Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = rectangular bars

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 11413 KB  
Article
Hydrodynamic-Ecological Synergistic Effects of Interleaved Jetties: A CFD Study Based on a 180° Bend
by Dandan Liu, Suiju Lv and Chunguang Li
Hydrology 2026, 13(1), 17; https://doi.org/10.3390/hydrology13010017 - 2 Jan 2026
Viewed by 682
Abstract
Under the dual pressures of global climate change and anthropogenic activities, enhancing the ecological functions of hydraulic structures has become a critical direction for sustainable watershed management. While traditional spur dike designs primarily focus on bank protection and flood control, current demands require [...] Read more.
Under the dual pressures of global climate change and anthropogenic activities, enhancing the ecological functions of hydraulic structures has become a critical direction for sustainable watershed management. While traditional spur dike designs primarily focus on bank protection and flood control, current demands require additional consideration of river ecosystem restoration. Numerical simulations were performed using the RNG k-ε turbulence model to solve the three-dimensional Reynolds-averaged Navier–Stokes equations, a formulation that enhances prediction accuracy for complex flows in curved channels, including separation and reattachment. Following a grid independence study and the application of standard wall functions for near-wall treatment, a comparative analysis was conducted to examine the flow characteristics and ecological effects within a 180° channel bend under three configurations: no spur dikes, a single-side arrangement, and a staggered arrangement of non-submerged, flow-aligned, rectangular thin-walled spur dikes. The results demonstrate that staggered spur dikes significantly reduce the lateral water surface gradient by concentrating the main flow, thereby balancing water levels along the concave and convex banks and suppressing lateral channel migration. Their synergistic flow-contracting effect enhances the kinetic energy of the main flow and generates multi-scale turbulent vortices, which not only increase sediment transport capacity in the main channel but also create diverse habitat conditions. Specifically, the bed shear stress in the central channel region reached 2.3 times the natural level. Flow separation near the dike heads generated a high-velocity zone, elevating velocity and turbulent kinetic energy by factors of 2.3 and 6.8, respectively. This shift promoted bed sediment coarsening and consequently increased scour resistance. In contrast, the low-shear wake zones behind the dikes, with weakened hydrodynamic forces, facilitated fine-sediment deposition and the growth of point bars. Furthermore, this study identifies a critical interface (observed at approximately 60% of the water depth) that serves as a key interface for vertical energy conversion. Below this height, turbulence intensity intermittently increases, whereas above it, energy dissipates markedly. This critical elevation, controlled by both the spur dike configuration and flow conditions, embodies the transition mechanism of kinetic energy from the mean flow to turbulent motions. These findings provide a theoretical basis and engineering reference for optimizing eco-friendly spur dike designs in meandering rivers. Full article
Show Figures

Figure 1

21 pages, 4855 KB  
Article
Energy-Efficient Actuator Concept for Two-Speed Transmissions in Battery Electric Vehicles
by Jonas Brauer, Hannes Bohne and Jens Falkenstein
World Electr. Veh. J. 2026, 17(1), 12; https://doi.org/10.3390/wevj17010012 - 24 Dec 2025
Viewed by 387
Abstract
Two-speed transmissions can improve battery electric vehicle (BEV) drivetrain efficiency. However, the additional losses caused by shifting actuators offset these efficiency gains. Particularly hydraulic actuated wet-running multi-plate clutches, which enable powershifts, typically require rotary feedthroughs. Commonly used rectangular sealing rings (RSR) demand continuous [...] Read more.
Two-speed transmissions can improve battery electric vehicle (BEV) drivetrain efficiency. However, the additional losses caused by shifting actuators offset these efficiency gains. Particularly hydraulic actuated wet-running multi-plate clutches, which enable powershifts, typically require rotary feedthroughs. Commonly used rectangular sealing rings (RSR) demand continuous hydraulic power due to leakage and cause friction torque. This leads to high RSR temperatures, especially at high angular velocities of electric machines. This article introduces a two-speed BEV transmission concept using wet-running multi-plate clutches actuated via a rotating 5/3-way valve that can shut off, i.e., lock up the actuating pressure directly in the rotating system. Consequently, the rotary feedthrough is depressurized and contactless gap seals are usable. This reduces supply pressure requirements and minimizes hydraulic and friction losses while retaining powershift capability. Component-level tests evaluate leakage, pressure shut off, actuator dynamics and power consumption. Results show that actuating pressure in a shut-off clutch is maintained for longer than 60 min and electrical actuator power consumption is less than 20 W. During overlapping gearshifts, gap seal leakage is less than 1 L/min at 10 bar and sufficient pressure dynamics are achieved. These findings confirm the feasibility of the proposed actuator for multi-plate clutches in two-speed BEV transmissions. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

