Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,659)

Search Parameters:
Keywords = reduced fertilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Pre-Conception Maternal Obesity Confers Autism Spectrum Disorder-like Behaviors in Mice Offspring Through Neuroepigenetic Dysregulation
by Nina P. Allan, Amada Torres, Michael J. Corley, Brennan Y. Yamamoto, Chantell Balaan, Yasuhiro Yamauchi, Rafael Peres, Yujia Qin, Vedbar S. Khadka, Youping Deng, Monika A. Ward and Alika K. Maunakea
Cells 2025, 14(15), 1201; https://doi.org/10.3390/cells14151201 - 5 Aug 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with early-life origins. Maternal obesity has been associated with increased ASD risk, yet the mechanisms and timing of susceptibility remain unclear. Using a mouse model combining in vitro fertilization (IVF) and embryo transfer, we separated the effects of pre-conception and gestational obesity. We found that maternal high fat diet (HFD) exposure prior to conception alone was sufficient to induce ASD-like behaviors in male offspring—including altered vocalizations, reduced sociability, and increased repetitive grooming—without anxiety-related changes. These phenotypes were absent in female offspring and those exposed only during gestation. Cortical transcriptome analysis revealed dysregulation and isoform shifts in genes implicated in ASD, including Homer1 and Zswim6. Whole-genome bisulfite sequencing of hippocampal tissue showed hypomethylation of an alternative Homer1 promoter, correlating with increased expression of the short isoform Homer1a, which is known to disrupt synaptic scaffolding. This pattern was specific to mice with ASD-like behaviors. Our findings show that pre-conceptional maternal obesity can lead to lasting, isoform-specific transcriptomic and epigenetic changes in the offspring’s brain. These results underscore the importance of maternal health before pregnancy as a critical and modifiable factor in ASD risk. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Autism Spectrum Disorder)
Show Figures

Figure 1

9 pages, 781 KiB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

11 pages, 1381 KiB  
Article
Fertilization Promotes the Recovery of Plant Productivity but Decreases Biodiversity in a Khorchin Degraded Grassland
by Lina Zheng, Wei Zhao, Shaobo Gao, Ruizhen Wang, Haoran Yan and Mingjiu Wang
Nitrogen 2025, 6(3), 64; https://doi.org/10.3390/nitrogen6030064 - 4 Aug 2025
Abstract
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted [...] Read more.
Fertilization is a critical measure for vegetation restoration and ecological reconstruction in degraded grasslands. However, little is known about the long-term effects of different combinations of nitrogen (N), phosphorus (P), potassium (K) on plant and microbial communities in degraded grasslands. This study conducted a four-year (2017–2020) N, P, K addition experiment in the Khorchin Grassland, a degraded typical grassland located in Zhalute Banner, Tongliao City, Inner Mongolia, to investigate the effects of fertilization treatment on plant functional groups and microbial communities after grazing exclusion. Our results showed that the addition of P, NP, and NPK compound fertilizers significantly increased aboveground biomass of the plant community, which is mainly related to the improvement of nutrient availability to promote the growth of specific plant functional groups, especially annual and biennial plants and perennial bunchgrasses. However, the addition of N, P, and NP fertilizers significantly reduced the species diversity of the plant community. At the same time, the addition of N, P, and NP fertilizers and the application of N and NP significantly reduced fungal species diversity but had no significant effect on soil bacteria. Our study provides new insights into the relationships between different types of fertilization and plant community productivity and biodiversity in degraded grasslands over four years of fertilization, which is critical for evaluating the effect of fertilization on the restoration of degraded grassland. Full article
Show Figures

Figure 1

30 pages, 1939 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 (registering DOI) - 4 Aug 2025
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
Show Figures

Figure 1

24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 (registering DOI) - 4 Aug 2025
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

21 pages, 1932 KiB  
Article
Exploring Agronomic Management Strategies to Improve Millet, Sorghum, Peanuts and Rice in Senegal Using the DSSAT Models
by Walter E. Baethgen, Adama Faye and Mbaye Diop
Agronomy 2025, 15(8), 1882; https://doi.org/10.3390/agronomy15081882 - 4 Aug 2025
Abstract
Achieving food security for a growing population under a changing climate is a key concern in Senegal, where agriculture employs 77% of the workforce with a majority of small farmers who rely on the production of crops for their subsistence and for income [...] Read more.
Achieving food security for a growing population under a changing climate is a key concern in Senegal, where agriculture employs 77% of the workforce with a majority of small farmers who rely on the production of crops for their subsistence and for income generation. Moreover, due to the underproductive soils and variable rainfall, Senegal depends on imports to fulfil 70% of its food requirements. In this research, we considered four crops that are crucial for Senegalese agriculture: millet, sorghum, peanuts and rice. We used crop simulation models to explore existing yield gaps and optimal agronomic practices. Improving the N fertilizer management in sorghum and millet resulted in 40–100% increases in grain yields. Improved N symbiotic fixation in peanuts resulted in yield increases of 20–100% with highest impact in wetter locations. Optimizing irrigation management and N fertilizer use resulted in 20–40% gains. The best N fertilizer strategy for sorghum and millet included applying low rates at sowing and in early development stages and adjusting a third application, considering the expected rainfall. Peanut yields of the variety 73-33 were higher than Fleur-11 in all locations, and irrigation showed no clear economic advantage. The best N fertilizer management for rainfed rice included applying 30 kg N/ha at sowing, 25 days after sowing (DAS) and 45 DAS. The best combination of sowing dates for a possible double rice crop depended on irrigation costs, with a first crop planted in January or March and a second crop planted in July. Our work confirmed results obtained in field research experiments and identified management practices for increasing productivity and reducing yield variability. Those crop management practices can be implemented in pilot experiments to further validate the results and to disseminate best management practices for farmers in Senegal. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

