Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = regulated deficit irrigation (RDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3740 KiB  
Article
Growing Processing Tomatoes in the Po Valley Is More Sustainable Under Regulated Deficit Irrigation
by Andrea Burato, Pasquale Campi, Alfonso Pentangelo and Mario Parisi
Agronomy 2025, 15(8), 1805; https://doi.org/10.3390/agronomy15081805 - 25 Jul 2025
Viewed by 272
Abstract
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit [...] Read more.
The Po valley (northern Italy) is the leading European region for processing tomato (Solanum lycopersicum L.) production. Although historically characterized by abundant water availability, this area is now increasingly affected by drought risk. This study presents a two-year evaluation of regulated deficit irrigation (RDI) on processing tomatoes in northern Italy. In 2019 (Parma) and 2022 (Piacenza), full irrigation (IRR, restoring 100% crop evapotranspiration) and RDI (100% IRR until the color-breaking stage, followed by 50% IRR) strategies were compared within a completely randomized block design. Overall, RDI resulted in a 25% reduction in water use without compromising yield, which was maintained through unchanged plant fertility and fruit size compared to IRR. Remote sensing data from PlanetScope imagery confirmed the absence of water stress in RDI-treated plants. Furthermore, increased soluble solids and dry matter contents under RDI suggest a physiological adaptation of processing tomatoes to late-season water deficit. Remarkably, environmental and economic sustainability indicators—namely water productivity and yield quality—were enhanced under RDI management. This study validates a simple, sustainable, and readily applicable irrigation approach for tomato cultivation in the Po valley. Future research should refine this method by investigating plant physiological responses to optimize water use in this key agricultural region. Full article
Show Figures

Figure 1

30 pages, 1496 KiB  
Article
Effect of Deficit Irrigation on Agronomic and Physiological Performance of Young Persimmon (Diospyros kaki Thunb.) Trees
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Bernardo Pascual and Nuria Pascual-Seva
Agronomy 2025, 15(7), 1671; https://doi.org/10.3390/agronomy15071671 - 10 Jul 2025
Viewed by 621
Abstract
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy [...] Read more.
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy and two regulated deficit irrigation (RDI; enforcing a water deficit during the phenological phases that are less sensitive to water stress) strategies. Field trials were conducted from 2022 to 2024 at the Cajamar Experimental Center in Paiporta, Valencia, Spain. The trees respond to mild water stress reducing transpiration through stomatal closure. RDI resulted in modest irrigation water savings (11–16%), minimizing fruit drop, leading to an increased number of fruits per tree and a higher marketable yield, although this came at the cost of a reduced unit fruit weight. SDI achieved a 30% reduction in irrigation water usage without impacting on the marketable yield, but it also caused a decrease in unit fruit weight. RDI increased water productivity (yield obtained per amount of water applied) primarily through higher yields, while SDI improved productivity mainly by lowering the amount of irrigation water applied. Both irrigation strategies are recommended for cultivating “Rojo Brillante” persimmons. RDI is especially advisable in years with lower fruit loads as more intensive thinning may be necessary in years with higher fruit loads. Conversely, SDI is recommended in situations where water availability is limited. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 1328 KiB  
Article
Crop Water Requirement Estimated with Data-Driven Models Improves the Reliability of CROPWAT 8.0 and the Water Footprint of Processing Tomato Grown in a Hot-Arid Environment
by Nicolò Iacuzzi, Noemi Tortorici, Carmelo Mosca, Cristina Bondì, Mauro Sarno and Teresa Tuttolomondo
Agronomy 2025, 15(7), 1533; https://doi.org/10.3390/agronomy15071533 - 24 Jun 2025
Viewed by 626
Abstract
The determination of the actual crop water requirement (CWR) today represents an important prerogative for combating climate change. A three-year trial was conducted to ad-dress the need to provide adequate support to processing tomato growers in defining the correct amounts of water to [...] Read more.
The determination of the actual crop water requirement (CWR) today represents an important prerogative for combating climate change. A three-year trial was conducted to ad-dress the need to provide adequate support to processing tomato growers in defining the correct amounts of water to be supplied. In fact, the objective of this work was to calculate the water requirement of processing tomatoes, specifically analyzing their irrigation needs using the CROPWAT 8.0 software and through capacitive and tensiometric probes. Furthermore, for both methods, the tomato yield was evaluated both by supplying 100% of its water requirement and by supplying, through regulated deficit irrigation (RDI), 70% of its water requirement. Subsequently, for each irrigation strategy employed and for each CWR calculation method, the water footprint was calculated by analyzing the blue, green, and grey components. In the years 2022 and 2023, there was an overestimation of CWR of 13.5% for IR100 and 13.94% for IR70, and 14.53% for IR100 and 11.65% for IR70, respectively, while in 2024 there was an underestimation, with values of 9.17% and 5.22% for the IR100 and IR70 treatments compared to the values obtained with the probes. The total WF of tomatoes varied between 33.42 and 51.91 m3 t−1 with the CROPWAT model and between 35.82 and 47.19 m3 t−1 with the probes for IR100, while for RDI70, the values ranged between 38.72 and 59.44 m3 t−1 with the CROPWAT method and between 35.81 and 53.95 m3 t−1 with the probe method. In water-scarce regions, integrating the CROPWAT 8.0 model (enhanced with real-world data) and implementing smart systems can significantly improve water management, refine decision-making processes, and mitigate environmental impacts. This approach directly addresses the urgent need for water security within sustainable agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