22 pages, 24804 KB  
Article
Numerical Simulation and Verification of Free-Surface Flow Through a Porous Medium
by Perizat Omarova, Alexandr Neftissov, Ilyas Kazambayev, Lalita Kirichenko, Aliya Aubakirova and Aliya Borsikbayeva
Water 2025, 17(24), 3505; https://doi.org/10.3390/w17243505 - 11 Dec 2025
Viewed by 630
Abstract
Managing hydraulic behaviour and water quality in semi-arid, transboundary rivers such as the Talas River in Kazakhstan requires reliable numerical tools for predicting free-surface flow through porous hydraulic structures. This study develops and verifies a two-dimensional computational fluid dynamics (CFD) framework for simulating [...] Read more.
Managing hydraulic behaviour and water quality in semi-arid, transboundary rivers such as the Talas River in Kazakhstan requires reliable numerical tools for predicting free-surface flow through porous hydraulic structures. This study develops and verifies a two-dimensional computational fluid dynamics (CFD) framework for simulating free-surface water flow through porous media and demonstrates its applicability to a real river reach of the Talas in the Zhambyl region. The model combines the Volume of Fluid (VOF) method with the Darcy–Forchheimer formulation to represent porous resistance, while turbulence is described by the RNG kε model, and pressure–velocity coupling is handled by the PISO algorithm. Model verification is conducted against a classic dam-break experiment involving a rectangular porous barrier across a laboratory channel. The simulations successfully reproduce the main experimental observations, including rapid drawdown after gate opening, formation and attenuation of the free-surface wave, localized depression above the porous insert, and the subsequent approach to a quasi-steady state. Time histories of water levels at control points and the spatial progression of the wet front show close agreement with measurements. Using the validated setup, a site-specific two-dimensional domain for the Talas River is constructed to analyse the hydraulic influence of a porous bar. The model quantifies velocity redistribution and energy dissipation across the porous patch and provides physically consistent flow fields suitable for engineering assessments under various discharge conditions. Full article
Show Figures

Figure 1

22 pages, 3853 KB  
Article
A Cross Electro-Mechanical Impedance Method Using a Distributed Piezoelectric Array for Bolt Loosening Detection
by Lijun Yang, Wei Yan and Dong Xuan
Appl. Sci. 2025, 15(23), 12605; https://doi.org/10.3390/app152312605 - 28 Nov 2025
Viewed by 344
Abstract
As a critical connection method in modern engineering structures, the health condition of bolted joints significantly influences overall structural safety and durability. Although the drive-point electro-mechanical impedance (EMI) technique has proven effective for bolt loosening detection, it suffers from certain shortcomings, especially for [...] Read more.
As a critical connection method in modern engineering structures, the health condition of bolted joints significantly influences overall structural safety and durability. Although the drive-point electro-mechanical impedance (EMI) technique has proven effective for bolt loosening detection, it suffers from certain shortcomings, especially for the quantitative identification of bolt loosening. This study proposed a novel bolt loosening detection approach based on the cross electro-mechanical impedance (EMI) technique through experimental measurements and numerical simulations. First, a distributed piezoelectric array was used to conduct a comparative study on bar-type specimens under three different bolt loosening states. Both drive-point admittance and cross-admittance signals were measured before and after bolt loosening. Qualitative assessment of bolt loosening was carried out by analyzing variations in conductance curves under different conditions, supplemented by quantitative evaluation using the normalized root mean square deviation (RMSD) index. The results demonstrated that cross-admittance signals exhibit superior sensitivity over drive-point admittance, allowing more accurate identification of both the severity and location of bolt loosening. Subsequently, an experiment was conducted on a rectangular specimen by applying cross EMI under various bolt loosening states. The results confirmed the effectiveness of the proposed detection technique. Finally, finite element models were established to simulate bolt loosening. The simulations validated the capability of the numerical cross conductance signals to accurately detect different loosening states. The present investigations showed that the cross-admittance technique not only demonstrates superior capability in bolt loosening detection over the conventional drive-point method but also significantly expands the technical means for EMI-based structural health monitoring with improved detection performance. Full article
Show Figures

