 | significant |
A-Pressure [X1] | 76.25 | 1 | 76.25 | 660.04 | <0.0001 | |
B-Concentration [X2] | 11.04 | 1 | 11.04 | 95.52 | <0.0001 | |
AB | 2.01 | 1 | 2.01 | 17.42 | 0.0005 | |
A2 | 6.85 | 1 | 6.85 | 59.25 | <0.0001 | |
Residual | 2.31 | 20 | 0.1155 | |||
Cor Total | 100.15 | 24 | ||||
R2 | 0.9769 | |||||
Adjusted R2 | 0.9723 | |||||
Predicted R2 | 0.9590 | |||||
Adequate Precision | 45.3104 |
Error Function | AFC 40 Membrane | AFC 80 Membrane | ||
---|---|---|---|---|
RSM | ANN | RSM | ANN | |
R2 | 0.9867 | 0.9832 | 0.9769 | 0.9922 |
RMSE | 0.8654 | 1.3700 | 0.3041 | 0.1999 |
MPSED (%) | 0.0125 | 0.0512 | 0.0011 | 0.0004 |
HYBRID (%) | 1.0893 | 3.5254 | 0.1124 | 0.0480 |
AAD (%) | 0.7610 | 0.7720 | 0.2534 | 0.1101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezeogu, N.; Mikulášek, P.; Onu, C.E.; Anike, O.; Cuhorka, J. Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology. Membranes 2025, 15, 222. https://doi.org/10.3390/membranes15080222
Ezeogu N, Mikulášek P, Onu CE, Anike O, Cuhorka J. Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology. Membranes. 2025; 15(8):222. https://doi.org/10.3390/membranes15080222
Chicago/Turabian StyleEzeogu, Nkechi, Petr Mikulášek, Chijioke Elijah Onu, Obinna Anike, and Jiří Cuhorka. 2025. "Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology" Membranes 15, no. 8: 222. https://doi.org/10.3390/membranes15080222
APA StyleEzeogu, N., Mikulášek, P., Onu, C. E., Anike, O., & Cuhorka, J. (2025). Modelling Caffeine and Paracetamol Removal from Synthetic Wastewater Using Nanofiltration Membranes: A Comparative Study of Artificial Neural Networks and Response Surface Methodology. Membranes, 15(8), 222. https://doi.org/10.3390/membranes15080222