20 pages, 1160 KiB  
Article
Linking Almond Yield and Quality to the Production System and Irrigation Strategy Considering the Plantation Age in a Mediterranean Semiarid Environment
by Abel Calderón-Pavón, Iván Francisco García-Tejero, Luis Noguera-Artiaga, Leontina Lipan, Esther Sendra, Francisca Hernández, Juan Francisco Herencia-Galán, Ángel Antonio Carbonell-Barrachina and Víctor Hugo Durán Zuazo
Agronomy 2025, 15(6), 1448; https://doi.org/10.3390/agronomy15061448 - 13 Jun 2025
Viewed by 454
Abstract
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and [...] Read more.
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and quality vary across different water regimes and production systems, or how tree age modulates crop responses to deficit irrigation and organic practices. This study examines the effects of regulated deficit irrigation (RDI) under organic (OPS) and conventional (CPS) production systems, analyzing the impact on nut quality (physical and chemical parameters) and its sensorial properties in an almond orchard during seasons in 2019 and 2023, when the trees were 3-years old and when they were close to their yield potential at 7-years old, respectively. The PS and irrigation strategy affected the nut quality, yield, and tree growth. The OPS and RDI methods accumulated season-dependent yield losses in both studied periods. The kernel weight under OPS was lower than CPS in 2019, with these differences being less evident in 2023. The highest antioxidant activity and total phenolic compound values were obtained with the OPS and RDI methods in 2019, whereas the sugar and organic acid contents showed improvements under the OPS and the RDI strategy during 2019 and 2023, respectively. Finally, significant improvements were observed in relation to the fatty acids profile for nuts harvested under OPS in both seasons, especially in the latter season with RDI. Thus, almond quality can be enhanced by the integration of both OPSs and RDI strategies, although these improvements are dependent on tree age. Full article
Show Figures

