Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = regenerative electric heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 21776 KiB  
Review
Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems
by Giuseppe Rausa, Maurizio Calabrese, Ramiro Velazquez, Carolina Del-Valle-Soto, Roberto De Fazio and Paolo Visconti
Energies 2025, 18(8), 1970; https://doi.org/10.3390/en18081970 - 11 Apr 2025
Viewed by 1576
Abstract
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. [...] Read more.
Energy harvesting in the automotive sector is a rapidly growing field aimed at improving vehicle efficiency and sustainability by recovering wasted energy. Various technologies have been developed to convert mechanical, thermal, and environmental energy into electrical power, reducing dependency on traditional energy sources. This manuscript provides a comprehensive review of energy harvesting applications/methodologies, aiming to trace the research lines and future developments. This work identifies the main categories of harvesting solutions, namely mechanical, thermal, and hybrid/environmental solar–wind systems; each section includes a detailed review of the technical and scientific state of the art and a comparative analysis with detailed tables, allowing the state of the art to be mapped for identification of the strengths of each solution, as well as the challenges and future developments needed to enhance the technological level. These improvements focus on energy conversion efficiency, material innovation, vehicle integration, energy savings, and environmental sustainability. The mechanical harvesting section focuses on energy recovery from vehicle vibrations, with emphasis on regenerative suspensions and piezoelectric-based solutions. Specifically, solutions applied to suspensions with electric generators can achieve power outputs of around 1 kW, while piezoelectric-based suspension systems can generate up to tens of watts. The thermal harvesting section, instead, explores methods for converting waste heat from an internal combustion engine (ICE) into electrical power, including thermoelectric generators (TEGs) and organic Rankine cycle systems (ORC). Notably, ICEs with TEGs can recover above 1 kW of power, while ICE-based ORC systems can generate tens of watts. On the other hand, TEGs integrated into braking systems can harvest a few watts of power. Then, hybrid solutions are discussed, focusing on integrated mechanical and thermal energy recovery systems, as well as solar and wind energy harvesting. Hybrid solutions can achieve power outputs above 1 kW, with the main contribution from TEGs (≈1 kW), compared to piezoelectric systems (hundreds of W). Lastly, a section on commercial solutions highlights how current scientific research meets the automotive sector’s needs, providing significant insights for future development. For these reasons, the research results aim to be guidelines for a better understanding of where future studies should focus to improve the technological level and efficiency of energy harvesting solutions in the automotive sector. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 797
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

24 pages, 3302 KiB  
Article
Techno-Economic Analysis of Waste Heat Recovery in Automotive Manufacturing Plants
by Putu Diah Prajna Paramita, Sindu Daniarta, Attila R. Imre and Piotr Kolasiński
Appl. Sci. 2025, 15(2), 569; https://doi.org/10.3390/app15020569 - 9 Jan 2025
Cited by 3 | Viewed by 1857
Abstract
This study proposes an innovative system for recovering waste heat from exhaust air after a regenerative thermal oxidiser process, integrating a Carnot battery and photovoltaic (PV) modules. The Carnot battery incorporates an organic Rankine cycle (ORC) with a recuperator, thermal energy storage (TES), [...] Read more.
This study proposes an innovative system for recovering waste heat from exhaust air after a regenerative thermal oxidiser process, integrating a Carnot battery and photovoltaic (PV) modules. The Carnot battery incorporates an organic Rankine cycle (ORC) with a recuperator, thermal energy storage (TES), and heat pump. Waste heat is initially captured in TES, with additional energy extracted by a heat pump to increase the temperature of a secondary fluid, effectively charging TES from both direct and indirect sources. The stored heat enables electricity generation via ORC. The result of this study shows a heat pump COP between 2.55 and 2.87, the efficiency of ORC ranging from 0.125 to 0.155, and the power-to-power of the Carnot battery between 0.36 and 0.40. Moreover, PV generates 1.35 GWh annually, primarily powering the heat pump and ORC system pump. The proposed system shows a total annual net generation of 4.30 GWh. Economic evaluation across four configurations demonstrates favourable outcomes, with a return on investment between 25% and 160%. The economic evaluation examined configurations with and without the PV system and recuperation process in the ORC. Results indicate that incorporating the PV system and recuperator significantly increases power output, offering a highly viable and sustainable energy solution. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