28 pages, 5073 KiB  
Article
Exploring the Potential of Nitrogen Fertilizer Mixed Application to Improve Crop Yield and Nitrogen Partial Productivity: A Meta-Analysis
by Yaya Duan, Yuanbo Jiang, Yi Ling, Wenjing Chang, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Bin Liu
Plants 2025, 14(15), 2417; https://doi.org/10.3390/plants14152417 - 4 Aug 2025
Abstract
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase [...] Read more.
Slow-release nitrogen fertilizers enhance crop production and reduce environmental pollution, but their slow nitrogen release may cause insufficient nitrogen supply in the early stages of crop growth. Mixed nitrogen fertilization (MNF), combining slow-release nitrogen fertilizer with urea, is an effective way to increase yield and income and improve nitrogen fertilizer efficiency. This study used urea alone (Urea) and slow-release nitrogen fertilizer alone (C/SRF) as controls and employed meta-analysis and a random forest model to assess MNF effects on crop yield and nitrogen partial factor productivity (PFPN), and to identify key influencing factors. Results showed that compared with urea, MNF increased crop yield by 7.42% and PFPN by 8.20%, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 20 °C, and elevations of 750–1050 m; in soils with a pH of 5.5–6.5, where 150–240 kg·ha−1 nitrogen with 25–35% content and an 80–100 day release period was applied, and the blending ratio was ≥0.3; and when planting rapeseed, maize, and cotton for 1–2 years. The top three influencing factors were crop type, nitrogen rate, and soil pH. Compared with C/SRF, MNF increased crop yield by 2.44% and had a non-significant increase in PFPN, with higher improvement rates in Northwest China, regions with an average annual temperature ≤ 5 °C, average annual precipitation ≤ 400 mm, and elevations of 300–900 m; in sandy soils with pH > 7.5, where 150–270 kg·ha−1 nitrogen with 25–30% content and a 40–80 day release period was applied, and the blending ratio was 0.4–0.7; and when planting potatoes and rapeseed for 3 years. The top three influencing factors were nitrogen rate, crop type, and average annual precipitation. In conclusion, MNF should comprehensively consider crops, regions, soil, and management. This study provides a scientific basis for optimizing slow-release nitrogen fertilizers and promoting the large-scale application of MNF in farmland. Full article
(This article belongs to the Special Issue Nutrient Management for Crop Production and Quality)
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

17 pages, 13655 KiB  
Review
Molar Pregnancy: Early Diagnosis, Clinical Management, and the Role of Referral Centers
by Antônio Braga, Lohayne Coutinho, Marcela Chagas, Juliana Pereira Soares, Gustavo Yano Callado, Raphael Alevato, Consuelo Lozoya, Sue Yazaki Sun, Edward Araujo Júnior and Jorge Rezende-Filho
Diagnostics 2025, 15(15), 1953; https://doi.org/10.3390/diagnostics15151953 - 4 Aug 2025
Abstract
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk [...] Read more.
Molar pregnancy (MP) is a gestational disorder resulting from abnormal fertilization, leading to atypical trophoblastic proliferation and the formation of a complete or partial hydatidiform mole. This condition represents the most common form of gestational trophoblastic disease (GTD) and carries a significant risk of progression to gestational trophoblastic neoplasia (GTN). Although rare in high-income countries, MP remains up to ten times more prevalent in low-income and developing countries, contributing to preventable maternal morbidity and mortality. This narrative review provides an updated, practical overview of the clinical presentation, diagnosis, treatment, and follow-up of MP. A key focus is the challenge of early diagnosis, particularly given the increasing frequency of first-trimester detection, where classical histopathological criteria may be subtle, leading to diagnostic errors. The review innovates by integrating advanced diagnostic methods—combining histopathology, immunohistochemistry using p57Kip2, Ki-67, and p53 markers, along with cytogenetic analysis—to improve diagnostic accuracy in early gestation. The central role of referral centers is also emphasized, not only in facilitating timely treatment and access to chemotherapy, but also in implementing standardized post-molar follow-up protocols that reduce progression to GTN and maternal mortality. By focusing on both advanced diagnostic strategies and the organization of care through referral centers, this review offers a comprehensive, practice-oriented perspective to optimize patient outcomes in GTD and address persistent care gaps in high-burden regions. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