Figure 1

20 pages, 3137 KiB  
Article
Productive, Physiological, and Soil Microbiological Responses to Severe Water Stress During Fruit Maturity in a Super High-Density European Plum Orchard
by Arturo Calderón-Orellana, Gonzalo Plaza-Rojas, Macarena Gerding, Gabriela Huepe, Mathias Kuschel-Otárola, Richard M. Bastías, Tamara Alvear, Andrés Olivos and Mauricio Calderón-Orellana
Plants 2025, 14(8), 1222; https://doi.org/10.3390/plants14081222 - 16 Apr 2025
Viewed by 647
Abstract
The super high-density (SHD) production system has recently been introduced to the Chilean European plum (Prunus domestica L.) industry, but the potential of applying regulated deficit irrigation (RDI) in this system remains unexplored. As irrigation water availability in Chile has been strongly [...] Read more.
The super high-density (SHD) production system has recently been introduced to the Chilean European plum (Prunus domestica L.) industry, but the potential of applying regulated deficit irrigation (RDI) in this system remains unexplored. As irrigation water availability in Chile has been strongly jeopardized by climate change, there is an urgent need to validate water-conserving practices in modern production systems. A field study was conducted in a commercial SHD European plum orchard (cv. French grafted on Rootpac-20 rootstock) for two consecutive seasons in Peralillo, O’Higgins Region, Chile. The objective of this study was to assess the impact of a late water deficit (LD) on water productivity, fruit quality, plant water relations, and soil microbiota. The results showed that implementing LD enhanced water productivity by 40% without compromising fresh and dry fruit quality. Moderate to severe water stress induced no changes in physiological parameters such as stomatal conductance and photochemical efficiency. Additionally, the LD treatment significantly reduced soil moisture but increased the abundance of certain groups of beneficial soil microbiota and fine roots. These results highlight the potential of LD as a viable water-conserving practice in modern SHD European plum orchards, particularly in regions facing water scarcity due to climate change. Full article
(This article belongs to the Special Issue Plant Fruit Development and Abiotic Stress)
Show Figures

Figure 1

20 pages, 710 KiB  
Article
The Effect of Deficit Irrigation on the Quality Characteristics and Physiological Disorders of Pomegranate Fruits
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Julián Bartual, Bernardo Pascual and Nuria Pascual-Seva
Plants 2025, 14(5), 720; https://doi.org/10.3390/plants14050720 - 26 Feb 2025
Cited by 1 | Viewed by 667
Abstract
This study assesses the impact of two regulated deficit irrigation (RDI) and one sustained deficit irrigation (SDI) strategies on the fruit quality characteristics of pomegranate (Punica granatum L.) compared to a fully irrigated control in a Mediterranean climate. Field trials were conducted [...] Read more.
This study assesses the impact of two regulated deficit irrigation (RDI) and one sustained deficit irrigation (SDI) strategies on the fruit quality characteristics of pomegranate (Punica granatum L.) compared to a fully irrigated control in a Mediterranean climate. Field trials were conducted over two growing seasons at the Cajamar Experimental Center in Paiporta, Valencia, Spain. The SDI strategy, which achieved considerable water savings of approximately 50%, led to a reduction in yield (both total and marketable), as well as a decrease in the size and unit weight of the fruits. However, it also produced arils with higher dry matter content and aril juice with higher soluble solids content, all without altering the maturity index. Notably, the SDI approach resulted in increased non-marketable production due to a higher incidence of cracking, particularly during the exceptionally hot and dry summer of 2023. Although the maturity index remained unchanged across the irrigation strategies, the SDI yielded a greater percentage of pink-red rind on marketable fruits compared to the other strategies. This is important because ‘Mollar de Elche’ pomegranates are typically harvested based on their external colour. Thus, the SDI strategy could allow for earlier harvesting, potentially enhancing the commercial value, as earlier harvests often command higher prices, which may partially offset some of the reduction in marketable yield. Conversely, both RDI strategies achieved a slight water saving without compromising marketable yield or the quality characteristics of the fruit. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