23 pages, 3962 KiB  
Article
A 4E Analysis of a Solar Organic Rankine Cycle Applied to a Paint Shop in the Automotive Industry
by Ronaldo Nilo Miyagi Martire, Mustafa Erguvan and Shahriar Amini
Energies 2024, 17(17), 4291; https://doi.org/10.3390/en17174291 - 27 Aug 2024
Cited by 2 | Viewed by 1820
Abstract
In a conventional automotive manufacturing plant, the paint shop alone can represent 36% of the total energy consumption, making it the most demanding area in terms of electricity and fossil fuel energy consumption. This study explores the possibility of decentralizing the production of [...] Read more.
In a conventional automotive manufacturing plant, the paint shop alone can represent 36% of the total energy consumption, making it the most demanding area in terms of electricity and fossil fuel energy consumption. This study explores the possibility of decentralizing the production of electrical power and heat simultaneously, using an Organic Rankine Cycle (ORC) system integrated with a Parabolic Trough Collector (PTC) in a paint shop. To date, no similar system has been explored or implemented by the automotive industry. To increase the efficiency of the integrated system, wasted heat generated during the paint manufacturing process is recovered and used to pre-heat the organic fluid in the ORC system. A 4E analysis (Energy, Exergy, Economic, and Environmental) is conducted to determine the practical viability of the proposed system. When applied to the southern region of the USA, this system’s installed capacity is projected to be 11 times higher than the two unique SORC pieces of equipment currently running in Louisiana and Florida. The goals are to reduce the reliance on external primary energy sources and decrease the carbon emission footprint from production activity. The system is evaluated for a location in Alabama, USA. The designed SORC, using toluene, can produce 712.2 kWel net and 13,132 kg/h of hot water, with an overall energy efficiency of 31.02%; exergy efficiency of 34.23; and ORC efficiency of 27.70%. This leads to an electrical energy saving of 5.9% for the manufacturing plant. The regenerative thermal oxidizer (RTO) heat exchanger, the secondary heat source of the system, has the highest exergy destruction—3583 kW. The system avoids the emission of 4521 tCO2 per year. A payback period of 10.16 years for the proposed system is estimated. Considering a planning horizon of 10 years, the investment in the system is also justified by a benefit–cost analysis. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

31 pages, 11743 KiB  
Article
Pressurized Regenerative Calcium Cycle for Utility-Scale Energy Storage: A Techno-Economic Assessment
by Behdad Moghtaderi, Priscilla Tremain and John Warner
Processes 2024, 12(8), 1778; https://doi.org/10.3390/pr12081778 - 22 Aug 2024
Viewed by 1907
Abstract
The University of Newcastle (UON) and Jord International Pty Ltd. (Jord) have jointly developed a novel concept for the storage of energy from renewable and fossil fuel sources. The process, referred to as the pressurized regenerative calcium cycle (PRC2), relies on [...] Read more.
The University of Newcastle (UON) and Jord International Pty Ltd. (Jord) have jointly developed a novel concept for the storage of energy from renewable and fossil fuel sources. The process, referred to as the pressurized regenerative calcium cycle (PRC2), relies on cyclic carbonation and calcination of CaO/CaCO3, in which low-cost electrical energy (i.e., off-peak, or excess generation from renewables) drives the calcination reaction and electricity is generated as required through the carbonation reaction. Initial proof-of-concept testing of the process was previously conducted within an existing fluid bed reactor at UON. The PRC2 concept was successfully demonstrated by maintaining the fluid bed reactor at a constant temperature by using the heat released during the reaction of calcium oxide and carbon dioxide. Following proof-of-concept testing, further refinement of the PRC2 process, which is the subject of this paper, was conducted to address its shortcomings and, importantly, facilitate the detailed design, construction, and operation of a large-scale demonstration plant. Nine different configurations were examined for the PRC2 process, for each of which a combined experimental, process modelling, and techno-economic assessment was completed. Experimental investigations were conducted to determine the suitability of carbonate materials for the PRC2 process. Process modelling and levelized cost of storage (LCOS) calculations were concurrently conducted and revealed that the molten salt approach (Option 9) was the most promising, having superior round-trip efficiency and lowest LCOS. For practical reasons (e.g., technical difficulties of working with molten salts), Option 3 (indirect power generation using a fluid bed reactor) was deemed the most feasible option for a demonstration scale plant. The LCOS for Option 3 (assuming a 100 MWe capacity) was calculated to be AUD 245 per MWh, which is on par with the cost of batteries for peak power replacement applications (the cost associated with lithium-ion batteries is AUD 370 per MWh). Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

