Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (814)

Search Parameters:
Keywords = remote emission sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6694 KiB  
Article
Spatiotemporal Assessment of Benzene Exposure Characteristics in a Petrochemical Industrial Area Using Mobile-Extraction Differential Optical Absorption Spectroscopy (Me-DOAS)
by Dong keun Lee, Jung-min Park, Jong-hee Jang, Joon-sig Jung, Min-kyeong Kim, Jaeseok Heo and Duckshin Park
Toxics 2025, 13(8), 655; https://doi.org/10.3390/toxics13080655 (registering DOI) - 31 Jul 2025
Abstract
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in [...] Read more.
Petrochemical complexes are spatially expansive and host diverse emission sources, making accurate monitoring of volatile organic compounds (VOCs) challenging using conventional two-dimensional methods. This study introduces Mobile-extraction Differential Optical Absorption Spectroscopy (Me-DOAS), a real-time, three-dimensional remote sensing technique for assessing benzene emissions in the Ulsan petrochemical complex, South Korea. A vehicle-mounted Me-DOAS system conducted monthly measurements throughout 2024, capturing data during four daily intervals to evaluate diurnal variation. Routes included perimeter loops and grid-based transects within core industrial zones. The highest benzene concentrations were observed in February (mean: 64.28 ± 194.69 µg/m3; geometric mean: 5.13 µg/m3), with exceedances of the national annual standard (5 µg/m3) in several months. Notably, nighttime and early morning sessions showed elevated levels, suggesting contributions from nocturnal operations and meteorological conditions such as atmospheric inversion. A total of 179 exceedances (≥30 µg/m3) were identified, predominantly in zones with benzene-handling activities. Correlation analysis revealed a significant relationship between high concentrations and specific emission sources. These results demonstrate the utility of Me-DOAS in capturing spatiotemporal emission dynamics and support its application in exposure risk assessment and industrial emission control. The findings provide a robust framework for targeted management strategies and call for integration with source apportionment and dispersion modeling tools. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

25 pages, 1103 KiB  
Article
The Low-Carbon Development Strategy of Russia Until 2050 and the Role of Forests in Its Implementation
by Evgeny A. Shvarts, Andrey V. Ptichnikov, Anna A. Romanovskaya, Vladimir N. Korotkov and Anastasia S. Baybar
Sustainability 2025, 17(15), 6917; https://doi.org/10.3390/su17156917 - 30 Jul 2025
Viewed by 77
Abstract
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG [...] Read more.
This article examines the role of managed ecosystems, and particularly forests, in achieving carbon neutrality in Russia. The range of estimates of Russia’s forests’ net carbon balance in different studies varies by up to 7 times. The. A comparison of Russia’s National GHG inventory data for 2023 and 2024 (with the latter showing 37% higher forest sequestration) is presented and explained. The possible changes in the Long-Term Low-Emission Development Strategy of Russia (LT LEDS) carbon neutrality scenario due to new land use, land use change and forestry (LULUCF) data in National GHG Inventory Document (NID) 2024 are discussed. It is demonstrated that the refined net carbon balance should not impact the mitigation ambition in the Russian forestry sector. An assessment of changes in the drafts of the Operational plan of the LT LEDS is presented and it is concluded that its structure and content have significantly improved; however, a delay in operationalization nullifies efforts. The article highlights the problem of GHG emissions increases in forest fires and compares the gap between official “ground-based” and Remote Sensing approaches in calculations of such emissions. Considering the intention to increase net absorption by implementing forest carbon projects, the latest changes in the regulations of such projects are discussed. The limitations of reforestation carbon projects in Russia are provided. Proposals are presented for the development of the national forest policy towards increasing the net forest carbon absorption, including considering the projected decrease in annual net absorption by Russian forests by 2050. The role of government and private investment in improving the forest management of structural measures to adapt forestry to modern climate change and the place of forest climate projects need to be clearly defined in the LT LEDS. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 186
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 176
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Farmdee-Mesook: An Intuitive GHG Awareness Smart Agriculture Platform
by Mongkol Raksapatcharawong and Watcharee Veerakachen
Agronomy 2025, 15(8), 1772; https://doi.org/10.3390/agronomy15081772 - 24 Jul 2025
Viewed by 309
Abstract
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, [...] Read more.
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, and mitigate greenhouse gas (GHG) emissions. This study introduces Farmdee-Mesook, a mobile-first smart agriculture platform designed specifically for Thai rice farmers. The platform leverages AquaCrop simulation, open-access satellite data, and localized agronomic models to deliver real-time, field-specific recommendations. Usability-focused design and no-cost access facilitate its widespread adoption, particularly among smallholders. Empirical results show that platform users achieved yield increases of up to 37%, reduced agrochemical costs by 59%, and improved water productivity by 44% under alternate wetting and drying (AWD) irrigation schemes. These outcomes underscore the platform’s role as a scalable, cost-effective solution for operationalizing climate-smart agriculture. Farmdee-Mesook demonstrates that digital technologies, when contextually tailored and institutionally supported, can serve as critical enablers of climate adaptation and sustainable agricultural transformation. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 247
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Figure 1