19 pages, 1000 KiB  
Article
Effect of Deficit Irrigation on Agronomic and Physiological Performance of Pomegranate (Punica granatum L.)
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Julián Bartual, Bernardo Pascual and Nuria Pascual-Seva
Plants 2025, 14(2), 164; https://doi.org/10.3390/plants14020164 - 8 Jan 2025
Cited by 3 | Viewed by 1528
Abstract
Abstract: Agriculture accounts for over 70% of global freshwater consumption, with increasing competition for water resources due to climate change and rising urban and industrial demands. This study analyzes the effect of deficit irrigation (DI) on the agronomic and physiological performance of pomegranate [...] Read more.
Abstract: Agriculture accounts for over 70% of global freshwater consumption, with increasing competition for water resources due to climate change and rising urban and industrial demands. This study analyzes the effect of deficit irrigation (DI) on the agronomic and physiological performance of pomegranate (Punica granatum L.) in a Mediterranean climate. Deficit irrigation strategies, including sustained deficit irrigation (SDI) and regulated deficit irrigation (RDI), were evaluated against a control with full irrigation. The research was conducted over two growing seasons (2022–2023) at the Cajamar Experimental Centre in Paiporta, Valencia, Spain. RDI strategies achieved approximately 10% water savings without compromising marketable yield or fruit weight, while SDI resulted in significant water savings (~50%) but with a notable reduction in marketable yield, particularly in hot and dry conditions. SDI also reduced tree growth in height and trunk diameter compared to RDI and control strategies. The study concludes that RDI is a viable irrigation strategy for pomegranate cultivation under water-limited conditions, whereas SDI should be reserved for situations of severe water scarcity. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Graphical abstract

21 pages, 4725 KiB  
Article
Benchmarking Measures for the Adaptation of New Irrigation Solutions for Small Farms in Egypt
by Abousrie A. Farag and Juan Gabriel Pérez-Pérez
Water 2025, 17(2), 137; https://doi.org/10.3390/w17020137 - 7 Jan 2025
Viewed by 884
Abstract
The aim of this study is to construct and validate an expert system to predict the adaptation of irrigation technologies, water-saving strategies, and monitoring tools by small-scale farmers in Egypt. The research investigates the impact of economic, educational, environmental, and social factors on [...] Read more.
The aim of this study is to construct and validate an expert system to predict the adaptation of irrigation technologies, water-saving strategies, and monitoring tools by small-scale farmers in Egypt. The research investigates the impact of economic, educational, environmental, and social factors on adaptation rates. To build the expert system, extensive knowledge was collected from experts, key concepts were identified, and production rules were created to generate tailored scenarios. These scenarios utilize the empirical cumulative distribution function (ECDF), selecting the scenario with the highest ECDF as the optimal irrigation technology. This approach ensures well-informed, data-driven decisions that are tailored to specific conditions. The expert system was evaluated under the conditions of ten small farms in Egypt. The results indicate that water cost and availability are significant drivers of technology adaptation. Specifically, subsurface drip irrigation (SDI) demonstrated an adaptation percentage of 75% at high water costs, with probabilities of 0.67 and 0.33, while soil mulching (SM) showed a 75% adaptation rate with a probability of 0.33 in high-cost scenarios. Conversely, when water availability was high, the adaptation percentage for all techniques was zero, but it reached 100% adaptation with a probability of 0.76 for SM and SDI and a probability of 1 for variable number of drippers (VND) and the use of sensors as monitoring tools during water shortages. Educational attainment and professional networks enhance the adaptation of advanced technologies and monitoring tools, emphasizing the role of knowledge and community engagement. Environmental conditions, including soil texture and salinity levels, directly affect the choice of irrigation methods and water-saving practices, highlighting the need for localized solutions. The source of irrigation water, whether groundwater or surface water, influences the preference for water-saving technologies. The study underscores the importance of tailored approaches to address the challenges and opportunities faced by small farmers in Egypt, promoting sustainable agriculture and efficient water management. The evaluation findings reveal that SDI is the most favored irrigation technology, with a probability of 0.55, followed by variable number of drippers (VND) at 0.38 and ultralow drip irrigation (ULDI) at 0.07 across various scenarios for small farmers. Regulated deficit irrigation (RDI) and SM are equally preferred water-saving strategies, each with a probability of 0.50. Sensors emerged as the preferred monitoring tool, boasting a high probability of 0.94. The analysis reveals the critical roles of economic pressures, educational levels, environmental conditions, and social networks in shaping the adaptation of sustainable agricultural practices. Full article
Show Figures

