Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = reinforced concrete (RC) column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8482 KB  
Article
Effect of C-FRP (Carbon Fiber Reinforced Polymer) Rope and Sheet Strengthening on the Shear Behavior of RC Beam-Column Joints
by Emmanouil Golias and Chris Karayannis
Fibers 2025, 13(9), 113; https://doi.org/10.3390/fib13090113 - 22 Aug 2025
Viewed by 156
Abstract
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical [...] Read more.
This study presents a high-performance external strengthening strategy for reinforced concrete (RC) beam–column joints, integrating near-surface mounted (NSM) Carbon Fiber Reinforced Polymer (C-FRP) ropes with externally bonded C-FRP sheets. The X-shaped ropes, anchored diagonally on both principal joint faces and complemented by vertical ropes at column corners, provide enhanced core confinement and shear reinforcement. C-FRP sheets applied to the beam’s plastic hinge region further increase flexural strength and delay localized failure. Three full-scale, shear-deficient RC joints were subjected to cyclic lateral loading. The unstrengthened specimen (JB0V) exhibited rapid stiffness deterioration, premature joint shear cracking, and unstable hysteretic behavior. In contrast, the specimen strengthened solely with X-shaped C-FRP ropes (JB0VF2X2c) displayed a markedly slower rate of stiffness degradation, delayed crack development, and improved energy dissipation stability. The fully retrofitted specimen (JB0VF2X2c + C-FRP) demonstrated the most pronounced gains, with peak load capacity increased by 65%, equivalent viscous damping enhanced by 55%, and joint shear deformations reduced by more than 40%. Even at 4% drift, it retained over 90% of its peak strength, while localizing damage away from the joint core—a performance unattainable by the unstrengthened configuration. These results clearly establish that the combined C-FRP rope–sheet system transforms the seismic response of deficient RC joints, offering a lightweight, non-invasive, and rapidly deployable retrofit solution. By simultaneously boosting shear resistance, ductility, and energy dissipation while controlling damage localization, the technique provides a robust pathway to extend service life and significantly enhance post-earthquake functionality in critical structural connections. Full article
Show Figures

Figure 1

33 pages, 6091 KB  
Article
Performance-Based Seismic Evaluation of Local Staggered RC Frames with Steel Tube-Reinforced Concrete Columns Under Multi-Angle Earthquakes
by Shuyun Zhang, Long Guo, Lihua Ge, En Wang and Junfu Tong
Appl. Sci. 2025, 15(16), 9092; https://doi.org/10.3390/app15169092 - 18 Aug 2025
Viewed by 184
Abstract
Staggered floor frame structures with good spatial adaptability are widely used in large-space civil buildings such as conference halls and terminal buildings. However, the short columns formed by staggered floor slabs significantly affect load transfer, which is unfavorable to the seismic performance of [...] Read more.
Staggered floor frame structures with good spatial adaptability are widely used in large-space civil buildings such as conference halls and terminal buildings. However, the short columns formed by staggered floor slabs significantly affect load transfer, which is unfavorable to the seismic performance of the structure. To address this issue, based on a practical project, this paper establishes a finite element analysis model, sets up steel-tube-reinforced concrete (ST-RC) columns at staggered floors to improve the insufficient ductility of short columns, and adopts the dynamic time–history analysis method combined with performance-based evaluation methods to study the effects of different seismic input angles (0°, 30°, 60°, 90°) on the seismic performance of local staggered floor frame structures at both the overall and member levels. The research results show that at the overall level, the fourth floor of the staggered floor frame structure is the weak floor, and the most unfavorable seismic input angle is 60°; additionally, at the member level, the damage of each member meets the performance objectives. Frame beams are more severely damaged under 0° and 90° seismic input, frame columns are more severely damaged under 30° and 60° seismic input, and the damage degree of ST-RC columns is similar in the four directions. As energy-dissipating members, frame beams have a significantly higher proportion of nonlinear strain energy than frame columns and ST-RC columns, which can effectively consume a large amount of seismic energy and enable the structure to retain more safety reserves. Therefore, for irregular buildings such as staggered floor frame structures that are prone to damage due to insufficient ductility of short columns, setting ST-RC columns at staggered floors can effectively reduce structural damage. The adoption of evaluation methods at both the overall structural and member levels enables a comprehensive understanding of the damage status of staggered floor structures. Full article
Show Figures

