Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,842)

Search Parameters:
Keywords = region proposal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9378 KiB  
Article
A Semantic Segmentation-Based GNSS Signal Occlusion Detection and Optimization Method
by Zhe Yue, Chenchen Sun, Xuerong Zhang, Chengkai Tang, Yuting Gao and Kezhao Li
Remote Sens. 2025, 17(15), 2725; https://doi.org/10.3390/rs17152725 (registering DOI) - 6 Aug 2025
Abstract
Existing research fails to effectively address the problem of increased GNSS positioning errors caused by non-line-of-sight (NLOS) and line-of-sight (LOS) signal attenuation due to obstructions such as buildings and trees in complex urban environments. To address this issue, we dig into the environmental [...] Read more.
Existing research fails to effectively address the problem of increased GNSS positioning errors caused by non-line-of-sight (NLOS) and line-of-sight (LOS) signal attenuation due to obstructions such as buildings and trees in complex urban environments. To address this issue, we dig into the environmental perception perspective to propose a semantic segmentation-based GNSS signal occlusion detection and optimization method. The approach distinguishes between building and tree occlusions and adjusts signal weights accordingly to enhance positioning accuracy. First, a fisheye camera captures environmental imagery above the vehicle, which is then processed using deep learning to segment sky, tree, and building regions. Subsequently, satellite projections are mapped onto the segmented sky image to classify signal occlusions. Then, based on the type of obstruction, a dynamic weight optimization model is constructed to adjust the contribution of each satellite in the positioning solution, thereby enhancing the positioning accuracy of vehicle-navigation in urban environments. Finally, we construct a vehicle-mounted navigation system for experimentation. The experimental results demonstrate that the proposed method enhances accuracy by 16% and 10% compared to the existing GNSS/INS/Canny and GNSS/INS/Flood Fill methods, respectively, confirming its effectiveness in complex urban environments. Full article
(This article belongs to the Special Issue GNSS and Multi-Sensor Integrated Precise Positioning and Applications)
Show Figures

Figure 1

27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
14 pages, 1950 KiB  
Article
Ancient Ritual Behavior as Reflected in the Imagery at Picture Cave, Missouri, USA
by Carol Diaz-Granados and James R. Duncan
Arts 2025, 14(4), 88; https://doi.org/10.3390/arts14040088 (registering DOI) - 6 Aug 2025
Abstract
Since 1992, we have promoted the use of descriptions from ethnographic data, including ancient, surviving oral traditions, to aid in explaining the iconography portrayed in pictographs and petroglyphs found in Missouri, particularly those at Picture Cave. The literature to which we refer is [...] Read more.
Since 1992, we have promoted the use of descriptions from ethnographic data, including ancient, surviving oral traditions, to aid in explaining the iconography portrayed in pictographs and petroglyphs found in Missouri, particularly those at Picture Cave. The literature to which we refer is from American Indian groups related linguistically and connected to the pre-Columbian inhabitants of Missouri. In addition, we have had on-going conversations with many elder tribal members of the Dhegiha Sioux language group (including the Osage, Quapaw, and Kansa (the Ponca and Omaha are also part of this cognate linguistic group)). With the copious collections of southern Siouan ethnographic accounts, we have been able to explain salient features in the iconography of several of the detailed rock art motifs and vignettes, and propose interpretations. This Midwest region is part of the Cahokia interaction sphere, an area that displays western Mississippian symbolism associated with that found in Missouri rock art as well as on pottery, shell, and copper. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

