Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,322)

Search Parameters:
Keywords = regional innovation strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

17 pages, 13655 KiB  
Review
Molar Pregnancy: Early Diagnosis, Clinical Management, and the Role of Referral Centers
by Antônio Braga, Lohayne Coutinho, Marcela Chagas, Juliana Pereira Soares, Gustavo Yano Callado, Raphael Alevato, Consuelo Lozoya, Sue Yazaki Sun, Edward Araujo Júnior and Jorge Rezende-Filho
Diagnostics 2025, 15(15), 1953; https://doi.org/10.3390/diagnostics15151953 - 4 Aug 2025
Viewed by 18
Abstract
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk [...] Read more.
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk of progression to gestational trophoblastic neoplasia (GTN). Although rare in high-income countries, MP remains up to ten times more prevalent in low-income and developing countries, contributing to preventable maternal morbidity and mortality. This narrative review provides an updated, practical overview of the clinical presentation, diagnosis, treatment, and follow-up of MP. A key focus is the challenge of early diagnosis, particularly given the increasing frequency of first-trimester detection, where classical histopathological criteria may be subtle, leading to diagnostic errors. The review innovates by integrating advanced diagnostic methods—combining histopathology, immunohistochemistry using p57Kip2, Ki-67, and p53 markers, along with cytogenetic analysis—to improve diagnostic accuracy in early gestation. The central role of referral centers is also emphasized, not only in facilitating timely treatment and access to chemotherapy, but also in implementing standardized post-molar follow-up protocols that reduce progression to GTN and maternal mortality. By focusing on both advanced diagnostic strategies and the organization of care through referral centers, this review offers a comprehensive, practice-oriented perspective to optimize patient outcomes in GTD and address persistent care gaps in high-burden regions. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 261
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

24 pages, 1376 KiB  
Article
Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
by Ruth Rubí Peña-Holguín, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro and Juan Diego Valenzuela-Cobos
Agriculture 2025, 15(15), 1679; https://doi.org/10.3390/agriculture15151679 - 2 Aug 2025
Viewed by 284
Abstract
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the [...] Read more.
The adoption of digital technologies, such as the Internet of Things (IoT), has emerged as a key strategy to improve efficiency, sustainability, and productivity in the agricultural sector, especially in contexts of modernization and digital transformation in developing regions. This study analyzes the key factors influencing the adoption of IoT technologies by farmers in the province of Guayas, Ecuador, and their impact on agricultural yields. The research is grounded in innovation diffusion theory and technology acceptance models, which emphasize the role of perception, usability, training, and economic viability in digital adoption. A total of 250 surveys were administered, with 232 valid responses (92.8% response rate), reflecting strong interest from the agricultural sector in digital transformation and precision agriculture. Using structural equation modeling (SEM), the results confirm that general perception of IoT (β = 0.514), practical functionality (β = 0.488), and technical training (β = 0.523) positively influence adoption, while high implementation costs negatively affect it (β = −0.651), all of which are statistically significant (p < 0.001). Furthermore, adoption has a strong positive effect on agricultural yield (β = 0.795). The model explained a high percentage of variance in both adoption (R2 = 0.771) and performance (R2 = 0.706), supporting its predictive capacity. These findings underscore the need for public and private institutions to implement targeted training and financing strategies to overcome economic barriers and foster the sustainable integration of IoT technologies in Ecuadorian agriculture. Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