Figure 1

19 pages, 1620 KiB  
Article
Enhancing ‘Mirlo Rojo’ Apricot (Prunus armeniaca L.) Quality Through Regulated Deficit Irrigation: Effects on Antioxidant Activity, Fatty Acid Profile, and Volatile Compounds
by Lucía Andreu-Coll, Francisco Burló, Alejandro Galindo, Jesús García-Brunton, Jesús Vigueras-Fernández, Pedro J. Blaya-Ros, Rafael Martínez-Font, Luis Noguera-Artiaga, Esther Sendra, Francisca Hernández and Antonio J. Signes-Pastor
Horticulturae 2024, 10(12), 1253; https://doi.org/10.3390/horticulturae10121253 - 26 Nov 2024
Viewed by 1147
Abstract
Water scarcity is a significant global risk affecting health, food security, economic development, social stability, environmental sustainability, and climate change adaptation. Implementing deficit irrigation strategies can improve water efficiency and agricultural resilience. Spain, particularly the Region of Murcia, has pioneered apricot cultivation, with [...] Read more.
Water scarcity is a significant global risk affecting health, food security, economic development, social stability, environmental sustainability, and climate change adaptation. Implementing deficit irrigation strategies can improve water efficiency and agricultural resilience. Spain, particularly the Region of Murcia, has pioneered apricot cultivation, with the ‘Mirlo Rojo’ variety known for its high productivity, Sharka virus resistance, and exceptional organoleptic qualities. This study evaluates the effects of regulated deficit irrigation (RDI) on the quality, antioxidant activity, fatty acid profile, and volatile compounds of ‘Mirlo Rojo’ apricots. Four irrigation treatments (100% ETc, 60% ETc, 33% ETc, and 0% ETc) were tested during the final growth stages in May 2023. Results showed no adverse effects on the evaluated parameters. RDI treatments increased total soluble solids, glucose, and fructose content, improving maturity and sweetness indices. RDI also enhanced phenolic content and antioxidant activity, optimizing water use without compromising fruit quality and bioactive compounds. Full article
(This article belongs to the Special Issue From Farm to Table in the Era of a New Horticulture in Spain)
Show Figures