22 pages, 9264 KiB  
Article
E-Heater Performance for Aftertreatment Warm-Up in a 48V Mild-Hybrid Heavy-Duty Truck over Real Driving Cycles
by Praveen Kumar, Rafael Lago Sari, Ashish Shah and Brock Merritt
Energies 2024, 17(12), 3001; https://doi.org/10.3390/en17123001 - 18 Jun 2024
Cited by 1 | Viewed by 1652
Abstract
High-efficiency and low-emissions heavy-duty (HD) internal combustion engines (ICEs) offer significant GHG reduction potential. Mild hybridization via regenerative braking and enabling the use of an electric heater component (EHC) for the aftertreatment system (ATS) warm-up extends these benefits, which can mitigate tailpipe GHG [...] Read more.
High-efficiency and low-emissions heavy-duty (HD) internal combustion engines (ICEs) offer significant GHG reduction potential. Mild hybridization via regenerative braking and enabling the use of an electric heater component (EHC) for the aftertreatment system (ATS) warm-up extends these benefits, which can mitigate tailpipe GHG and NOx emissions simultaneously. Understanding such integrated hybrid powertrains is essential for the system optimization of real-world driving conditions. In the present work, the potential of a low engine-out NOx (1.5–2.5 g/kWh range) ‘Low-NOx’ HD diesel engine and EHCs were analyzed in a 48V P1 mild-hybrid system for a class 8 commercial vehicle concept and compared with those in an EPA-2010-certified HD diesel truck as a baseline under real-world driving cycles, including those from the US, Europe, India, China, as well as the world harmonized vehicle cycle (WHVC). For analysis, an integrated 1-D vehicle model was utilized that consisted of models of the ‘Low-NOx’ HD engine, the stock ATS, and a production EHC. For the real driving cycles, ‘GT-RealDrive’-based vehicle speed profiles were generated for busy trucking routes for different markets. For each cycle, the effects of the Low-NOx and EHC performances were quantified in terms of the ATS warm-up time, engine-out NOx emissions, and net fuel consumption. Depending on the driving route, the regenerative braking fully or partly neutralized the EHC power penalty without a significant impact on the ATS thermal performance. For a two-EHC system, the fueling penalty associated with every second reduction in the warm-up time FCEHC (g/s) was several-fold higher for the real driving routes compared with the WHVC. Overall, while a multi-EHC setup accelerated the ATS warm-up, a single EHC integrated at the SCR inlet showed minimized EHC heating power, leading to a minimized fueling penalty. Finally, for the India and China routes, being highly transient, the P1 hybridization proved inadequate for GHG reduction due to the limited energy recuperation. A stronger hybridization was desirable for such driving cycles. Full article
(This article belongs to the Special Issue Advances in Hybrid Electric Powertrain and Vehicle)
Show Figures