Figure 1

25 pages, 2577 KB  
Article
A Design-Oriented Unified Equation for the Torsion Constant of Non-Prismatic (Linearly Tapered) Rectangular Beams
by Mereen Hassan Fahmi Rasheed, Bahman Omar Taha and Mohamed M. Arbili
Buildings 2025, 15(21), 3926; https://doi.org/10.3390/buildings15213926 - 30 Oct 2025
Viewed by 1243
Abstract
This study presents a unified, design-oriented equation for the torsion constant J of linearly tapered, non-prismatic rectangular members, covering two canonical geometries: (i) singly tapered bars, in which only the depth varies linearly along the longitudinal axis, and (ii) doubly tapered bars, in [...] Read more.
This study presents a unified, design-oriented equation for the torsion constant J of linearly tapered, non-prismatic rectangular members, covering two canonical geometries: (i) singly tapered bars, in which only the depth varies linearly along the longitudinal axis, and (ii) doubly tapered bars, in which both width and depth vary linearly. The formulation provides the spatial variation J(x) and enables evaluation of the associated shear stress distribution and angle of twist. Accuracy is assessed against classical elasticity solutions—Prandtl’s membrane analogy, single- and double-Fourier series solutions—as well as independent finite element analyses, demonstrating close agreement over a broad parametric range. A dimensionless coefficient (x)=J(x)/(b23h2) is introduced to elucidate trends:   approaches 1/3 in the prismatic, very-narrow limit (λh=λb=1, α0), consistent with the exact solution;   increases with increasing taper ratios in depth and width (λh,λb) and decreases with increasing cross-sectional aspect ratio α. The proposed equation consolidates the treatment of tapered rectangular members into a single, practical framework, offering a computationally efficient tool for preliminary sizing and detailed design verification. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 719 KB  
Article
Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity
by Victor A. Kovtunenko
Computation 2025, 13(9), 210; https://doi.org/10.3390/computation13090210 - 1 Sep 2025
Cited by 2 | Viewed by 786
Abstract
The dynamic contact problem describing collision of an elastic bar with a rigid obstacle, prescribed by an initial velocity, is considered in a variational formulation. The non-smooth, piecewise-linear solution is constructed analytically using partition of a 2D rectangular domain along characteristics. Challenged by [...] Read more.
The dynamic contact problem describing collision of an elastic bar with a rigid obstacle, prescribed by an initial velocity, is considered in a variational formulation. The non-smooth, piecewise-linear solution is constructed analytically using partition of a 2D rectangular domain along characteristics. Challenged by the discontinuous velocity after collision, full discretization of the problem is applied that is based on a space-time finite element method. For an iterative solution of the discrete variational inequality, a primal–dual active set algorithm is used. Computer simulation of the collision problem is presented on uniform triangle grids. The active sets defined in the 2D space-time domain converge in a few iterations after re-initialization. The benchmark solution at grid points is indistinguishable from the analytical solution. The discrete energy has no dissipation, it is free of spurious oscillations, and it converges super-linearly under mesh refinement. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