Figure 1

14 pages, 3153 KB  
Article
The Analysis of Axial Compression Performance of Reinforced Concrete Columns Strengthened with Prestressed Carbon Fiber Sheets
by Yiquan Lv, Yang Teng, Xing Li, Junli Liu, Chunling Lu and Cheng Zhang
Infrastructures 2025, 10(8), 210; https://doi.org/10.3390/infrastructures10080210 - 13 Aug 2025
Viewed by 231
Abstract
Current research primarily focuses on using CFRP materials to strengthen small or medium-sized test specimens. To address this, our study employed ABAQUS software to analyze the axial compression behavior of large-scale reinforced concrete (RC) columns strengthened with prestressed carbon fiber reinforced polymer (CFRP) [...] Read more.
Current research primarily focuses on using CFRP materials to strengthen small or medium-sized test specimens. To address this, our study employed ABAQUS software to analyze the axial compression behavior of large-scale reinforced concrete (RC) columns strengthened with prestressed carbon fiber reinforced polymer (CFRP) sheets. We conducted comparative analyses on key parameters: the prestress level applied to the CFRP, the width of CFRP strips, the spacing between strips, the confinement ratio, and the overall load–displacement curves of the columns. The results demonstrate that applying prestress significantly improves the efficiency of stress transfer in the CFRP sheet, effectively mitigating the stress lag phenomenon common in traditional CFRP strengthening, leading to a substantially enhanced strengthening effect. The CFRP wrapping method critically impacts performance: increasing the confinement ratio enhanced ultimate load capacity by 21.8–59.9%; reducing the strip spacing increased capacity by 21.8–50.4%; and widening the strips boosted capacity by 38.7–58%. Although full wrapping achieved the highest capacity increase (up to 73.2%), it also incurred significantly higher costs. To ensure the required strengthening effect while optimizing economic efficiency and CFRP material utilization, the strip wrapping technique is recommended. For designing optimal reinforcement, priority should be given to optimizing the confinement ratio first, followed by adjusting strip width and spacing. Proper optimization of these parameters significantly enhances the strengthened member’s ultimate load capacity, ductility, and energy dissipation capacity. This study enriches the theoretical foundation for prestressed CFRP strengthening and provides an essential basis for rationally selecting prestress levels and layout parameters in engineering practice, thereby aiding the efficient design of strengthening projects for structures like bridges, with significant engineering and scientific value. Full article
Show Figures

Figure 1

22 pages, 3203 KB  
Article
Axial Compression Behavior of Square RC Columns Confined by Rectangular BFRP and Hybrid Ties
by Amr M. A. Moussa, Arafa M. A. Ibrahim, Ahmed Elsayed, Zhishen Wu and Ahmed Monier
Infrastructures 2025, 10(8), 206; https://doi.org/10.3390/infrastructures10080206 - 8 Aug 2025
Viewed by 306
Abstract
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to [...] Read more.
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to overcome common limitations of conventional FRP stirrups, such as reduced tensile strength at bent regions and premature rupture. A total of five RC column specimens were tested under monotonic axial loading: one reference specimen with conventional steel ties, two specimens with BFRP ties spaced at 45 mm and 90 mm, and two hybrid specimens combining steel and BFRP ties. Experimental results showed that the steel-confined column achieved the highest peak axial load of 1793.2 kN and an ultimate strain value of 1.12. The specimen with closely spaced BFRP ties (45 mm) reached 94.7% of the peak load of the steel-confined specimen and exhibited over 137% higher axial strain capacity. The hybrid specimen with two interleaved BFRP ties achieved the highest confinement effectiveness ratio of 1.306. The findings demonstrate that the proposed BFRP ties offer a structurally viable and corrosion-resistant alternative to steel ties, particularly when used in hybrid systems. This research contributes to the development of durable, high-performance confinement strategies for RC columns in seismic and aggressive environmental conditions. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