11 pages, 2547 KiB  
Article
Simultaneous Remote Non-Invasive Blood Glucose and Lactate Measurements by Mid-Infrared Passive Spectroscopic Imaging
by Ruka Kobashi, Daichi Anabuki, Hibiki Yano, Yuto Mukaihara, Akira Nishiyama, Kenji Wada, Akiko Nishimura and Ichiro Ishimaru
Sensors 2025, 25(15), 4537; https://doi.org/10.3390/s25154537 - 22 Jul 2025
Viewed by 257
Abstract
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an [...] Read more.
Mid-infrared passive spectroscopic imaging is a novel non-invasive and remote sensing method based on Planck’s law. It enables the acquisition of component-specific information from the human body by measuring naturally emitted thermal radiation in the mid-infrared region. Unlike active methods that require an external light source, our passive approach harnesses the body’s own emission, thereby enabling safe, long-term monitoring. In this study, we successfully demonstrated the simultaneous, non-invasive measurements of blood glucose and lactate levels of the human body using this method. The measurements, conducted over approximately 80 min, provided emittance data derived from mid-infrared passive spectroscopy that showed a temporal correlation with values obtained using conventional blood collection sensors. Furthermore, to evaluate localized metabolic changes, we performed k-means clustering analysis of the spectral data obtained from the upper arm. This enabled visualization of time-dependent lactate responses with spatial resolution. These results demonstrate the feasibility of multi-component monitoring without physical contact or biological sampling. The proposed technique holds promise for translation to medical diagnostics, continuous health monitoring, and sports medicine, in addition to facilitating the development of next-generation healthcare technologies. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025)
Show Figures

Figure 1

33 pages, 725 KiB  
Review
Individual and Synergistic Contributions of GIS, Remote Sensing, and AI in Advancing Climate-Resilient Agriculture
by Cristian-Dumitru Mălinaș, Florica Matei, Ioana Delia Pop, Tudor Sălăgean and Anamaria Mălinaș
AgriEngineering 2025, 7(7), 230; https://doi.org/10.3390/agriengineering7070230 - 10 Jul 2025
Viewed by 564
Abstract
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial [...] Read more.
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial tools (e.g., Geographic Information Systems (GISs) and remote sensing (RS)), as well as artificial intelligence (AI), offer promising methods to support this transition. However, their individual capabilities, limitations, and appropriate applications are not always well understood or clearly delineated in the literature. A common issue is the frequent overlap between GISs and RS, with many studies assessing GIS contributions while concurrently employing RS techniques, without explicitly distinguishing between the two (or vice versa). In this sense, the objective of this review is to conduct a critical analysis of the existing state of the art in terms of the distinct roles, limitations, and complementarities of GISs, RS, and AI in advancing CRA, guided by an original definition we propose for CRA (structured around three key dimensions and their corresponding targets). Furthermore, this review introduces a synthesis matrix that integrates both the individual contributions and the synergistic potential of these technologies. This synergy-focused matrix offers not just a summary, but a practical decision support matrix that could be used by researchers, practitioners, and policymakers in selecting the most appropriate technological configuration for their objectives in CRA-related work. Such support is increasingly needed, especially considering that RS and AI have experienced exponential growth in the past five years, while GISs, despite being the more established “big brother” among these technologies, remain underutilized and is often insufficiently understood in agricultural applications. Full article
Show Figures