25 pages, 1470 KiB  
Article
A Hybrid Path Planning Algorithm for Orchard Robots Based on an Improved D* Lite Algorithm
by Quanjie Jiang, Yue Shen, Hui Liu, Zohaib Khan, Hao Sun and Yuxuan Huang
Agriculture 2025, 15(15), 1698; https://doi.org/10.3390/agriculture15151698 - 6 Aug 2025
Abstract
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path [...] Read more.
Due to the complex spatial structure, dense tree distribution, and narrow passages in orchard environments, traditional path planning algorithms often struggle with large path deviations, frequent turning, and reduced navigational safety. In order to overcome these challenges, this paper proposes a hybrid path planning algorithm based on improved D* Lite for narrow forest orchard environments. The proposed approach enhances path feasibility and improves the robustness of the navigation system. The algorithm begins by constructing a 2D grid map reflecting the orchard layout and inflates the tree regions to create safety buffers for reliable path planning. For global path planning, an enhanced D* Lite algorithm is used with a cost function that jointly considers centerline proximity, turning angle smoothness, and directional consistency. This guides the path to remain close to the orchard row centerline, improving structural adaptability and path rationality. Narrow passages along the initial path are detected, and local replanning is performed using a Hybrid A* algorithm that accounts for the kinematic constraints of a differential tracked robot. This generates curvature-continuous and directionally stable segments that replace the original narrow-path portions. Finally, a gradient descent method is applied to smooth the overall path, improving trajectory continuity and execution stability. Field experiments in representative orchard environments demonstrate that the proposed hybrid algorithm significantly outperforms traditional D* Lite and KD* Lite-B methods in terms of path accuracy and navigational safety. The average deviation from the centerline is only 0.06 m, representing reductions of 75.55% and 38.27% compared to traditional D* Lite and KD* Lite-B, respectively, thereby enabling high-precision centerline tracking. Moreover, the number of hazardous nodes, defined as path points near obstacles, was reduced to five, marking decreases of 92.86% and 68.75%, respectively, and substantially enhancing navigation safety. These results confirm the method’s strong applicability in complex, constrained orchard environments and its potential as a foundation for efficient, safe, and fully autonomous agricultural robot operation. Full article
(This article belongs to the Special Issue Perception, Decision-Making, and Control of Agricultural Robots)
30 pages, 16226 KiB  
Article
A Dual-Stage and Dual-Population Algorithm Based on Chemical Reaction Optimization for Constrained Multi-Objective Optimization
by Tianyu Zhang, Xin Guo, Yan Li, Na Li, Ruochen Zheng, Wenbo Dong and Weichao Ding
Processes 2025, 13(8), 2484; https://doi.org/10.3390/pr13082484 - 6 Aug 2025
Abstract
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular [...] Read more.
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular collision reactions and energy management, thereby enhancing search efficiency. However, standard CRO variants often struggle with CMOPs due to the absence of specialized constraint-handling mechanisms. To address these challenges, this paper integrates the CRO collision reaction mechanism with an existing evolutionary computational framework to design a dual-stage and dual-population chemical reaction optimization (DDCRO) algorithm. This approach employs a staged optimization strategy, which divides population evolution into two phases. The first phase focuses on objective optimization to enhance population diversity, and the second prioritizes constraint satisfaction to accelerate convergence toward the constrained Pareto front. Furthermore, to leverage the infeasible solutions’ guiding potential during the search, DDCRO adopts a two-population strategy. At each stage, the main population tackles the original constrained problem, while the auxiliary population addresses the corresponding unconstrained version. A weak complementary mechanism facilitates information sharing between populations, which enhances search efficiency and algorithmic robustness. Comparative tests on multiple test suites reveal that DDCRO achieves optimal IGD/HV values in 53% of test problems. The proposed algorithm outperforms other state-of-the-art algorithms in both convergence and population diversity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

44 pages, 7941 KiB  
Article
A Numerical Investigation of Plastic Energy Dissipation Patterns of Circular and Non-Circular Metal Thin-Walled Rings Under Quasi-Static Lateral Crushing
by Shunsong Guo, Sunting Yan, Ping Tang, Chenfeng Guan and Wei Zhang
Mathematics 2025, 13(15), 2527; https://doi.org/10.3390/math13152527 - 6 Aug 2025
Abstract
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are [...] Read more.
This paper presents a combined theoretical, numerical, and experimental analysis to investigate the lateral plastic crushing behavior and energy absorption of circular and non-circular thin-walled rings between two rigid plates. Theoretical solutions incorporating both linear material hardening and power-law material hardening models are solved via numerical shooting methods. The theoretically predicted force-denting displacement relations agree excellently with both FEA and experimental results. The FEA simulation clearly reveals the coexistence of an upper moving plastic region and a fixed bottom plastic region. A robust automatic extraction method of the fully plastic region at the bottom from FEA is proposed. A modified criterion considering the unloading effect based on the resultant moment of cross-section is proposed to allow accurate theoretical estimation of the fully plastic region length. The detailed study implies an abrupt and almost linear drop of the fully plastic region length after the maximum value by the proposed modified criterion, while the conventional fully plastic criterion leads to significant over-estimation of the length. Evolution patterns of the upper and lower plastic regions in FEA are clearly illustrated. Furthermore, the distribution of plastic energy dissipation is compared in the bottom and upper regions through FEA and theoretical results. Purely analytical solutions are formulated for linear hardening material case by elliptical integrals. A simple algebraic function solution is derived without necessity of solving differential equations for general power-law hardening material case by adopting a constant curvature assumption. Parametric analyses indicate the significant effect of ovality and hardening on plastic region evolution and crushing force. This paper should enhance the understanding of the crushing behavior of circular and non-circular rings applicable to the structural engineering and impact of the absorption domain. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
30 pages, 2099 KiB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
21 pages, 4968 KiB  
Article
EQResNet: Real-Time Simulation and Resilience Assessment of Post-Earthquake Emergency Highway Transportation Networks
by Zhenliang Liu and Chuxuan Guo
Computation 2025, 13(8), 188; https://doi.org/10.3390/computation13080188 - 6 Aug 2025
Abstract
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly [...] Read more.
Multiple uncertainties in traffic demand fluctuations and infrastructure vulnerability during seismic events pose significant challenges for the resilience assessment of highway transportation networks (HTNs). While Monte Carlo simulation remains the dominant approach for uncertainty propagation, its high computational cost limits its scalability, particularly in metropolitan-scale networks. This study proposes an EQResNet framework for accelerated post-earthquake resilience assessment of HTNs. The model integrates network topology, interregional traffic demand, and roadway characteristics into a streamlined deep neural network architecture. A comprehensive surrogate modeling strategy is developed to replace conventional traffic simulation modules, including highway status realization, shortest path computation, and traffic flow assignment. Combined with seismic fragility models and recovery functions for regional bridges, the framework captures the dynamic evolution of HTN functionality following seismic events. A multi-dimensional resilience evaluation system is also established to quantify network performance from emergency response and recovery perspectives. A case study on the Sioux Falls network under probabilistic earthquake scenarios demonstrates the effectiveness of the proposed method, achieving 95% prediction accuracy while reducing computational time by 90% compared to traditional numerical simulations. The results highlight the framework’s potential as a scalable, efficient, and reliable tool for large-scale post-disaster transportation system analysis. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