Figure 1

25 pages, 10935 KiB  
Article
Fuzzy Logic-Based Energy Management System for Regenerative Braking of Electric Vehicles with Hybrid Energy Storage System
by Mehmet Şen, Muciz Özcan and Yasin Ramazan Eker
Appl. Sci. 2024, 14(7), 3077; https://doi.org/10.3390/app14073077 - 6 Apr 2024
Cited by 12 | Viewed by 2730
Abstract
Electric vehicles (EVs), which are environmentally friendly, have been used to minimize the global warming caused by fossil fuels used in vehicles and increasing fuel prices due to the decrease in fossil resources. Considering that the energy used in EVs is obtained from [...] Read more.
Electric vehicles (EVs), which are environmentally friendly, have been used to minimize the global warming caused by fossil fuels used in vehicles and increasing fuel prices due to the decrease in fossil resources. Considering that the energy used in EVs is obtained from fossil resources, it is also important to store and use energy efficiently in EVs. In this context, recovery from a regenerative braking system plays an important role in EV energy efficiency. This paper presents a fuzzy logic-based hybrid storage technique consisting of a supercapacitor (SC) and battery for efficient and safe storage of a regenerative braking system. First, the constraints of the battery to be used in the EV for fuzzy logic control are identified. Then, the fuzzy logic system is created and tested in the ADVISOR and Siemens Simcenter Flomaster programs in the New European Driving Cycle (NEDC) driving cycle. A SC was selected for primary storage to prevent the battery from being continuously charged from regenerative braking, thus reducing its lifetime. In cases where the vehicle consumes more energy than the average energy consumption, energy consumption from the battery is reduced by using the energy stored in the SC, and the SC energy is discharged, making preparations for the energy that will come from the next regenerative braking. Thus, the high current values transferred to the battery during regenerative braking are effectively limited by the SC. In this study, the current values on the battery in the EV with a hybrid storage system decreased by 29.1% in the ADVISOR program and 28.7% in the Simcenter Flomaster program. In addition, the battery generated 46.84% less heat in the hybrid storage system. Thus, the heating and capacity losses caused by this current on the battery were minimized. The presented method provides more efficient energy management for EVs and plays an important role in maintaining battery health. Full article
Show Figures

Figure 1

27 pages, 7429 KiB  
Article
International Comparison of Weather and Emission Predictive Building Control
by Christian Hepf, Ben Gottkehaskamp, Clayton Miller and Thomas Auer
Buildings 2024, 14(1), 288; https://doi.org/10.3390/buildings14010288 - 20 Jan 2024
Cited by 4 | Viewed by 2027
Abstract
Building operational energy alone accounts for 28% of global carbon emissions. A sustainable building operation promises enormous savings, especially under the increasing concern of climate change and the rising trends of the digitalization and electrification of buildings. Intelligent control strategies play a crucial [...] Read more.
Building operational energy alone accounts for 28% of global carbon emissions. A sustainable building operation promises enormous savings, especially under the increasing concern of climate change and the rising trends of the digitalization and electrification of buildings. Intelligent control strategies play a crucial role in building systems and electrical energy grids to reach the EU goal of carbon neutrality in 2050 and to manage the rising availability of regenerative energy. This study aims to prove that one can create energy and emission savings with simple weather and emission predictive control (WEPC). Furthermore, this should prove that the simplicity of this approach is key for the applicability of this concept in the built world. A thermodynamic simulation (TRNSYS) evaluates the performance of different variants. The parametrical study varies building construction, location, weather, and emission data and gives an outlook for 2050. The study showcases five different climate locations and reveals heating and cooling energy savings of up to 50 kWh/(m2a) and emission savings between 5 and 25% for various building types without harming thermal comfort. This endorses the initial statement to simplify building energy concepts. Furthermore, it proposes preventing energy designers from overoptimizing buildings with technology as the solution to a climate-responsible energy concept. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

21 pages, 8832 KiB  
Article
Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System
by Yingyan Lin, Ronghui Xiao, Liwei Chen and Houcheng Zhang
Energies 2024, 17(1), 163; https://doi.org/10.3390/en17010163 - 28 Dec 2023
Cited by 1 | Viewed by 1078
Abstract
A novel hybrid system model, combining a concentrated photovoltaic cell (CPC) with a thermally regenerative electrochemical cycle (TREC), is proposed. This innovative setup allows the TREC to convert heat from the CPC into electricity. The model incorporates mathematical equations that explicitly define power [...] Read more.
A novel hybrid system model, combining a concentrated photovoltaic cell (CPC) with a thermally regenerative electrochemical cycle (TREC), is proposed. This innovative setup allows the TREC to convert heat from the CPC into electricity. The model incorporates mathematical equations that explicitly define power output, energy efficiency, and exergy efficiency for both the CPC and the TREC individually, as well as for the hybrid system as a whole. The outcomes of the computations reveal that the hybrid system surpasses the performance metrics of the CPC alone. Specifically, the hybrid system achieves a notably higher maximum power density (MPD), maximum energy efficiency (MEE), and maximum exergy efficiency (MMEE) compared to the standalone CPC, with improvements of 392.68 W m−2, 10.33%, and 11.11%, respectively. Through thorough parametric analyses, it was observed that specific factors positively impact the hybrid system’s performance. These factors include higher operating temperatures, increased solar irradiation, specific concentration ratios, and alterations in the internal resistance or temperature coefficient of the TREC. However, it was noted that elevating the operating temperature of the CPC adversely affects the hybrid system’s performance. Furthermore, augmenting solar irradiation and optical concentration ratios amplifies the limiting electric current. Conversely, reducing the internal resistance of the TREC enhances the overall performance of the hybrid system. These discoveries have practical implications for optimizing the design and operation of a functional CPC-TREC hybrid system, providing valuable insights into maximizing its efficiency and effectiveness. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