Graphical abstract

27 pages, 7955 KiB  
Article
Land Surface Condition-Driven Emissivity Variation and Its Impact on Diurnal Land Surface Temperature Retrieval Uncertainty
by Lijuan Wang, Ping Yue, Yang Yang, Sha Sha, Die Hu, Xueyuan Ren, Xiaoping Wang, Hui Han and Xiaoyu Jiang
Remote Sens. 2025, 17(14), 2353; https://doi.org/10.3390/rs17142353 - 9 Jul 2025
Viewed by 211
Abstract
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected [...] Read more.
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected from diverse underlying surfaces from 2017 to 2024 to analyze LSE variation characteristics across different surface types, spectral bands, and temporal scales. Key influencing factors are quantified to establish empirical relationships between LSE dynamics and environmental variables. Furthermore, the impact of LSE models on diurnal LST retrieval accuracy is systematically evaluated through comparative experiments, emphasizing the necessity of integrating time-dependent LSE corrections into radiative transfer equations. The results indicate that LSE in the 8–11 µm band is highly sensitive to surface composition, with distinct dual-valley absorption features observed between 8 and 9.5 µm across different soil types, highlighting spectral variability. The 9.6 µm LSE exhibits strong sensitivity to crop growth dynamics, characterized by pronounced absorption valleys linked to vegetation biochemical properties. Beyond soil composition, LSE is significantly influenced by soil moisture, temperature, and vegetation coverage, emphasizing the need for multi-factor parameterization. LSE demonstrates typical diurnal variations, with an amplitude reaching an order of magnitude of 0.01, driven by thermal inertia and environmental interactions. A diurnal LSE retrieval model, integrating time-averaged LSE and diurnal perturbations, was developed based on underlying surface characteristics. This model reduced the root mean square error (RMSE) of LST retrieved from geostationary satellites from 6.02 °C to 2.97 °C, significantly enhancing retrieval accuracy. These findings deepen the understanding of LSE characteristics and provide a scientific basis for refining LST/LSE separation algorithms in thermal infrared remote sensing and for optimizing LSE parameterization schemes in land surface process models for climate and hydrological simulations. Full article
Show Figures

Graphical abstract

15 pages, 5107 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Aerosol Optical Depth in Zhejiang Province: Insights from Land Use Dynamics and Transportation Networks Based on Remote Sensing
by Qi Wang, Ben Wang, Wanlin Kong, Jiali Wu, Zhifeng Yu, Xiwen Wu and Xiaohong Yuan
Sustainability 2025, 17(13), 6126; https://doi.org/10.3390/su17136126 - 3 Jul 2025
Viewed by 282
Abstract
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road [...] Read more.
Aerosol optical depth (AOD) serves as a critical indicator for atmospheric aerosol monitoring and air quality assessment, and quantifies the radiative attenuation caused by airborne particulate matter. This study uses MODIS remote sensing imagery together with land use transition datasets (2000–2020) and road network density metrics (2014–2020), to investigate the spatiotemporal evolution of AOD in Zhejiang Province and its synergistic correlations with urbanization patterns and transportation infrastructure. By integrating MODIS_1KM AOD product, grid-based road network density mapping, land use dynamic degree modeling, and transfer matrix analysis, this study systematically evaluates the interdependencies among aerosol loading, impervious surface expansion, and transportation network intensification. The results indicate that during the study period (2000–2020), the provincial AOD level shows a significant declining trend, with obvious spatial heterogeneity: the AOD values in eastern coastal industrial zones and urban agglomerations continue to increase, with lower values dominating southwestern forested highlands. Meanwhile, statistical analyses confirm highly positive correlations between AOD, impervious surface coverage, and road network density, emphasizing the dominant role of anthropogenic activities in aerosol accumulation. These findings provide actionable insights for enhancing land-use zoning, minimizing vehicular emissions, and developing spatially targeted air quality management strategies in rapidly urbanizing regions. This study provides a solid scientific foundation for advancing environmental sustainability by supporting policy development that balances urban expansion and air quality. It contributes to building more sustainable and resilient cities in Zhejiang Province. Full article
Show Figures