Figure 1

12 pages, 805 KiB  
Article
Deficit Irrigation Regime Improves Phytosanitary Status of Cultivar Arbosana Grown in a Super High-Density Olive Orchard
by Francesco Nicolì, Marco Anaclerio, Francesco Maldera, Franco Nigro and Salvatore Camposeo
Agronomy 2024, 14(10), 2380; https://doi.org/10.3390/agronomy14102380 - 15 Oct 2024
Cited by 2 | Viewed by 1091
Abstract
Super high-density (SHD) planting systems are very efficient in terms of production and water use. In these orchards, water-saving irrigation strategies are used precisely to keep the best sustainability compared to traditional orchards. With agro-climatic and eco-physiological parameter monitoring, the SHD planting system [...] Read more.
Super high-density (SHD) planting systems are very efficient in terms of production and water use. In these orchards, water-saving irrigation strategies are used precisely to keep the best sustainability compared to traditional orchards. With agro-climatic and eco-physiological parameter monitoring, the SHD planting system has become even more efficient. SHD orchards, however, could also be more so affected by other pests and diseases than traditional systems, but field responses are still unknown when olive trees are grown in SHD groves. The goal of this two-year field research was to investigate the seasonal changes of the phytosanitary status of ‘Arbosana’ grown in an SHD orchard under both regulated deficit (RDI) and full irrigation regimes (FI). This study investigated the influence of the two different irrigation regimes on the infections of three olive tree key diseases: cercosporiosis (Pseudocercospora cladosporioides), cycloconium (Fusicladium oleagineum), and olive knot (Pseudomonas savastanoi pv. savastanoi). RDI significantly reduced the severity of cercosporiosis in 2020 compared to FI but not in 2021. Cycloconium was observed only as a latent infection during the two studied years and olive knot was not influenced by irrigation but only by weather conditions. These findings suggest that irrigation management can play a key role in controlling cercosporiosis effectively in SHD olive orchards, but also that weather conditions have an even higher impact on the tree key diseases. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2772 KiB  
Article
Integrating Deficit Irrigation Strategies and Soil-Management Systems in Almond Orchards for Resilient Agriculture
by Iván Francisco García-Tejero, Juan Francisco Herencia-Galán, Belén Cárceles Rodríguez, Abel Calderón-Pavón, Javier Aldana Navarro, Alfredo Emilio Rubio-Casal and Víctor Hugo Durán Zuazo
Agronomy 2024, 14(10), 2288; https://doi.org/10.3390/agronomy14102288 - 4 Oct 2024
Viewed by 1714
Abstract
This work was conducted over three-year monitoring seasons of three almond cultivars (Guara, Marta, and Lauranne) subjected to deficit irrigation in combination with cover crops in a Mediterranean semiarid area (SW, Spain). Four water–soil treatments were evaluated based on the conjunction of two [...] Read more.
This work was conducted over three-year monitoring seasons of three almond cultivars (Guara, Marta, and Lauranne) subjected to deficit irrigation in combination with cover crops in a Mediterranean semiarid area (SW, Spain). Four water–soil treatments were evaluated based on the conjunction of two irrigation strategies: fully irrigated (FI), covering 100% of the ETC, and regulated deficit irrigation (RDI), with two soil-management systems: bare soil (BS) and cover crop based on a mixture of vetch (Vicia sativa L.) and oat (Avena sativa L.) (CC). Throughout the study period in trees, the yield, the stem water potential (Ψstem), leaf nutrient content (N, P, K, Ca, Mg, Na, Fe, Zn, Mn, and Cu) in soils, organic carbon, microbial biomass, fluoresceine diacetate, and enzymatic activities (dehydrogenase, protease, β-glucosidase, and alkaline phosphatase) were determined. In addition, the dry matter and carbon fixation by plant covers were evaluated. For Guara and Lauranne, yield reductions (22 and 26%, respectively) were found for water-stressed (RDI-CC) plots with respect to non-stressed combination (FI-CC) plots, contrasting with cv. Marta, without a significant impact on productivity in all combinations. That is, the RDI (~3.000 m3 ha−1) strategy enabled acceptable productivity, offering promising possibilities for cultivation performance under water-scarcity scenarios. Important differences in Ψstem could be observed and ascribed to irrigation strategies, especially for Guara and Lauranne, but without significant effects due to the soil-management systems applied. No differences were observed in the tree nutritional status due to the presence or absence of CC; however, its presence increased the fixation of atmospheric carbon, which was not the case under BS conditions. Additionally, CC significantly fostered the microbial processes and enzymatic activities, particularly in upper soil layers (0–10 cm) and with plenty of water supply in FI-CC plots and to a lesser extent in RDI-CC plots, which could encourage prominent aspects for soil quality and health restoration. Thus, the cover crop is congruent with RDI to facilitate soil functionality and water savings in a changing climate, contributing to resilient farming systems in the Mediterranean environment. Full article
Show Figures

Figure 1

19 pages, 11696 KiB  
Article
Dry Matter Accumulation, Water Productivity and Quality of Potato in Response to Regulated Deficit Irrigation in a Desert Oasis Region
by Hengjia Zhang, Xietian Chen, Daoxin Xue, Wanheng Zhang, Fuqiang Li, Anguo Teng, Changlong Zhang, Lian Lei and Yuchun Ba
Plants 2024, 13(14), 1927; https://doi.org/10.3390/plants13141927 - 12 Jul 2024
Cited by 3 | Viewed by 1849
Abstract
As one of the most important food crops, the potato is widely planted in the oasis agricultural region of Northwest China. To ascertain the impact of regulated deficit irrigation (RDI) on various facets including dry matter accumulation, tuber yield, quality and water use [...] Read more.
As one of the most important food crops, the potato is widely planted in the oasis agricultural region of Northwest China. To ascertain the impact of regulated deficit irrigation (RDI) on various facets including dry matter accumulation, tuber yield, quality and water use efficiency (WUE) of potato plants, a two-growth season field experiment under mulched drip irrigation was conducted in the desert oasis region of Northwest China. Water deficits, applied at the seedling, tuber formation, tuber expansion and starch accumulation stages, encompassed two distinctive levels: mild (55–65% of field capacity, FC) and moderate (45–55% FC) deficit, with full irrigation (65–75% FC) throughout the growing season as the control (CK). The results showed that water deficit significantly reduced (p < 0.05) above-ground dry matter, water consumption and tuber yield compared to CK, and the reduction increased with the increasing water deficit. A mild water deficit at the tuber formation stage, without significantly reducing (p > 0.05) yield, could significantly increase WUE and irrigation water use efficiency (IWUE), with two-year average increases of 25.55% and 32.33%, respectively, compared to CK. Water deficit at the tuber formation stage increased starch content, whereas water deficit at tuber expansion stage significantly reduced starch, protein and reducing sugar content. Additionally, a comprehensive evaluation showed that a mild water deficit at the tuber formation stage is the optimal RDI strategy for potato production, providing a good balance between yield, quality and WUE. The results of this study can provide theoretical support for efficient and sustainable potato production in the desert oasis regions of Northwest China. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