29 pages, 4197 KiB  
Article
Heat Storage as a Way to Increase Energy Efficiency and Flexibility of NPP in Isolated Power System
by Vladimir Lebedev and Andrey Deev
Appl. Sci. 2023, 13(24), 13130; https://doi.org/10.3390/app132413130 - 9 Dec 2023
Cited by 6 | Viewed by 2142
Abstract
This paper considers a thermal accumulator using phase transition materials as a way to increase the energy efficiency and maneuverability of nuclear power plants. A low-power nuclear power plant is the object of this study. Such nuclear power plants have a great potential [...] Read more.
This paper considers a thermal accumulator using phase transition materials as a way to increase the energy efficiency and maneuverability of nuclear power plants. A low-power nuclear power plant is the object of this study. Such nuclear power plants have a great potential for widespread implementation as sources of thermal and electrical energy for facilities of mineral and raw material as well as fuel and energy complexes located in distant regions. The main principles of development of low-power nuclear power plants are revealed. So, in the development of low-power nuclear power plants, experience in the creation and operation of shipboard nuclear power installations is widely used. The problems of NPP operation in daily maneuvering modes within an isolated power system are revealed. A method for improving the energy efficiency and maneuverability of nuclear power plants is proposed, in particular, through the use of thermal accumulators with a phase change material directly in the NPP circuit. A method of assessment of the dimensions of the heat accumulator and the amount of heat accumulating material is presented. A method of assessment of the efficiency of the accumulator application scheme is presented. The thermal scheme of a promising low-power nuclear power plant with an RITM-200 reactor is compiled. A scheme for switching on a heat accumulator with a phase change material to a scheme for regenerative heating of a turbine is proposed. The heat storage material selection is made, the main elements and characteristics of such an accumulator are determined, and the parameters of the heat transfer fluid’s movement through the accumulator are determined. A mathematical model of the heat exchange in an accumulator based on the finite difference method is compiled, and the simulation results are presented. The results of the experimental verification of the model are presented. As a result of the calculation of NPPs’ thermal schemes in the standard version and the version with a heat accumulator, the power increase in the turbine plant due to the application of accumulated heat in the accumulator discharge mode is determined. Full article
(This article belongs to the Special Issue Latest Advances in Modern Energy Systems Planning and Operation)
Show Figures

Figure 1

20 pages, 6450 KiB  
Article
An Optimal Operation Strategy of Regenerative Electric Heating Considering the Difference in User Thermal Comfort
by Duojiao Guan, Zhongnan Feng, Li Song, Kun Hu, Zhenjia Li and Peng Ye
Energies 2023, 16(15), 5821; https://doi.org/10.3390/en16155821 - 5 Aug 2023
Cited by 1 | Viewed by 1237
Abstract
Regenerative electric heating has gradually become one of the main forms of winter heating with the promotion of “coal to electricity” project. By fully exploiting its regulating capacity, it can effectively achieve a win–win situation of “peak shaving and valley filling” on the [...] Read more.
Regenerative electric heating has gradually become one of the main forms of winter heating with the promotion of “coal to electricity” project. By fully exploiting its regulating capacity, it can effectively achieve a win–win situation of “peak shaving and valley filling” on the grid side and “demand response” on the customer side. In order to meet the different heating demands of users, a regenerative electric heating optimization and control strategy is proposed, taking into account the difference in users’ thermal comfort. Firstly, the reasons for the difference in user thermal comfort are analyzed, and the differentiated preference factors are calculated based on the maximum likelihood estimation method to design differentiated heating schemes. Then, a dynamic optimization and control model for regenerative electric heating with comfort and economic evaluation indicators is established and solved by using quantum genetic algorithm. Finally, a numerical example is used for simulation analysis. The research results show that the strategy proposed in this paper can take into account the comfort of customers and the economy of peaking and low load shifting, so that the operation of regenerative electric heating can respond to the different needs of different customer groups, and realize flexible adjustment at any time of the day. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System)
Show Figures