14 pages, 397 KiB  
Article
Combination of Continuous Use of Oral Clomiphene Citrate with Injectable Gonadotropins for Ovarian Stimulation: A Single-Center Study
by Adamantia Kontogeorgi, Gkalia Tsangkalova, Panagiota Ambatzi, Ioannis Boutas, Eleftherios Meridis, Ioannis Gryparis, Dimitrios Kalaitzis, Angeliki Fenga, Melpomeni Peppa, Sophia Kalantaridou, Antonios Makrigiannakis and Minas Paschopoulos
Life 2025, 15(8), 1235; https://doi.org/10.3390/life15081235 - 4 Aug 2025
Abstract
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum [...] Read more.
Objective: This retrospective observational study evaluated the efficacy and safety of an ovarian stimulation protocol for embryo banking that involves continuous administration of clomiphene citrate (CC) in combination with gonadotropins, without the use of GnRH antagonists. Methods: Conducted at the Serum IVF Clinic in Athens, Greece, the study included 250 women aged 25–45 who underwent IVF for embryo banking. The protocol involved administering 150 mg of CC daily from day 2 of the menstrual cycle until the day before hCG trigger, alongside 150 IU/day of Meriofert. Outcomes assessed included oocyte yield, fertilization rates, incidence of ovarian hyperstimulation syndrome (OHSS), and hormonal correlations. Comparative and regression analyses explored differences between age groups and predictors of success. Results: The protocol demonstrated a favorable safety profile with no cases of OHSS and yielded a mean of 10.25 oocytes per patient. Group analysis showed significantly more oocytes retrieved in women under 40 (mean: 12.5) versus those over 40 (mean: 8.43), while fertilization rates were paradoxically higher in the older cohort (59.16% vs. 30.68%, p < 0.0001). Regression models revealed basal FSH to be a significant inverse predictor of oocyte yield, but it was positively associated with fertilization rate. Continuous CC use effectively suppressed premature LH surges without compromising oocyte or embryo quality, allowing flexible and cost-effective stimulation with minimal monitoring. Conclusions: Continuous administration of clomiphene citrate in combination with gonadotropins presents a promising, antagonist-free ovarian stimulation protocol for embryo banking. The approach is economically efficient, reduces monitoring requirements, and maintains safety and effectiveness and is particularly notable in women over 40. Further studies are warranted to validate these findings and refine protocol mechanisms. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

12 pages, 1041 KiB  
Article
Investigating the Influence of Conventional vs. Ultra-High Dose Rate Proton Irradiation Under Normoxic or Hypoxic Conditions on Multiple Developmental Endpoints in Zebrafish Embryos
by Alessia Faggian, Gaia Pucci, Enrico Verroi, Alberto Fasolini, Stefano Lorentini, Sara Citter, Maria Caterina Mione, Marco Calvaruso, Giorgio Russo, Emanuele Scifoni, Giusi Irma Forte, Francesco Tommasino and Alessandra Bisio
Cancers 2025, 17(15), 2564; https://doi.org/10.3390/cancers17152564 - 3 Aug 2025
Viewed by 57
Abstract
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish [...] Read more.
Objectives: To investigate how the FLASH effect modulates radiation response on multiple developmental endpoints of zebrafish embryos under normoxic and hypoxic conditions, after irradiation with proton beams at a conventional and an ultra-high dose rate (UHDR). Methods: Embryos were obtained from adult zebrafish and irradiated with a 228 MeV proton beam 24 h post-fertilization (hpf) at a dose rate of 0.6 and 317 Gy/s. For the hypoxic group, samples were kept inside a hypoxic chamber prior to irradiation, while standard incubation was adopted for the normoxic group. After irradiation, images of single embryos were acquired, and radiation effects on larval length, yolk absorption, pericardial edema, head size, eye size, and spinal curvature were assessed at specific time points. Results: Data indicate a general trend of significantly reduced toxicity after exposure to a UHDR compared to conventional regimes, which is maintained under both normoxic and hypoxic conditions. Differences are significant for the levels of pericardial edema induced by a UHDR versus conventional irradiation in normoxic conditions, and for eye and head size in hypoxic conditions. The toxicity scoring analysis shows a tendency toward a protective effect of the UHDR, which appears to be associated with a lower percentage of embryos in the high score categories. Conclusions: A radioprotective effect at a UHDR is observed both for normoxic (pericardial edema) and hypoxic (head and eye size) conditions. These results suggest that while the UHDR may preserve a potential to reduce radiation-induced damage, its protective effects are endpoint-dependent; the role of oxygenation might also be dependent on the tissue involved. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop