Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (354)

Search Parameters:
Keywords = refined oil products production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3547 KiB  
Article
Enzymatic Degumming of Soybean Oil for Raw Material Preparation in BioFuel Production
by Sviatoslav Polovkovych, Andriy Karkhut, Volodymyr Gunka, Yaroslav Blikharskyy, Roman Nebesnyi, Semen Khomyak, Jacek Selejdak and Zinoviy Blikharskyy
Appl. Sci. 2025, 15(15), 8371; https://doi.org/10.3390/app15158371 - 28 Jul 2025
Viewed by 198
Abstract
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according [...] Read more.
The paper investigates the process of degumming substandard soybean oil using an enzyme complex of phospholipases to prepare it as a feedstock for biodiesel production. Dehumidification is an important refining step aimed at reducing the phosphorus content, which exceeds the permissible limits according to ASTM, EN, and ISO standards, by re-moving phospholipids. The enzyme complex of phospholipases includes phospholipase C, which specifically targets phosphatidylinositol, and phospholipase A2, which catalyzes the hydrolysis of phospholipids into water-soluble phosphates and lysophospholipids. This process contributes to the efficient removal of phospholipids, increased neutral oil yield, and reduced residual oil in the humic phase. The use of an enzyme complex of phospholipases provides an innovative, cost-effective, and environmentally friendly method of oil purification. The results of the study demonstrate the high efficiency of using the phospholipase enzyme complex in the processing of substandard soybean oil, which allows reducing the content of total phosphorus to 0.001% by weight, turning it into a high-quality raw material for biodiesel production. The proposed approach contributes to increasing the profitability of agricultural raw materials and the introduction of environmentally friendly technologies in the field of renewable energy. Full article
(This article belongs to the Special Issue Biodiesel Production: Current Status and Perspectives)
Show Figures

Figure 1

42 pages, 914 KiB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 584
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 402
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

31 pages, 1981 KiB  
Review
Volatile Organic Compounds in Teas: Identification, Extraction, Analysis, and Application of Tea Aroma
by Qin Zeng, Huifeng Wang, Jiaojiao Tuo, Yumeng Ding, Hongli Cao and Chuan Yue
Foods 2025, 14(15), 2574; https://doi.org/10.3390/foods14152574 - 23 Jul 2025
Viewed by 483
Abstract
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized [...] Read more.
Volatile organic compounds (VOCs) are important for teas’ quality and act as a critical evaluative criterion in teas. The distinctive aromatic profile of tea not only facilitates tea classification but also has potential applications in aroma-driven product innovation. In this review, we summarized the tea aroma from tea classification, VOCs extraction methodologies, and VOCs detection techniques. Moreover, the potential utilization of tea aroma in the future, such as applications in essential oil refinement, food flavor enhancement, and functional fragrance for personal health care, was proposed. Our review will provide a solid foundation for further investigations in tea aroma and offer significant insights into the development and application of tea fragrance. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

12 pages, 492 KiB  
Article
Protective Effect of Tomato By-Product in Refined Sunflower Oil with Different Lipid Profiles
by Idoya Fernández-Pan, Sandra Horvitz, Francisco C. Ibañez, Paloma Vírseda and María José Beriain
Molecules 2025, 30(14), 2968; https://doi.org/10.3390/molecules30142968 - 15 Jul 2025
Viewed by 310
Abstract
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and [...] Read more.
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and used as a lycopene natural source. Pressurization-assisted extraction of lycopene was carried out using two types of refined sunflower oil (high oleic, HO, and low oleic, LO). The carotenoid and tocopherol content, as well as the fatty acid profile, were analyzed in the resulting HO and LO oil samples, and thermooxidation stability was evaluated. Lycopene recovery was found to be higher in the LO oil than in the HO oil using the by-product from the S3 harvest. Conversely, the tocopherol content declined in both oil types following the incorporation of the S3 by-products. The addition of by-products did not affect the thermooxidation stability of the HO oil. Conversely, the thermooxidation stability of the LO oil increased by about 3.2 ± 0.6 h, irrespective of the season. The findings of this study demonstrate that the addition of tomato by-product, regardless of its lycopene content, provides a protective effect against the thermooxidation of conventional sunflower oil. Full article
Show Figures

Graphical abstract

25 pages, 1491 KiB  
Review
Toxicological Risk Assessment of Coffee Oil (Coffee Seed Oil and Spent Coffee Grounds Oil) as a Novel Food with Focus on Cafestol
by Bernadette Maier, Heike Franke, Steffen Schwarz and Dirk W. Lachenmeier
Molecules 2025, 30(14), 2951; https://doi.org/10.3390/molecules30142951 - 12 Jul 2025
Viewed by 762
Abstract
Coffee oil derived from spent coffee grounds of Coffea arabica is considered a novel food in the European Union (EU), requiring pre-market approval supported by comprehensive toxicological data. The effects of coffee oil on human health, particularly on blood parameters and liver enzymes, [...] Read more.
Coffee oil derived from spent coffee grounds of Coffea arabica is considered a novel food in the European Union (EU), requiring pre-market approval supported by comprehensive toxicological data. The effects of coffee oil on human health, particularly on blood parameters and liver enzymes, have been investigated in several studies. This review article summarizes the available toxicological literature on coffee oil, including its bioactive diterpenes cafestol and kahweol, which are known for their potential health effects. Considering the different modes of action of these two diterpenes, moderate consumption of coffee oil may be considered safe for healthy adults. Based on the changes in serum values in humans, this review provides initial estimations of LOAEL, NOAEL, and ADI for these diterpenes. The findings suggest that an intake of 225 mg of coffee oil per day might be considered safe assuming that coffee oil contains about 0.4% diterpenes. In summary, the assessment based on the published data indicates that (i) the consumption of coffee oil contained in any type of prepared coffee appears to be safe because the homeostasis of lipid levels in the blood is not significantly affected, and (ii) a low consumption of coffee oil as such might be acceptable but would require a refined risk assessment considering the exposure levels of the intended food product, which must be provided for novel food approval procedures. Full article
Show Figures

Figure 1

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 295
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

48 pages, 1341 KiB  
Review
Evaluation of Feedstock Characteristics Determined by Different Methods and Their Relationships to the Crackability of Petroleum, Vegetable, Biomass, and Waste-Derived Oils Used as Feedstocks for Fluid Catalytic Cracking: A Systematic Review
by Dicho Stratiev
Processes 2025, 13(7), 2169; https://doi.org/10.3390/pr13072169 - 7 Jul 2025
Viewed by 493
Abstract
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For [...] Read more.
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For this reason, characterization of feedstocks and their relationships to FCC performance are issues deserving special attention. This study systematically reviews various publications dealing with the influence of feedstock characteristics on FCC performance, with the aim of identifying the best characteristic descriptors allowing prediction of FCC feedstock cracking capability. These characteristics were obtained by mass spectrometry, SARA analysis, elemental analysis, and various empirical methods. This study also reviews published research dedicated to the catalytic cracking of biomass and waste oils, as well as blends of petroleum-derived feedstocks with sustainable oils, with the aim of searching for quantitative relationships allowing prediction of FCC performance during co-processing. Correlation analysis of the various FCC feed characteristics was carried out, and regression techniques were used to develop correlations predicting the conversion at maximum gasoline yield and that obtained under constant operating conditions. Artificial neural network (ANN) analysis and nonlinear regression techniques were applied to predict FCC conversion from feed characteristics at maximum gasoline yield, with the aim of distinguishing which technique provided the more accurate model. It was found that the correlation developed in this work based on the empirically determined aromatic carbon content according to the n-d-M method and the hydrogen content calculated via the Dhulesia correlation demonstrated highly accurate calculation of conversion at maximum gasoline yield (standard error of 1.3%) compared with that based on the gasoline precursor content determined by mass spectrometry (standard error of 1.5%). Using other data from 88 FCC feedstocks characterized by hydrogen content, saturates, aromatics, and polars contents to develop the ANN model and the nonlinear regression model, it was found that the ANN model demonstrated more accurate prediction of conversion at maximum gasoline yield, with a standard error of 1.4% versus 2.3% for the nonlinear regression model. During the co-processing of petroleum-derived feedstocks with sustainable oils, it was observed that FCC conversion and yields may obey the linear mixing rule or synergism, leading to higher yields of desirable products than those calculated according to the linear mixing rule. The exact reason for this observation has not yet been thoroughly investigated. Full article
Show Figures