21 pages, 300 KiB  
Article
Research on the Mechanisms and Pathways of Digital Economy—Driven Agricultural Green Development: Evidence from Sichuan Province, China
by Changhong Chen and Yule Wang
Sustainability 2025, 17(15), 6980; https://doi.org/10.3390/su17156980 - 31 Jul 2025
Viewed by 202
Abstract
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), [...] Read more.
This study endeavors to elucidate the mechanisms and pathways through which the digital economy shapes agricultural green development, providing theoretical underpinnings and practical guidance for the green transformation of regional agriculture. (1) Using panel data from 18 prefecture-level cities in Sichuan Province (2013–2022), a comprehensive evaluation index system for agricultural green development was formulated. Fixed-effects, mediating-effects, and threshold-effects models were employed to systematically analyze the direct effects, transmission pathways, and nonlinear characteristics of the digital economy on agricultural green development. (2) The fixed-effects model shows that the digital economy markedly propels agricultural green development in Sichuan Province. The mediating-effects model verifies two transmission pathways: “digital economy → technological progression → agricultural green development” and “digital economy → industrial structure upgrading → agricultural green development”. The threshold-effects model suggests that when the digital economy is in the low-threshold interval, it exerts a suppressive impact on agricultural green development; however, once the threshold is surpassed, its promoting effect strengthens significantly. (3) The results demonstrate the following findings: First, the digital economy exerts a significant positive effect on agricultural green development. Second, this promoting effect exhibits significant nonlinear characteristics that vary with the level of digital economy development. Third, the impact manifests remarkable regional heterogeneity, necessitating context-specific development strategies. (4) Five optimization recommendations are proposed: promote the categorized development of agricultural digital technologies and industrial upgrading; advance digital infrastructure and technology adaptation in phases; design differentiated regional policies; establish a hierarchical and classified long-term guarantee mechanism; and strengthen the “industry-university-research-application” collaborative innovation and dynamic monitoring system. Full article
32 pages, 2291 KiB  
Article
Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones
by Yahui Chen, Yi An, Zixun Nie, Yuanying Chi and Xinyue Jia
Sustainability 2025, 17(15), 6969; https://doi.org/10.3390/su17156969 - 31 Jul 2025
Viewed by 334
Abstract
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and [...] Read more.
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and urban economic resilience. On this basis, a spatial Markov chain model is applied to further analyze the economic toughness of prefecture-level cities. This study treats the establishment of these pilot zones as a quasi-natural experiment, using panel data from 269 prefecture-level cities in China from 2013 to 2023 and employing a multi-period difference-in-differences (DID) model to empirically examine the impact of green financial reform on urban economic resilience and its underlying mechanisms. The results reveal that the establishment of these pilot zones significantly enhances urban economic resilience. Specifically, green financial reforms primarily improve urban economic resilience by increasing credit accessibility and capital allocation efficiency in the pilot cities. Furthermore, the policy effects are more pronounced in large cities and resource-dependent cities compared to small and medium-sized cities and non-resource-dependent cities, with stronger impacts observed in southern and coastal regions than in northern inland areas. Additionally, the policy effects are significantly greater in environmentally prioritized cities than in non-prioritized cities. By integrating green financial reforms and urban economic resilience into a unified analytical framework, this study provides valuable insights for policymakers to refine green financial strategies and design resilience-enhancing policies. Full article
Show Figures

Figure 1

28 pages, 2933 KiB  
Review
Learning and Development in Entrepreneurial Era: Mapping Research Trends and Future Directions
by Fayiz Emad Addin Al Sharari, Ahmad ali Almohtaseb, Khaled Alshaketheep and Kafa Al Nawaiseh
Adm. Sci. 2025, 15(8), 299; https://doi.org/10.3390/admsci15080299 - 31 Jul 2025
Viewed by 307
Abstract
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these [...] Read more.
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these models influence business success in a rapidly changing global landscape. The research employs bibliometric analysis, VOSviewer cluster analysis, and co-citation analysis to explore the literature from 1994 to 2024. Data collected from the Web of Science Core Collection database reflect significant trends in entrepreneurial L&D, with particular emphasis on the use of digital tools, sustainability processes, and governance systems. Findings emphasize the imperative role of L&D in fostering entrepreneurship, more so in areas such as digital transformation and the adoption of new technologies. The study also identifies central regions propelling this field, such as UK and USA. Future studies will be centered on the role of digital technologies, innovation, and green business models within entrepreneurial L&D frameworks. This study provides useful insight into the future of L&D within the entrepreneurial domain, guiding academia and companies alike in the planning of effective learning strategies to foster innovation and sustainable business growth. Full article
Show Figures

Figure 1

24 pages, 623 KiB  
Article
Evaluation of Competitiveness and Sustainable Development Prospects of French-Speaking African Countries Based on TOPSIS and Adaptive LASSO Algorithms
by Binglin Liu, Liwen Li, Hang Ren, Jianwan Qin and Weijiang Liu
Algorithms 2025, 18(8), 474; https://doi.org/10.3390/a18080474 - 30 Jul 2025
Viewed by 235
Abstract
This study evaluates the competitiveness and sustainable development prospects of French-speaking African countries by constructing a comprehensive framework integrating the TOPSIS method and adaptive LASSO algorithm. Using multivariate data from sources such as the World Bank, 30 indicators covering core, basic, and auxiliary [...] Read more.
This study evaluates the competitiveness and sustainable development prospects of French-speaking African countries by constructing a comprehensive framework integrating the TOPSIS method and adaptive LASSO algorithm. Using multivariate data from sources such as the World Bank, 30 indicators covering core, basic, and auxiliary competitiveness were selected to quantitatively analyze the competitiveness of 26 French-speaking African countries. Results show that their comprehensive competitiveness exhibits spatial patterns of “high in the north and south, low in the east and west” and “high in coastal areas, low in inland areas”. Algeria, Morocco, and six other countries demonstrate high competitiveness, while Central African countries generally show low competitiveness. The adaptive LASSO algorithm identifies three key influencing factors, including the proportion of R&D expenditure to GDP, high-tech exports, and total reserves, as well as five secondary key factors, including the number of patent applications and total number of domestic listed companies, revealing that scientific and technological investment, financial strength, and innovation transformation capabilities are core constraints. Based on these findings, sustainable development strategies are proposed, such as strengthening scientific and technological research and development and innovation transformation, optimizing financial reserves and capital markets, and promoting China–Africa collaborative cooperation, providing decision-making references for competitiveness improvement and regional cooperation of French-speaking African countries under the background of the “Belt and Road Initiative”. Full article
(This article belongs to the Special Issue Hybrid Intelligent Algorithms (2nd Edition))
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 314
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