Figure 1

15 pages, 759 KiB  
Article
Distributed Optimal Coordination of a Virtual Power Plant with Residential Regenerative Electric Heating Systems
by Guixing Yang, Haoran Liu, Weiqing Wang, Junru Chen and Shunbo Lei
Energies 2023, 16(11), 4314; https://doi.org/10.3390/en16114314 - 25 May 2023
Cited by 4 | Viewed by 1764
Abstract
Renewable energy sources play a key role in the transition towards clean and affordable energy. However, grid integration of renewable energy sources faces many challenges due to its intermittent nature. The controllability of aggregated regenerative electric heating load provides a method for the [...] Read more.
Renewable energy sources play a key role in the transition towards clean and affordable energy. However, grid integration of renewable energy sources faces many challenges due to its intermittent nature. The controllability of aggregated regenerative electric heating load provides a method for the consumption of renewable energy sources. Based on the concept of a virtual power plant (VPP), this paper considers the cooperative energy management of aggregated residential regenerative electric heating systems. First, considering physical constraints, network constraints, and user comfort, comprehensive modeling of a VPP is given to maximize its social benefits. In addition, this VPP is investigated as a participant in day-ahead energy and reserve markets. Then, to solve this problem, a distributed coordination approach based on an alternating direction method of multipliers (ADMM) is proposed, which can respect the independence of users and preserve their privacy. Finally, the simulation results illustrate the effectiveness of our algorithm. Full article
Show Figures

Figure 1

13 pages, 3068 KiB  
Article
An Eco-Friendly Process to Extract Hydroxyapatite from Sheep Bones for Regenerative Medicine: Structural, Morphologic and Electrical Studies
by Sílvia Rodrigues Gavinho, Mehmet Bozdag, Cevriye Kalkandelen, Joana Soares Regadas, Suresh Kumar Jakka, Oguzhan Gunduz, Faik Nuzhet Oktar and Manuel Pedro Fernandes Graça
J. Funct. Biomater. 2023, 14(5), 279; https://doi.org/10.3390/jfb14050279 - 17 May 2023
Cited by 9 | Viewed by 2439
Abstract
Hydroxyapatite (HA) promotes excellent bone regeneration in bone-tissue engineering, due to its similarity to bone mineral and its ability to connect to living tissues. These factors promote the osteointegration process. This process can be enhanced by the presence of electrical charges, stored in [...] Read more.
Hydroxyapatite (HA) promotes excellent bone regeneration in bone-tissue engineering, due to its similarity to bone mineral and its ability to connect to living tissues. These factors promote the osteointegration process. This process can be enhanced by the presence of electrical charges, stored in the HA. Furthermore, several ions can be added to the HA structure to promote specific biological responses, such as magnesium ions. The main objective of this work was to extract hydroxyapatite from sheep femur bones and to study their structural and electrical properties by adding different amounts of magnesium oxide. The thermal and structural characterizations were performed using DTA, XRD, density, Raman spectroscopy and FTIR analysis. The morphology was studied using SEM, and the electrical measurements were registered as a function of frequency and temperature. Results show that: (i) an increase of MgO amount indicates that the solubility of MgO is below 5%wt for heat treatments at 600 °C; (ii) the rise of MgO content increases the capacity for electrical charge storage; (iii) sheep hydroxyapatite presents itself as a natural source of hydroxyapatite, environmentally sustainable and low cost, and promising for applications in regenerative medicine. Full article
Show Figures