Figure 1

28 pages, 5886 KiB  
Article
Burned Area Detection in the Eastern Canadian Boreal Forest Using a Multi-Layer Perceptron and MODIS-Derived Features
by Hadi Mahmoudi Meimand, Jiaxin Chen, Daniel Kneeshaw, Mohammadreza Bakhtyari and Changhui Peng
Remote Sens. 2025, 17(13), 2162; https://doi.org/10.3390/rs17132162 - 24 Jun 2025
Viewed by 328
Abstract
Wildfires play a critical role in boreal forest ecosystems, yet their increasing frequency poses significant challenges for carbon emissions, ecosystem stability, and fire management. Accurate burned area detection is essential for assessing post-fire landscape recovery and fire-induced carbon fluxes. This study develops, compares, [...] Read more.
Wildfires play a critical role in boreal forest ecosystems, yet their increasing frequency poses significant challenges for carbon emissions, ecosystem stability, and fire management. Accurate burned area detection is essential for assessing post-fire landscape recovery and fire-induced carbon fluxes. This study develops, compares, and optimizes machine learning (ML)-based models for burned area classification in the eastern Canadian boreal forest from 2000 to 2023 using MODIS-derived features extracted from Google Earth Engine (GEE), and the feature extraction includes maximum, minimum, mean, and median values per feature to enhance spectral representation and reduce noise. The dataset was randomly split into training (70%), validation (15%), and testing (15%) sets for model development and assessment. Combined labels were used due to class imbalance, and the model performance was assessed using kappa and the F1-score. Among the ML techniques tested, deep learning (DL) with a Multi-Layer Perceptron (MLP) outperformed Support Vector Machines (SVMs) and Random Forest (RF) by demonstrating superior classification accuracy in detecting burned area. It achieved an F1-score of 0.89 for burned pixels, confirming its potential for improving the long-term wildfire monitoring and management in boreal forests. Despite the computational demands of processing large-scale remote sensing data at 250 m resolution, the MLP modeling approach that we used provides an efficient, effective, and scalable solution for long-term burned area detection. These findings underscore the importance of tuning both network architecture and regularization parameters to improve the classification of burned pixels, enhancing the model robustness and generalizability. Full article
Show Figures

Figure 1

22 pages, 4380 KiB  
Article
Utilization of Multisensor Satellite Data for Developing Spatial Distribution of Methane Emission on Rice Paddy Field in Subang, West Java
by Khalifah Insan Nur Rahmi, Parwati Sofan, Hilda Ayu Pratikasiwi, Terry Ayu Adriany, Dandy Aditya Novresiandi, Rendi Handika, Rahmat Arief, Helena Lina Susilawati, Wage Ratna Rohaeni, Destika Cahyana, Vidya Nahdhiyatul Fikriyah, Iman Muhardiono, Asmarhansyah, Shinichi Sobue, Kei Oyoshi, Goh Segami and Pegah Hashemvand Khiabani
Remote Sens. 2025, 17(13), 2154; https://doi.org/10.3390/rs17132154 - 23 Jun 2025
Viewed by 551
Abstract
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and [...] Read more.
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and regionally. However, limited studies have been conducted to measure locally specific EFs (EFlocal) through on-site assessments and modeling their spatial distribution effectively. This study aims to investigate the potential of multisensor satellite data to develop a spatial model of CH4 emission estimation on rice paddy fields under different water management practices, i.e., continuous flooding (CF) and alternate wetting and drying (AWD) in Subang, West Java, Indonesia. The model employed the national EF (EFnational) and EFlocal using the IPCC guidelines. In this study, we employed the multisensor satellite data to derive the key parameters for estimating CH4 emission, i.e., rice cultivation area, rice age, and EF. Optical high-resolution images were used to delineate the rice cultivation area, Sentinel-1 SAR imagery was used for identifying transplanting and harvesting dates for rice age estimation, and ALOS-2/PALSAR-2 was used to map the water regime for determining the scaling factor of the EF. The closed-chamber method has been used to measure the daily CH4 flux rate on the local sites. The results revealed spatial variability in CH4 emissions, ranging from 1–5 kg/crop/season to 20–30 kg/crop/season, depending on the water regime. Fields under CF exhibited higher CH4 emissions than those under AWD, underscoring the critical role of water management in mitigating CH4 emissions. This study demonstrates the feasibility of combining remote sensing data with the IPCC model to spatially estimate CH4 emissions, providing a robust framework for sustainable rice cultivation and greenhouse gas (GHG) mitigation strategies. Full article
Show Figures