19 pages, 664 KiB  
Article
Advanced Global CO2 Emissions Forecasting: Enhancing Accuracy and Stability Across Diverse Regions
by Adham Alsharkawi, Emran Al-Sherqawi, Kamal Khandakji and Musa Al-Yaman
Sustainability 2025, 17(15), 6893; https://doi.org/10.3390/su17156893 - 29 Jul 2025
Viewed by 227
Abstract
This study introduces a robust global time-series forecasting model developed to estimate CO2 emissions across diverse regions worldwide. The model employs a deep learning architecture with multiple hidden layers, ensuring both high predictive accuracy and temporal stability. Our methodology integrates innovative training [...] Read more.
This study introduces a robust global time-series forecasting model developed to estimate CO2 emissions across diverse regions worldwide. The model employs a deep learning architecture with multiple hidden layers, ensuring both high predictive accuracy and temporal stability. Our methodology integrates innovative training strategies and advanced optimization techniques to effectively handle heterogeneous time-series data. Emphasis is placed on the critical role of accurate and stable forecasts in supporting evidence-based policy-making and promoting environmental sustainability. This work contributes to global efforts to monitor and mitigate climate change, in alignment with the United Nations Sustainable Development Goals (SDGs). Full article
(This article belongs to the Special Issue Effectiveness Evaluation of Sustainable Climate Policies)
Show Figures

Figure 1

22 pages, 866 KiB  
Article
Exploring the Mechanisms Linking Digital Leadership to Employee Creativity: A Moderated Mediation Model
by Mengxi Yang, Muhammad Talha, Shuainan Zhang and Yifei Zhang
Behav. Sci. 2025, 15(8), 1024; https://doi.org/10.3390/bs15081024 - 28 Jul 2025
Viewed by 347
Abstract
Employee creativity is essential for navigating digital disruption and maintaining organizational competitiveness; however, the mechanisms through which digital leadership fosters creativity remain underexplored. This study investigates the psychological and social processes through which digital leadership influences workplace creativity. Grounded in social cognitive and [...] Read more.
Employee creativity is essential for navigating digital disruption and maintaining organizational competitiveness; however, the mechanisms through which digital leadership fosters creativity remain underexplored. This study investigates the psychological and social processes through which digital leadership influences workplace creativity. Grounded in social cognitive and social exchange theories, the proposed model incorporates innovation self-efficacy and knowledge sharing as mediators and technology readiness as a moderator. Data were collected using a three-wave, time-lagged, multi-source survey design from 234 matched respondents, including employees and supervisors, across 20 business units in seven regional branches of a large Chinese organization undergoing digital transformation. The findings indicate that digital leadership significantly enhances employee creativity through the partial mediation of both innovation self-efficacy and knowledge sharing. Notably, the indirect effect through knowledge sharing was stronger, underscoring the critical role of collaborative processes in driving creativity. Furthermore, technology readiness positively moderates the effects of digital leadership on both mediators and amplifies the indirect effects on creativity. These findings provide valuable insights into how organizations can leverage digital leadership more effectively by aligning leadership strategies with employees’ psychological readiness and fostering a digitally supportive work environment. Full article
(This article belongs to the Section Organizational Behaviors)
Show Figures

Figure 1

36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 348
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

24 pages, 8483 KiB  
Article
A Weakly Supervised Network for Coarse-to-Fine Change Detection in Hyperspectral Images
by Yadong Zhao and Zhao Chen
Remote Sens. 2025, 17(15), 2624; https://doi.org/10.3390/rs17152624 - 28 Jul 2025
Viewed by 311
Abstract
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting [...] Read more.
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting pixel-level detection accuracy; heterogeneous spatial scales of change targets where coarse-grained features fail to preserve fine-grained details; and dependence on high-quality labels. To address these challenges, this paper introduces WSCDNet, a weakly supervised HSI-CD network employing coarse-to-fine feature learning, with key innovations including: (1) A dual-branch detection framework integrating binary and multiclass change detection at the sub-pixel level that enhances collaborative optimization through a cross-feature coupling module; (2) introduction of multi-granularity aggregation and difference feature enhancement module for detecting easily confused regions, which effectively improves the model’s detection accuracy; and (3) proposal of a weakly supervised learning strategy, reducing model sensitivity to noisy pseudo-labels through decision-level consistency measurement and sample filtering mechanisms. Experimental results demonstrate that WSCDNet effectively enhances the accuracy and robustness of HSI-CD tasks, exhibiting superior performance under complex scenarios and weakly supervised conditions. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 5844 KiB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Viewed by 348
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

Back to TopTop