40 pages, 6580 KB  
Review
Shear Behavior of Reinforced Concrete Two-Way Slabs with Openings
by Ahmed Ashteyat, Mousa Shhabat, Ahmad Al-Khreisat and Salem Aldawsari
Buildings 2025, 15(15), 2765; https://doi.org/10.3390/buildings15152765 - 5 Aug 2025
Viewed by 543
Abstract
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to [...] Read more.
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to resist punching shear, an effect that is especially critical when the openings are located near column–slab connections. This paper provides a detailed review of the existing research, examining how various opening parameters such as their size, shape, and position affect key structural performance metrics including their stiffness, ductility, and failure modes. The findings highlight that opening geometry is a major determinant of a slab’s overall behavior. Notably, the proximity of openings to column faces is identified as a critical factor that can substantially influence the extent of strength degradation and failure mechanisms. Furthermore, this review identifies a significant research gap concerning the behavior of slabs with openings under non-standard loading conditions, such as seismic activity, blasts, and impact loads. It also emphasizes the need for further investigation into the long-term performance of such slabs under adverse environmental influences, including elevated temperatures, corrosion, and material degradation. By consolidating the current knowledge and identifying unresolved challenges, this review aims to guide engineers and researchers in developing more robust design strategies and performance-based solutions for RC slabs with openings, ultimately contributing to safer and more resilient structural systems. Full article
Show Figures

Figure 1

23 pages, 5594 KB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 416
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