21 pages, 900 KiB  
Review
Regulated Deficit Irrigation Perspectives for Water Efficiency in Apricot Cultivation: A Review
by Lucía Andreu-Coll, Ángel A. Carbonell-Barrachina, Francisco Burló, Alejandro Galindo, Jesús García-Brunton, David B. López-Lluch, Rafael Martínez-Font, Luis Noguera-Artiaga, Esther Sendra, Pedro Hernández-Ariola, Francisca Hernández and Antonio J. Signes-Pastor
Agronomy 2024, 14(6), 1219; https://doi.org/10.3390/agronomy14061219 - 5 Jun 2024
Cited by 4 | Viewed by 1997
Abstract
Addressing agricultural water scarcity poses a current challenge of growing concern, exacerbated by climate change. This is particularly relevant for stone fruit trees, such as apricot, cultivated in semi-arid zones, where regulated deficit irrigation (RDI) strategies are gaining attention to tackle the challenge. [...] Read more.
Addressing agricultural water scarcity poses a current challenge of growing concern, exacerbated by climate change. This is particularly relevant for stone fruit trees, such as apricot, cultivated in semi-arid zones, where regulated deficit irrigation (RDI) strategies are gaining attention to tackle the challenge. The RDI method involves optimizing various factors based on how the plant responds physiologically to indicators of its water needs. Among these indicators, water potential is considered the most reliable and influential measure. For numerous apricot varieties and diverse geographic locations, research consistently shows that implementing water reduction strategies during non-critical developmental stages of floral bud development or fruit growth does not significantly impact crop yield. However, it does lead to reduced vegetative growth, which could offer additional benefits in crop management. Furthermore, the implementation of RDI strategies leads to advantageous improvements in fruit quality, particularly storage capacity and morphometric and chemical fruit characteristics, such as total soluble solids content. This scoping review study suggests that RDI is a feasible strategy to address water scarcity in apricot cultivation; however, further studies focused on continuous water monitoring alternatives are necessary to optimize RDI techniques. Future research should prioritize optimizing RDI for different growth stages, exploring advanced technologies for precise implementation, and assessing environmental impacts, while addressing research gaps including the influence of climate variability and the interaction with other agronomic practices, to refine RDI strategies and enhance apricot orchard sustainability and productivity. Full article
(This article belongs to the Special Issue Improving Irrigation Management Practices for Agricultural Production)
Show Figures