Figure 1

15 pages, 1225 KiB  
Article
Physicochemical and Perceived Olfactory Changes in Black Soldier Fly (Hermetia illucens) Larvae Oil Under Domestic Cooking Temperatures
by Kian Aun Chang, Sze Ying Leong, Lye Yee Chew, Ching Qi Lim, Meng Jack Lim, Zongwei Ong and Sook Wah Chan
Foods 2025, 14(13), 2333; https://doi.org/10.3390/foods14132333 - 30 Jun 2025
Viewed by 373
Abstract
The rapid growth and sustainable production of black soldier fly larvae (BSFL) contribute positively to the circular economy. This study profiled the fatty acid composition of crude BSFL oil, followed by an evaluation of its physicochemical properties under domestic cooking temperatures (up to [...] Read more.
The rapid growth and sustainable production of black soldier fly larvae (BSFL) contribute positively to the circular economy. This study profiled the fatty acid composition of crude BSFL oil, followed by an evaluation of its physicochemical properties under domestic cooking temperatures (up to 180 °C, 30 min). Odour evaluation of the BSFL oil was also performed using 10 trained panellists for attributes such as fishy, nutty, oily, meaty/savoury, roasted, and pungent. The results indicated that BSFL oil contains palmitic (23.69%), oleic (30.90%), and linoleic (21.81%) acids in relatively similar proportions, representing a mix of saturated, monounsaturated, and polyunsaturated fatty acids. Heating caused BSFL oil to be darker and more viscous. The peroxide and free fatty acid values also increased significantly (p < 0.05) with rising temperatures, indicating limited oxidative stability and reduced suitability of BSFL oil for cooking purposes. The perceived intensity of odour attributes, particularly fishy and oily notes, increased concomitantly with higher cooking temperatures. Refining processes and antioxidants may assist in improving the thermal stability of BSFL oil for culinary applications. Full article
(This article belongs to the Special Issue Food Bioactives: Innovations, Mechanisms, and Future Applications)
Show Figures

Graphical abstract

15 pages, 2034 KiB  
Article
Heterogeneous Interactions During Bubble–Oil Droplet Contact in Water
by Tao Yang, Hao Xiao, Chunyu Jiang, Ming Ma, Guangwen Zhang, Chun Wang, Yi Zheng and Xiangdi Zhao
Separations 2025, 12(7), 174; https://doi.org/10.3390/separations12070174 - 29 Jun 2025
Viewed by 425
Abstract
Oily wastewater is extensively generated during the petroleum extraction and refining processes, as crude oil production water and from the effluent systems in petrochemical enterprises. The discharge standards for such wastewater are stringent, with the Oslo–Paris Convention stipulating that the oil content must [...] Read more.
Oily wastewater is extensively generated during the petroleum extraction and refining processes, as crude oil production water and from the effluent systems in petrochemical enterprises. The discharge standards for such wastewater are stringent, with the Oslo–Paris Convention stipulating that the oil content must be below 30 mg/L for permissible discharge. Flotation, a conventional oil–water separation method, relies on the collision and adhesion of rising bubbles with oil droplets in water to form low-density aggregates that float to the surface for separation. The collision and adhesion mechanisms between bubbles and oil droplets are fundamental to this process. However, systematic studies on their interactions remain scarce. This study employs the extended Derjaguin–Landau–Verwey–Overbeek theory to analyze the three mechanical interactions during the collision–adhesion process theoretically and investigates the heterogeneous interaction dynamics experimentally. Furthermore, given the diverse liquid-phase environments of oily wastewater, the effects of salinity, pH, and surfactant concentration are decoupled and individually explored to clarify their underlying mechanisms. Finally, a solution is proposed to enhance the flotation efficiency fundamentally. This work systematically elucidates the influence of liquid-phase environments on the adhesion behavior for the first time through the unification of theoretical and experimental approaches. The findings provide critical insights for advancing flotation theory and guiding the development of novel coagulants. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Graphical abstract

25 pages, 4187 KiB  
Article
The Development and Performance Assessment of Palm Kernel Nut Oil as a Cutting Fluid for the Turning of AA6061
by Omolayo M. Ikumapayi, Opeyeolu T. Laseinde, Rasaq A. Kazeem, Peter Onu and Tin T. Ting
Lubricants 2025, 13(7), 279; https://doi.org/10.3390/lubricants13070279 - 21 Jun 2025
Cited by 1 | Viewed by 1126
Abstract
This study focuses on investigating the manufacturing, characterization, and assessment of palm kernel nut oil as a cutting fluid (CF) in the machining of aluminium 6061 alloy. Cutting fluids are vital in machining operations as they reduce friction, dissipate heat, and prolong the [...] Read more.
This study focuses on investigating the manufacturing, characterization, and assessment of palm kernel nut oil as a cutting fluid (CF) in the machining of aluminium 6061 alloy. Cutting fluids are vital in machining operations as they reduce friction, dissipate heat, and prolong the lifespan of tools. Palm kernel nut oil, derived from the fruit of a palm kernel, has attracted attention due to its environmentally friendly and readily biodegradable characteristics. This study involved the extraction, refinement, and characterization of palm kernel nut oil for its potential application as a cutting fluid. An experimental investigation was conducted to evaluate the performance of palm kernel nut oil (PKNO) as a CF through turning operations on aluminium 6061 alloy. The experimental parameters included the cutting speed, feed rate, and depth of cut, while the effectiveness of the CF was assessed based on key performance indicators such as surface roughness and cutting temperature. The findings demonstrated that the PKNO-CF exhibited favourable physical properties, including optimal viscosity, density, and pH levels. Furthermore, a detailed chemical analysis confirmed the absence of hazardous components, establishing palm kernel nut oil as a safer and more environmentally friendly alternative to conventional cutting fluids. This study aligns with United Nations Sustainable Development Goal (SDG) 12: Responsible Consumption and Production as it promotes the use of an environmentally friendly and biodegradable cutting fluid, reducing reliance on conventional, potentially hazardous cutting fluids and reducing environmental pollution. By utilizing palm kernel nut oil as a sustainable alternative, this research supports eco-friendly manufacturing practices and minimizes environmental impact in machining operations Full article
(This article belongs to the Special Issue Recent Advances in Green Lubricants)
Show Figures

Figure 1

28 pages, 1593 KiB  
Review
A Review on Marine Microbial Docosahexaenoic Acid Production Through Circular Economy, Fermentation Engineering, and Antioxidant Technology
by Fengwei Yin, Xiaolong Sun, Xi Luo, Weilong Zheng, Longfei Yin, Yingying Zhang and Yongqian Fu
Mar. Drugs 2025, 23(6), 256; https://doi.org/10.3390/md23060256 - 16 Jun 2025
Viewed by 1051
Abstract
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This [...] Read more.
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This review focuses on recent strategies aimed at achieving low-cost and high-quality marine microbial DHA production, emphasizing heterotrophic systems that dominate commercial supply. Key aspects include: Fermentation optimization using waste-derived feedstocks and bioprocess engineering to enhance DHA yields; Critical refining techniques—including degumming, neutralization, decolorization, and deodorization—are analyzed for improving DHA oil purity and quality, with emphasis on process optimization to adapt to the unique biochemical properties of microbial-derived oils. Additionally, strategies for oxidative stabilization, such as antioxidant protection, are discussed to extend the shelf life and preserve the nutritional value of marine microbial DHA oil. By integrating techno-economic and biochemical perspectives, this work outlines a holistic framework to guide the industrial optimization of marine microbial-sourced DHA oil production, addressing cost and quality challenges to facilitate its large-scale application as functional foods and nutraceuticals, thereby reducing reliance on marine resources and advancing sustainable omega-3 production. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Figure 1