Figure 1

29 pages, 4175 KiB  
Article
Assessing Long-Term Post-Conflict Air Pollution: Trends and Implications for Air Quality in Mosul, Iraq
by Zena Altahaan and Daniel Dobslaw
Atmosphere 2025, 16(7), 756; https://doi.org/10.3390/atmos16070756 - 20 Jun 2025
Viewed by 571
Abstract
Prolonged conflicts in Iraq over the past four decades have profoundly disrupted environmental systems, not only through immediate post-conflict emissions—such as residues from munitions and explosives—but also via long-term infrastructural collapse, population displacement, and unsustainable resource practices. Despite growing concern over air quality [...] Read more.
Prolonged conflicts in Iraq over the past four decades have profoundly disrupted environmental systems, not only through immediate post-conflict emissions—such as residues from munitions and explosives—but also via long-term infrastructural collapse, population displacement, and unsustainable resource practices. Despite growing concern over air quality in conflict-affected regions, comprehensive assessments integrating long-term data and localized measurements remain scarce. This study addresses this gap by analyzing the environmental consequences of sustained instability in Mosul, focusing on air pollution trends using both remote sensing data (1983–2023) and in situ monitoring of key pollutants—including PM2.5, PM10, TVOCs, NO2, SO2, and formaldehyde—at six urban sites during 2022–2023. The results indicate marked seasonal variations, with winter peaks in combustion-related pollutants (NO2, SO2) and elevated particulate concentrations in summer driven by sandstorm activity. Annual average concentrations of all six pollutants increased by 14–51%, frequently exceeding WHO air quality guidelines. These patterns coincide with worsening meteorological conditions, including higher temperatures, reduced rainfall, and more frequent storms, suggesting synergistic effects between climate stress and pollution. The findings highlight severe public health risks and emphasize the urgent need for integrated urban recovery strategies that promote sustainable infrastructure, environmental restoration, and resilience to climate change. Full article
Show Figures

Figure 1

21 pages, 4469 KiB  
Article
Assessment of PM10 and PM2.5 Concentrations in Santo Domingo: A Comparative Study Between 2019 and 2022
by Carime Matos-Espinosa, Ramón Delanoy, Claudia Caballero-González, Anel Hernández-Garces, Ulises Jauregui-Haza, Solhanlle Bonilla-Duarte and José-Ramón Martínez-Batlle
Atmosphere 2025, 16(6), 734; https://doi.org/10.3390/atmos16060734 - 16 Jun 2025
Viewed by 580
Abstract
This study analyzes the spatial and temporal variability of PM10 and PM2.5 concentrations in Santo Domingo, Dominican Republic, based on short-term sampling campaigns conducted in 2019 and 2022. In 2019, PM10 levels averaged 38.14 µg/m3, while in 2022 [...] Read more.
This study analyzes the spatial and temporal variability of PM10 and PM2.5 concentrations in Santo Domingo, Dominican Republic, based on short-term sampling campaigns conducted in 2019 and 2022. In 2019, PM10 levels averaged 38.14 µg/m3, while in 2022 they rose significantly to 62.18 µg/m3. PM2.5 in 2022 averaged 30.37 µg/m3. These differences are likely influenced by meteorological variability, including increased transport of Saharan dust in mid-2022, and seasonal factors. Although local emission changes were not directly assessed, they may have also played a role in the observed trends. Statistical analyses revealed that aerosol optical depth (AOD), air pressure, and rainfall were significant predictors of PM10 in 2022, explaining up to 75% of the variance. Correlations and regression models confirmed a robust association between AOD and PM levels on a weekly timescale. These findings highlight the importance of integrating remote sensing and meteorological data to improve air quality monitoring and inform environmental policy in Caribbean urban areas. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1458
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

Back to TopTop