Figure 1

25 pages, 4869 KiB  
Article
Feasibility Study of Scheme and Regenerator Parameters for Trinary Power Cycles
by Vladimir Kindra, Igor Maksimov, Ivan Komarov, Cheng Xu and Tuantuan Xin
Energies 2023, 16(9), 3886; https://doi.org/10.3390/en16093886 - 4 May 2023
Cited by 3 | Viewed by 1816
Abstract
Natural gas-fired combined cycle plants are nowadays one of the most efficient and environmentally friendly energy complexes. High energy efficiency and low specific emissions are achieved primarily due to the high average integral temperature of heat supply in the Brayton–Rankine cycle. In this [...] Read more.
Natural gas-fired combined cycle plants are nowadays one of the most efficient and environmentally friendly energy complexes. High energy efficiency and low specific emissions are achieved primarily due to the high average integral temperature of heat supply in the Brayton–Rankine cycle. In this case, the main sources of energy losses are heat losses in the condenser of the steam turbine plant and heat losses with the exhaust gases of the waste heat boiler. This work is related to the analysis of the thermodynamic and economic effects in the transition from binary to trinary cycles, in which, in addition to the gas and steam–water cycles, there is an additional cycle with a low-boiling coolant. A method for the feasibility study of a waste heat recovery unit for trinary plants is proposed. The schematic and design solutions described will ensure the increased energy and economic performance of combined cycle power plants. Based on the results of the thermodynamic optimization of the structure and parameters of thermal schemes, it was found that the use of the organic Rankine cycle with R236ea freon for the utilization of the low-grade heat of a trinary plant’s exhaust gases operating from a GTE-160 gas turbine makes it possible to achieve a net electrical efficiency of 51.3%, which is a 0.4% higher efficiency for a double-circuit combined cycle gas turbine plant and a 2.1% higher efficiency for a single-circuit cycle with similar initial parameters. On the basis of the conducted feasibility study, the parameters and characteristics of the heat exchangers of the regenerative system of the waste heat recovery unit are substantiated. The use of plain fin-and-tube heat exchangers in the regenerative system of the utilization cycle is the most promising solution. It was found that the level of allowable pressure loss in the regenerator of 10 kPa and the degree of regeneration of 80% allow for maximum economic efficiency of the waste heat recovery unit. Full article
Show Figures

Figure 1

30 pages, 8165 KiB  
Article
Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy
by Chunxia Gao, Zhaoyan Zhang and Peiguang Wang
Energies 2023, 16(9), 3781; https://doi.org/10.3390/en16093781 - 28 Apr 2023
Cited by 8 | Viewed by 2452
Abstract
The coordinated use of electricity and a heat energy system can effectively improve the energy structure during winter heating in the northern part of China and improve the environmental pollution problem. In this paper, an economic scheduling model of an electric–thermal integrated energy [...] Read more.
The coordinated use of electricity and a heat energy system can effectively improve the energy structure during winter heating in the northern part of China and improve the environmental pollution problem. In this paper, an economic scheduling model of an electric–thermal integrated energy system, including a wind turbine, regenerative electric boiler, solar heat collection system, biomass boiler, ground source heat pump and battery is proposed, and a biomass boiler was selected as the auxiliary heat source of the solar heat collection system. A mixed integer linear programming model was established to take the operating cost of the whole system as the target. A day-ahead optimization scheduling strategy considering the demand side response and improving new energy consumption is proposed. In order to verify the influence of the coordinated utilization of the flexible load and energy storage equipment on the optimal scheduling in the model built, three scenarios were set up. Scenario 3 contains energy storage and a flexible load. Compared with scenario 1, the total cost of scenario 3 was reduced by 51.5%, and the abandonment cost of wind energy was reduced by 43.3%. The use of a flexible load and energy storage can effectively reduce the cost and improve new energy consumption. By increasing the capacity of the energy-storage device, the wind power is completely absorbed, but the operation and maintenance cost is increased, so the capacity of energy storage equipment is allocated reasonably according to the actual situation. Full article
(This article belongs to the Special Issue Modeling and Optimization Research of Integrated Energy Power System)
Show Figures

Figure 1

Back to TopTop