17 pages, 8074 KB  
Article
Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness
by Songtao Gu and Rui Zhang
Buildings 2025, 15(15), 2609; https://doi.org/10.3390/buildings15152609 - 23 Jul 2025
Cited by 1 | Viewed by 301
Abstract
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen [...] Read more.
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen retrofitted with a 30-mm UHPC jacket over the plastic hinge region demonstrated significant performance improvements: delayed damage initiation, controlled cracking, a 24.6% increase in lateral load capacity, 139.5% higher energy dissipation at 3% drift, and mitigated post-peak strength degradation. A validated OpenSees numerical model accurately replicated this behavior and enabled parametric studies of 15-mm, 30-mm, and 45-mm jackets. Results identified the 30-mm thickness as optimal, balancing substantial gains in lateral strength (~12% higher than other thicknesses), ductility, and energy dissipation while avoiding premature failure modes—insufficient confinement in the 15-mm jacket and strain incompatibility-induced brittle failure in the 45-mm jacket. These findings provide quantitative design guidance, establishing 30 mm as the recommended thickness for efficient seismic retrofitting of existing RC bridge columns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 5596 KB  
Article
Impact of Reinforcement Corrosion on Progressive Collapse Behavior of Multi-Story RC Frames
by Luchuan Ding, Xiaodi Dai, Yiping Gan and Yihua Zeng
Buildings 2025, 15(14), 2534; https://doi.org/10.3390/buildings15142534 - 18 Jul 2025
Viewed by 262
Abstract
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any [...] Read more.
The progressive collapse performance of reinforced concrete (RC) building structures has been extensively investigated using the alternate load path method. However, most studies have focused on newly designed structures, with limited attention given to existing buildings. Since progressive collapse can occur at any point during a structure’s service life and at various locations within the structural system, this study examines the progressive collapse behavior of deteriorated RC frames subjected to simulated reinforcement corrosion. This paper presents an investigation into the system-level progressive collapse responses of deteriorated RC frames, which extends the current state of the art in this field. The influence of different material deteriorations, different corrosion locations, different column removal scenarios, and dynamic effects on structural response is explored. According to the results obtained in this research, a significant reduction in progressive collapse resistance can be resulted in with increasing corrosion levels. Notably, only reinforcement corrosion in the beams located directly above the removed column (i.e., within the directly affected part) for the investigated RC frame had a substantial impact on structural performance. In contrast, corrosion in other regions and concrete deterioration exhibited minimal influence in this work. An increased number of corroded floors further reduced collapse resistance. Dynamic progressive collapse resistance was found to be considerably lower than its static counterpart and decreased at a slightly faster rate as corrosion progressed. Additionally, the energy-based method was shown to provide a reasonable approximation of the maximum dynamic responses at different corrosion levels, offering a computationally efficient alternative to full dynamic analysis. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 7211 KB  
Article
Hysteresis Model for Flexure-Shear Critical Circular Reinforced Concrete Columns Considering Cyclic Degradation
by Zhibin Feng, Jiying Wang, Hua Huang, Weiqi Liang, Yingjie Zhou, Qin Zhang and Jinxin Gong
Buildings 2025, 15(14), 2445; https://doi.org/10.3390/buildings15142445 - 11 Jul 2025
Viewed by 341
Abstract
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these [...] Read more.
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these coupled cyclic degradation mechanisms under repeated loading. This study develops a novel hysteresis model explicitly incorporating three key mechanisms: (1) directionally asymmetric strength degradation weighted by hysteretic energy, (2) cycle-dependent pinching governed by damage accumulation paths, and (3) amplitude-driven stiffness degradation decoupled from cycle count, calibrated and validated using 14 column tests from the Pacific Earthquake Engineering Research Center (PEER) structural performance database. Key findings reveal that significant strength degradation primarily manifests during initial loading cycles but subsequently stabilizes. Unloading stiffness degradation demonstrates negligible dependency on cycle number. Pinching effects progressively intensify with cyclic advancement. The model provides a physically rigorous framework for simulating seismic deterioration, significantly improving flexure-shear failure prediction accuracy, while parametric analysis confirms its potential adaptability beyond tested scenarios. However, applicability remains confined to specific parameter ranges with reliability decreasing near boundaries due to sparse data. Deliberate database expansion for edge cases is essential for broader generalization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3907 KB  
Article
ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column Morphology
by Kai Rong, Yongsheng Jia, Yingkang Yao, Jinshan Sun, Qi Yu, Hongliang Tang, Jun Yang and Xianqi Xie
Buildings 2025, 15(13), 2351; https://doi.org/10.3390/buildings15132351 - 4 Jul 2025
Viewed by 230
Abstract
The drilling and blasting method is commonly employed for the rapid demolition of outdated buildings by destroying key structural components and inducing progressive collapse. The residual bearing capacity of these components is governed by the deformation morphology of the longitudinal reinforcement, characterized by [...] Read more.
The drilling and blasting method is commonly employed for the rapid demolition of outdated buildings by destroying key structural components and inducing progressive collapse. The residual bearing capacity of these components is governed by the deformation morphology of the longitudinal reinforcement, characterized by bending deflection and exposed height. This study develops and validates a finite element (FE) model of a reinforced concrete (RC) column subjected to demolition blasting. By varying concrete compressive strength, the yield strength of longitudinal reinforcement, the longitudinal reinforcement ratio, and the shear reinforcement ratio, 45 FE models are established to simulate the post-blast morphology of longitudinal reinforcement. Two databases are created: one containing 45 original simulation cases, and an augmented version with 225 cases generated through data augmentation. To predict bending deflection and the exposed height of longitudinal reinforcement, artificial neural network (ANN) and random forest (RF) models are optimized using the hunter–prey optimization (HPO) algorithm. Results show that the HPO-optimized RF model trained on the augmented database achieves the best performance, with MSE, MAE, and R2 values of 0.004, 0.041, and 0.931 on the training set, and 0.007, 0.057, and 0.865 on the testing set, respectively. Sensitivity analysis reveals that the yield strength of longitudinal reinforcement has the most significant impact, while the shear reinforcement ratio has the least influence on both output variables. The partial dependence plot (PDP) analysis indicates that the ratio of shear reinforcement has the most significant impact on the deformation of longitudinal reinforcement. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3656 KB  
Article
Analytical and Numerical Methods for Estimating the Deformation Capacity of RC Shear Walls
by Konstantinos I. Christidis
CivilEng 2025, 6(3), 34; https://doi.org/10.3390/civileng6030034 - 28 Jun 2025
Viewed by 346
Abstract
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear [...] Read more.
The present research aims to the evaluation of the deformation capacity of existing reinforced concrete shear walls designed with past non-conforming seismic regulations. A refined analytical model (referred to as the Proposed Model) is presented for generating Load–displacement (P-d) curves for RC shear walls. The model is applicable to medium-rise walls designed with or without modern seismic provisions and incorporates shear effects in both deformation and strength capacity. The application of the Proposed Model is assessed through comparison with numerical models implemented in the widely accepted OpenSees platform. Specifically, two types of elements are examined: the widely used flexural element Force-Based Beam-Column Element (FBE) and the Flexure-Shear Interaction Displacement-Based Beam-Column Element (FSI), which accounts for the interaction between flexure and shear. The results of both analytical and numerical approaches are compared with experimental data from four RC shear wall specimens reported in previous studies. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