Figure 1

17 pages, 4347 KiB  
Article
Water Use Efficiency in a Deficit-Irrigated Orange Orchard
by Fiorella Stagno, Massimo Brambilla, Giancarlo Roccuzzo and Alberto Assirelli
Horticulturae 2024, 10(5), 498; https://doi.org/10.3390/horticulturae10050498 - 11 May 2024
Cited by 6 | Viewed by 2201
Abstract
Citrus is a subtropical fruit tree with high water requirements. This study aimed to determine the effects of water deficit on an orange orchard subjected to different water-saving strategies. The study was realised in an orange orchard in a semiarid area by adopting [...] Read more.
Citrus is a subtropical fruit tree with high water requirements. This study aimed to determine the effects of water deficit on an orange orchard subjected to different water-saving strategies. The study was realised in an orange orchard in a semiarid area by adopting four different water management techniques: 100% crop evapotranspiration (control); SSDI—subsurface sustained deficit irrigation; RDI—regulated deficit irrigation; PRD—partial rootzone drying treatment during five growing seasons. The experimental design foresaw a randomised block design with six replicates per treatment (24 index plants). The results of the study showed that the water-saving strategies reduced irrigation water consumption by 25% (SSDI), 33% (RDI), and 49% (PRD) compared to the fully irrigated treatment without yield reduction, thus increasing water use efficiency. Mineral nutrition of the trees was slightly affected by irrigation treatments; element concentration in leaves was generally in the optimal range; only potassium showed values below the recommended leaf concentrations. Regarding fruit quality parameters, the vitamin C concentration in RDI showed significant differences with a value of 62.7 mg 100 mL−1 compared to 58.5 mg 100 mL−1 in the control. Plants subjected to SSDI and PRD strategies showed increased levels of pulp colour index with significant values of 10 and 9.90, respectively, compared to the control (8.44). By implementing targeted water management, citrus growers could save water and increase the ascorbic acid and sugar concentration in the fruits; anthocyanins also increased but not significantly. These findings open new market opportunities for citrus growers in marginal areas, where they cannot rely solely on producing citrus fruits to remain competitive. Full article
Show Figures

Figure 1

22 pages, 3143 KiB  
Article
Regulated Deficit Irrigation to Boost Processing Tomato Sustainability and Fruit Quality
by Andrea Burato, Giovanna Marta Fusco, Alfonso Pentangelo, Rosalinda Nicastro, Anna Francesca Modugno, Fabio Scotto di Covella, Domenico Ronga, Petronia Carillo, Pasquale Campi and Mario Parisi
Sustainability 2024, 16(9), 3798; https://doi.org/10.3390/su16093798 - 30 Apr 2024
Cited by 9 | Viewed by 2471
Abstract
Improving water use efficiency is gaining relevance for the sustainability of agricultural practices. In semi-arid Mediterranean areas, recent studies highlighted that future climatic scenarios will be even more critical for crops, given the increase in water scarcity. In this context, the rationalization of [...] Read more.
Improving water use efficiency is gaining relevance for the sustainability of agricultural practices. In semi-arid Mediterranean areas, recent studies highlighted that future climatic scenarios will be even more critical for crops, given the increase in water scarcity. In this context, the rationalization of irrigation water is necessary to sustain processing tomato (Solanum lycopersicum L.) yield and quality since this crop requires large volumes of water. The present research aimed to identify the effects of a regulated deficit irrigation (RDI) strategy on the environmental and economic sustainability and fruit technological and functional quality of the processing tomato crop in the Mediterranean area. A two-year, open-field experiment was carried out to compare full irrigation management (IRR, restoring 100% ETc) with an RDI strategy based on restoring 50% ETc when the first fruit cluster reached the typical size (BBCH 701 phenological stage, relative to Solanaceous fruits). Remarkable water saving (21.46%, average of the two years) was achieved under RDI without significant variations in total and marketable yield compared to the IRR regime. Consequently, improved economic water productivity (+23.17%) was observed, allowing enhanced processing tomato sustainability. The RDI strategy boosted the glucose content (+17.78%), soluble solids content (SSC, +10.17%), and dry matter of the fruits (+10.03 g%). Furthermore, a higher SSC-to-titratable acidity ratio (+15.47%) and a negative shift in fructose/glucose balance (−7.71%) were observed in RDI-treated plants. Higher levels of the drought stress markers proline (+38.99%) and total polyphenols (+20.58%) were detected in RDI- compared to IRR-irrigated tomato fruits. These findings suggested the RDI strategy as an effective and sustainable approach for increasing both water productivity and the fruit quality of the processing tomato crop under semi-arid Mediterranean climatic conditions. Full article
Show Figures

Figure 1

Back to TopTop