37 pages, 5930 KiB  
Article
The Effectiveness of a Topical Rosehip Oil Treatment on Facial Skin Characteristics: A Pilot Study on Wrinkles, UV Spots Reduction, Erythema Mitigation, and Age-Related Signs
by Diana Patricia Oargă (Porumb), Mihaiela Cornea-Cipcigan, Silvia Amalia Nemeș and Mirela Irina Cordea
Cosmetics 2025, 12(3), 125; https://doi.org/10.3390/cosmetics12030125 - 16 Jun 2025
Viewed by 3176
Abstract
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high [...] Read more.
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high content of carotenoids, phenolics, and antioxidants, which are known for their anti-aging, photoprotective, and skin-rejuvenating properties. Despite the growing interest in rosehip oil, limited studies have investigated its efficacy on human skin using advanced imaging technologies. This study aims to fill this gap by evaluating the efficacy of cold-pressed Rosa canina seed oil on facial skin characteristics, specifically wrinkles, ultraviolet (UV) spot reduction, and erythema mitigation, using imaging technologies (the VISIA analysis system). Seed oil pressed from R. canina collected from the Băișoara area of Cluj County has been selected for this study due to its high carotenoid, phenolic, and antioxidant contents. The oil has also been analyzed for the content of individual carotenoids (i.e., lutein, lycopene, β Carotene, and zeaxanthin) using HPLC-DAD (High-Performance Liquid Chromatography—Diode Array Detector), along with lutein and zeaxanthin esters and diesters. After the preliminary screening of multiple Rosa species for carotenoid, phenolic, and antioxidant contents, the R. canina sample with the highest therapeutic potential was selected. A cohort of 27 volunteers (aged 30–65) underwent a five-week treatment protocol, wherein three drops of the selected rosehip oil were topically applied to the face daily. The VISIA imaging was conducted before and after the treatment to evaluate changes in skin parameters, including the wrinkle depth, UV-induced spots, porphyrins, and texture. Regarding the bioactivities, rosehip oil showed a significant total carotenoids content (28.398 μg/mL), with the highest levels in the case of the β-carotene (4.49 μg/mL), lutein (4.33 μg/mL), and zexanthin (10.88 μg/mL) contents. Results indicated a significant reduction in mean wrinkle scores across several age groups, with notable improvements in individuals with deeper baseline wrinkles. UV spots also showed visible declines, suggesting ideal photoprotective and anti-pigmentary effects attributable to the oil’s high vitamin A and carotenoid content. Porphyrin levels, often correlated with bacterial activity, decreased in most subjects, hinting at an additional antimicrobial or microbiome-modulatory property. However, skin responses varied, possibly due to individual differences in skin sensitivity, environmental factors, or compliance with sun protection. Overall, the topical application of R. canina oil appeared to improve the facial skin quality, reduce the appearance of age-related markers, and support skin health. These findings reinforce the potential use of rosehip oil in anti-aging skincare formulations. Further long-term, large-scale studies are warranted to refine dosing regimens, investigate mechanisms of action, and explore synergistic effects with other bioactive compounds. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