29 pages, 7559 KB  
Article
Finite Element Analysis of Flat Plate Structures in Fire
by Mohamed Hesien, Maged A. Youssef and Salah El-Fitiany
Fire 2025, 8(7), 252; https://doi.org/10.3390/fire8070252 - 27 Jun 2025
Viewed by 495
Abstract
Understanding the structural behaviour of flat plate systems during fire exposure is critical for ensuring the safety of occupants and emergency personnel. Flat slabs, a widely used structural system, undergo significant thermal deformations in fire, which increase demands on supporting columns and reduce [...] Read more.
Understanding the structural behaviour of flat plate systems during fire exposure is critical for ensuring the safety of occupants and emergency personnel. Flat slabs, a widely used structural system, undergo significant thermal deformations in fire, which increase demands on supporting columns and reduce the stiffness and strength of concrete and steel. While experimental fire tests have provided valuable data to understand the behaviour of isolated components of flat slabs, numerical analysis is the only route to comprehending the structural behaviour of full-scale flat plate structures during fire exposure. ABAQUS is commonly used for modelling reinforced concrete (RC) structures under fire, with two prevailing techniques: (1) solid element modelling for concrete and truss reinforcement and (2) shell element modelling with embedded steel layers and line-column elements. However, uncertainties remain regarding the influence of modelling parameters such as dilation angle and concrete tensile stress, and the impact of surface fire exposure has not been comprehensively studied. This study presents a novel contribution by conducting a detailed numerical investigation of a full-scale flat plate structure exposed to fire using both modelling approaches. The shell-element model was validated against experimental data and used to evaluate the effect of dilation angle and tensile strength assumptions. A unique aspect of this work is the assessment of fire exposure on different slab surfaces, including bottom, top, and both, which provides insights into slab deflections and column displacements under different surface fire exposure scenarios. The structure was then modelled using solid elements to systematically compare modelling techniques. The results highlight key differences between approaches and guide for selecting the most suitable modelling strategies for fire-exposed flat plate systems. Full article
(This article belongs to the Special Issue Performance-Based Design in Structural Fire Engineering, Volume III)
Show Figures