15 pages, 2417 KiB  
Article
Mechanical Behavior of Sustainable Concrete with Alkali-Activated Pumice as Cement Replacement for Walkway Slabs in Humid Tropical Climates
by Oscar Moreno-Vázquez, Pablo Julián López-González, Sergio Aurelio Zamora-Castro, Brenda Suemy Trujillo-García and Joaquín Sangabriel-Lomelí
Eng 2025, 6(8), 191; https://doi.org/10.3390/eng6080191 - 6 Aug 2025
Abstract
Portland cement production is a major source of global CO2 emissions due to its high energy consumption and calcination processes. This study proposes a sustainable alternative through the partial replacement of cement with alkali-activated pumice, a naturally occurring aluminosilicate material with high [...] Read more.
Portland cement production is a major source of global CO2 emissions due to its high energy consumption and calcination processes. This study proposes a sustainable alternative through the partial replacement of cement with alkali-activated pumice, a naturally occurring aluminosilicate material with high regional availability. Mixes with 0%, 10%, 20%, and 30% cement replacement were designed for pedestrian slabs exposed to humid tropical conditions. Compressive strength was evaluated using non-destructive testing over a period of 364 days, and carbonation was analyzed at different ages. The results show that mixes with up to 30% pumice maintain adequate strength levels for light-duty applications, although with a more gradual strength development. A significant reduction in carbonation depth was also observed, especially in the mix with the highest replacement level, suggesting greater durability in aggressive environments. These findings support the use of pumice as a viable and sustainable supplementary cementitious material in tropical regions, promoting low-impact construction practices. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