21 pages, 1894 KiB  
Article
Correlation Effects, Driving Forces and Evolutionary Paths of Cross-Industry Transfer of Energy Consumption in China: A New Analytical Framework
by Yufan Liang, Yu Song and Zuxu Chen
Energies 2025, 18(12), 3128; https://doi.org/10.3390/en18123128 - 13 Jun 2025
Viewed by 454
Abstract
This paper constructs a modified hypothesis extraction method (MHEM)–structural decomposition analysis (SDA)–structural path decomposition (SPD) analytical framework and employs the 2018–2022 Chinese input–output tables to discuss sectoral consumption correlations, driving forces of consumption, and the transmission paths of carbon energy (CE), oil and [...] Read more.
This paper constructs a modified hypothesis extraction method (MHEM)–structural decomposition analysis (SDA)–structural path decomposition (SPD) analytical framework and employs the 2018–2022 Chinese input–output tables to discuss sectoral consumption correlations, driving forces of consumption, and the transmission paths of carbon energy (CE), oil and gas energy (OGE) and electric energy (EE). The results of the study indicate that energy-exporting sectors are primarily energy production or conversion industries, while energy-importing sectors are mainly in the construction sector. China’s energy consumption has shown consistent year-on-year growth, with the primary driving force being the intensity of energy consumption and the secondary factor being per capita demand. The consumption of all three types of energy is primarily directed toward domestic consumption and capital formation. Regarding energy consumption transmission paths, the first-order path with the largest overall impact on CE is “electricity, gas, and water supply sector → domestic consumption”, while higher-order paths are primarily subpaths of “electricity, gas, and water supply sector → capital formation”. For OGE, the main supply and transfer path is “coke, refined petroleum, and nuclear fuel sector → domestic consumption”, along with its subpaths. In contrast, EE transmission is more balanced, with a high demand for electricity across all sectors. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

21 pages, 2288 KiB  
Article
A Real Options Model for CCUS Investment: CO2 Hydrogenation to Methanol in a Chinese Integrated Refining–Chemical Plant
by Ruirui Fang, Xianxiang Gan, Yubing Bai and Lianyong Feng
Energies 2025, 18(12), 3092; https://doi.org/10.3390/en18123092 - 12 Jun 2025
Viewed by 515
Abstract
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization [...] Read more.
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization pathways placing a primary emphasis on storage or enhanced oil recovery (EOR). There is limited research available regarding the chemical utilization of carbon dioxide (CO2). This study develops an options-based analytical model, employing geometric Brownian motion to characterize carbon and oil price uncertainties while incorporating the learning curve effect in carbon capture infrastructure costs. Additionally, revenues from chemical utilization and EOR are integrated into the return model. A case study is conducted on a process producing 100,000 tons of methanol annually via CO2 hydrogenation. Based on numerical simulations, we determine the optimal investment conditions for the “CO2-to-methanol + EOR” collaborative scheme. Parameter sensitivity analyses further evaluate how key variables—carbon pricing, oil market dynamics, targeted subsidies, and the cost of renewable electricity—influence investment timing and feasibility. The results reveal that the following: (1) Carbon pricing plays a pivotal role in influencing investment decisions related to CCUS. A stable and sufficiently high carbon price improves the economic feasibility of CCUS projects. When the initial carbon price reaches 125 CNY/t or higher, refining–chemical integrated plants are incentivized to make immediate investments. (2) Increases in oil prices also encourage CCUS investment decisions by refining–chemical integrated plants, but the effect is weaker than that of carbon prices. The model reveals that when oil prices exceed USD 134 per barrel, the investment trigger is activated, leading to earlier project implementation. (3) EOR subsidy and the initial equipment investment subsidy can promote investment and bring forward the expected exercise time of the option. Immediate investment conditions will be triggered when EOR subsidy reaches CNY 75 per barrel or more, or the subsidy coefficient reaches 0.2 or higher. (4) The levelized cost of electricity (LCOE) from photovoltaic sources is identified as a key determinant of hydrogen production economics. A sustained decline in LCOE—from CNY 0.30/kWh to 0.22/kWh, and further to 0.12/kWh or below—significantly advances the optimal investment window. When LCOE reaches CNY 0.12/kWh, the project achieves economic viability, enabling investment potentially as early as 2025. This study provides guidance and reference cases for CCUS investment decisions integrating EOR and chemical utilization in China’s refining–chemical integrated plants. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

Back to TopTop