Figure 1

20 pages, 6697 KB  
Article
Multi-Dimensional AE Signal Features in Eccentrically Loaded Concrete Structures: A Machine Learning Classification for Damage Progression
by Shilong Ding, Alipujiang Jierula, Abudusaimaiti Kali, Tong Han and Tae-Min Oh
Appl. Sci. 2025, 15(13), 7243; https://doi.org/10.3390/app15137243 - 27 Jun 2025
Viewed by 335
Abstract
Acoustic emission (AE) signals exhibit a strong correlation with concrete damage. However, the relationship between column damage and AE signals under eccentric loading conditions, combined with the application of traditional RA-AF classification methods for crack characterization, demonstrates limitations. These approaches provide insufficient resolution [...] Read more.
Acoustic emission (AE) signals exhibit a strong correlation with concrete damage. However, the relationship between column damage and AE signals under eccentric loading conditions, combined with the application of traditional RA-AF classification methods for crack characterization, demonstrates limitations. These approaches provide insufficient resolution to accurately identify damage types throughout the entire structural failure process. This study employed K-means clustering algorithm and Gaussian mixture models (GMMs) to analyze AE signal features from reinforced concrete (RC) columns undergoing failure under the eccentric compression loading of different eccentricity. Subsequently, a random forest model was used for automated damage stage classification. Experimental results demonstrate that the damage progression in eccentrically compressed columns comprises four distinct stages, each exhibiting unique AE signal characteristics. The integrated approach of clustering and random forest modeling demonstrates robust feasibility in identifying AE signal patterns associated with specific damage stages, achieving an 85% recognition rate for damage stage classification. These findings provide quantitatively validated evidence supporting the efficacy of machine learning-based methodologies for enabling stage-specific damage characterization in structural health monitoring applications. Full article
Show Figures

Figure 1

22 pages, 16001 KB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Cited by 1 | Viewed by 313
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

29 pages, 17587 KB  
Article
Research on the Seismic Performance of Precast RCS Composite Joints Considering the Floor Slab Effect
by Yingchu Zhao, Jie Jia and Ziteng Li
Appl. Sci. 2025, 15(12), 6669; https://doi.org/10.3390/app15126669 - 13 Jun 2025
Viewed by 372
Abstract
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened [...] Read more.
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened construction periods. However, existing research on the seismic performance of prefabricated, modular, reinforced concrete column–beam (RCS) composite structures often focuses on the construction form of beam–column joints, paying less attention to the impact of floor slabs on the seismic performance of joints during earthquakes. This may make joints a weak link in structural systems’ seismic performance. To address this issue, this paper designs a prefabricated, modular RCS composite joint considering the effect of floor slabs and uses the finite element software ABAQUS 2023 to perform a quasi-static analysis of the joint. The reliability of the method is verified through comparisons with the experimental data. This study examines various aspects, including the joint design and the material’s constitutive relationship settings, focusing on the influence of parameters, such as the axial compression ratio and floor slab concrete strength, on the joint seismic performance. It concludes that the seismic performance of the prefabricated, modular RCS composite joints considering the effect of floor slabs is significantly improved. Considering the composite effect of the slabs, the yield loads in the positive and negative directions for node FJD-0 increased by 78.9% and 70.0%, respectively, compared to that of the slab-free node RCSJ3. The ultimate bearing capacities improved by 13.2% and 9.98%, respectively, and the energy dissipation capacity increased by 23%. Additionally, the variation in the axial load ratio has multiple effects on the seismic performance of the joints. Increasing the slab thickness significantly enhances the seismic performance of the joints under positive loading. The bolt pre-tensioning force has a crucial impact on improving the bearing capacity and overall stiffness of the joints. The reinforcement ratio of the slabs has a notable effect on the seismic performance of the joints under negative loading, while the concrete strength of the slabs has a relatively minor impact on the seismic performance of the joints. Therefore, the reasonable design of these parameters can optimize the seismic performance of joints, providing a theoretical basis and recommendations for engineering application and optimization. Full article
Show Figures

Figure 1

Back to TopTop