22 pages, 6201 KiB  
Article
SOAM Block: A Scale–Orientation-Aware Module for Efficient Object Detection in Remote Sensing Imagery
by Yi Chen, Zhidong Wang, Zhipeng Xiong, Yufeng Zhang and Xinqi Xu
Symmetry 2025, 17(8), 1251; https://doi.org/10.3390/sym17081251 - 6 Aug 2025
Abstract
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation [...] Read more.
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation module (SOAM Block) that jointly models object scale and directional features while exploiting geometric symmetry inherent in many remote sensing targets. The SOAM Block is constructed upon a lightweight and efficient Adaptive Multi-Scale (AMS) Module, which utilizes a symmetric arrangement of parallel depth-wise convolutional branches with varied kernel sizes to extract fine-grained multi-scale features without dilation, thereby preserving local context and enhancing scale adaptability. In addition, a Strip-based Context Attention (SCA) mechanism is introduced to model long-range spatial dependencies, leveraging horizontal and vertical 1D strip convolutions in a directionally symmetric fashion. This design captures spatial correlations between distant regions and reinforces semantic consistency in cluttered scenes. Importantly, this work is the first to explicitly analyze the coupling between object scale and orientation in remote sensing imagery. The proposed method addresses the limitations of fixed receptive fields in capturing symmetric directional cues of large-scale objects. Extensive experiments are conducted on two widely used benchmarks—DOTA and HRSC2016—both of which exhibit significant scale variations and orientation diversity. Results demonstrate that our approach achieves superior detection accuracy with fewer parameters and lower computational overhead compared to state-of-the-art methods. The proposed SOAM Block thus offers a robust, scalable, and symmetry-aware solution for high-precision object detection in complex aerial scenes. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 49475 KiB  
Article
NRGS-Net: A Lightweight Uformer with Gated Positional and Local Context Attention for Nighttime Road Glare Suppression
by Ruoyu Yang, Huaixin Chen, Sijie Luo and Zhixi Wang
Appl. Sci. 2025, 15(15), 8686; https://doi.org/10.3390/app15158686 (registering DOI) - 6 Aug 2025
Abstract
Existing nighttime visibility enhancement methods primarily focus on improving overall brightness under low-light conditions. However, nighttime road images are also affected by glare, glow, and flare from complex light sources such as streetlights and headlights, making it challenging to suppress locally overexposed regions [...] Read more.
Existing nighttime visibility enhancement methods primarily focus on improving overall brightness under low-light conditions. However, nighttime road images are also affected by glare, glow, and flare from complex light sources such as streetlights and headlights, making it challenging to suppress locally overexposed regions and recover fine details. To address these challenges, we propose a Nighttime Road Glare Suppression Network (NRGS-Net) for glare removal and detail restoration. Specifically, to handle diverse glare disturbances caused by the uncertainty in light source positions and shapes, we designed a gated positional attention (GPA) module that integrates positional encoding with local contextual information to guide the network in accurately locating and suppressing glare regions, thereby enhancing the visibility of affected areas. Furthermore, we introduced an improved Uformer backbone named LCAtransformer, in which the downsampling layers adopt efficient depthwise separable convolutions to reduce computational cost while preserving critical spatial information. The upsampling layers incorporate a residual PixelShuffle module to achieve effective restoration in glare-affected regions. Additionally, channel attention is introduced within the Local Context-Aware Feed-Forward Network (LCA-FFN) to enable adaptive adjustment of feature weights, effectively suppressing irrelevant and interfering features. To advance the research in nighttime glare suppression, we constructed and publicly released the Night Road Glare Dataset (NRGD) captured in real nighttime road scenarios, enriching the evaluation system for this task. Experiments conducted on the Flare7K++ and NRGD, using five evaluation metrics and comparing six state-of-the-art methods, demonstrate that our method achieves superior performance in both subjective and objective metrics compared to existing advanced methods. Full article
(This article belongs to the Special Issue Computational Imaging: Algorithms, Technologies, and Applications)
Show Figures

Figure 1

19 pages, 1905 KiB  
Article
Fuzzy Frankot–Chellappa Algorithm for Surface Normal Integration
by Saeide Hajighasemi and Michael Breuß
Algorithms 2025, 18(8), 488; https://doi.org/10.3390/a18080488 - 6 Aug 2025
Abstract
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that [...] Read more.
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that requires appropriate definitions of fuzzy derivatives. The solution of the resulting fuzzy model is approached by adopting a fuzzy variant of the discrete sine transform, which results in a fast and robust algorithm for surface reconstruction. An adaptive defuzzification strategy is also introduced to improve noise handling in highly uncertain regions. In experiments, we demonstrate that our fuzzy Frankot–Chellappa algorithm achieves accuracy on par with the classic approach for smooth surfaces and offers improved robustness in the presence of noisy normal data. We also show that it can naturally handle missing data (such as gaps) in the normal field by filling them using neighboring information. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

11 pages, 2425 KiB  
Article
Single-Layer High-Efficiency Metasurface for Multi-User Signal Enhancement
by Hui Jin, Peixuan Zhu, Rongrong Zhu, Bo Yang, Siqi Zhang and Huan Lu
Micromachines 2025, 16(8), 911; https://doi.org/10.3390/mi16080911 (registering DOI) - 6 Aug 2025
Abstract
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. [...] Read more.
In multi-user wireless communication scenarios, signal degradation caused by channel fading and co-channel interference restricts system capacity, while traditional enhancement schemes face challenges of high coordination complexity and hardware integration. This paper proposes an electromagnetic focusing method using a single-layer transmissive passive metasurface. A high-efficiency metasurface array is fabricated based on PCB technology, which utilizes subwavelength units for wide-range phase modulation to construct a multi-user energy convergence model in the WiFi band. By optimizing phase gradients through the geometric phase principle, the metasurface achieves collaborative wavefront manipulation for multiple target regions with high transmission efficiency, reducing system complexity compared to traditional multi-layer structures. Measurements in a microwave anechoic chamber and tests in an office environment demonstrate that the metasurface can simultaneously create signal enhancement zones for multiple users, featuring stable focusing capability and environmental adaptability. This lightweight design facilitates deployment in dense networks, providing an effective solution for signal optimization in indoor distributed systems and IoT communications. Full article
(This article belongs to the Special Issue Novel Electromagnetic and Acoustic Devices)
Show Figures

Figure 1

Back to TopTop