23 pages, 3551 KB  
Article
The Influence of Soft Soil, Pile–Raft Foundation and Bamboo on the Bearing Characteristics of Reinforced Concrete (RC) Structure
by Zhibin Zhong, Xiaotong He, Shangheng Huang, Chao Ma, Baoxian Liu, Zhile Shu, Yineng Wang, Kai Cui and Lining Zheng
Buildings 2025, 15(13), 2302; https://doi.org/10.3390/buildings15132302 - 30 Jun 2025
Cited by 1 | Viewed by 2410
Abstract
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, [...] Read more.
Pile–raft foundations are widely used in soft soil engineering due to their good integrity and high stiffness. However, traditional design methods independently design pile–raft foundations and superstructures, ignoring their interaction. This leads to significant deviations from actual conditions when the superstructure height increases, resulting in excessive costs and adverse effects on building stability. This study experimentally investigates the interaction characteristics of pile–raft foundations and superstructures in soft soil under different working conditions using a 1:10 geometric similarity model. The superstructure is a cast-in-place frame structure (beams, columns, and slabs) with bamboo skeletons with the same cross-sectional area as the piles and rafts, cast with concrete. The piles in the foundation use rectangular bamboo strips (side length ~0.2 cm) instead of steel bars, with M1.5 mortar replacing C30 concrete. The raft is also made of similar materials. The results show that the soil settlement significantly increases under the combined action of the pile–raft and superstructure with increasing load. The superstructure stiffness constrains foundation deformation, enhances bearing capacity, and controls differential settlement. The pile top reaction force exhibits a logarithmic relationship with the number of floors, coordinating the pile bearing performance. Designers should consider the superstructure’s constraint of the foundation deformation and strengthen the flexural capacity of inner pile tops and bottom columns for safety and economy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 3332 KB  
Article
Numerical Study on Impact Damage and Damage Evolution of Cemented Backfill
by Qiang Li, Jinshan Sun, Xianqi Xie, Qian Dong, Jianguo Wang, Hongyu Zhang and Tao Wen
Crystals 2025, 15(6), 514; https://doi.org/10.3390/cryst15060514 - 28 May 2025
Cited by 3 | Viewed by 732
Abstract
To quantitatively describe the damage degree and failure process of the cemented backfill (CB) under dynamic loading, this paper performed numerical split Hopkinson pressure bar (SHPB) impact experiments on CB samples using the ANSYS/LS-DYNA. The damage pattern and failure process of CB samples [...] Read more.
To quantitatively describe the damage degree and failure process of the cemented backfill (CB) under dynamic loading, this paper performed numerical split Hopkinson pressure bar (SHPB) impact experiments on CB samples using the ANSYS/LS-DYNA. The damage pattern and failure process of CB samples with four mix ratios (cement-to-sand (c/s) ratios of 1:4, 1:6, 1:8, and 1:10) at different impact velocities (v) (1.5, 1.7, 1.8, and 2.0 m/s) were numerically investigated using the micro-crack density method to define the damage variable (d). The results revealed that the use of a waveform shaper in the numerical simulation yielded a more ideal rectangular wave to ensue uniform stress distribution across the sample’s plane without stress concentration. Numerical simulations effectively depicted the dynamic failure process of the CB, with the overall failure trend exhibiting edge spalling followed by the propagation and interconnection of internal cracks. When the v increased from 1.7 m/s to 1.8 m/s, the d increased by more than 10%. As the v increased from 1.5 m/s to 2.0 m/s, the d for c/s ratios of 1:4, 1:6, 1:8, and 1:10 ranged from 0.238 to 0.336, 0.274 to 0.413, 0.391 to 0.547, and 0.473 to 0.617, respectively. A significant “leap” phenomenon in damage was observed when the c/s ratio changed from 1:6 to 1:8. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 2738 KB  
Article
Assessing the Effectiveness of Dowel Bars in Jointed Plain Concrete Pavements Using Finite Element Modelling
by Saima Yaqoob and Johan Silfwerbrand
Materials 2025, 18(3), 588; https://doi.org/10.3390/ma18030588 - 28 Jan 2025
Cited by 2 | Viewed by 2374
Abstract
Aggregate interlocking and dowel bar systems are the two primary mechanisms in a jointed plain concrete pavement for transferring the wheel loads from the loaded slab to the adjacent unloaded slab, avoiding critical stresses and excessive deformations across the joint. Aggregate interlocking is [...] Read more.
Aggregate interlocking and dowel bar systems are the two primary mechanisms in a jointed plain concrete pavement for transferring the wheel loads from the loaded slab to the adjacent unloaded slab, avoiding critical stresses and excessive deformations across the joint. Aggregate interlocking is suitable for small joint openings, while the dowel bar provides effective load transmission for both smaller and wider joint openings. In this study, a three-dimensional finite element model was developed to investigate the structural performance of dowelled jointed plain concrete pavements. The developed model was compared with an analytical solution, i.e., Westergaard’s method. The current study investigated the effectiveness of the dowel bars in jointed plain concrete pavements considering the modulus of elasticity and the thickness of the base layer, as well as dowel bar diameter and length. Furthermore, the load transfer efficiency (LTE) of a rounded dowel bar was compared with that of plate dowel bars (i.e., rectangular and diamond-shaped dowel bars) of a similar cross-sectional area and length. This study showed that the LTE was enhanced by 4% when the base layer’s modulus of elasticity increased from 450 MPa to 6000 MPa, while the increase in stress was 23%. A 1.2% improvement in the LTE and a 2.1% reduction in flexural stress were observed as the base layer’s thickness increased from 100 to 250 mm. Moreover, increasing the dowel bar’s diameter from 20 mm to 38 mm enhanced the LTE by 4.3% and 3.8% for base layer moduli of 450 MPa and 4000 MPa, respectively. The corresponding rise in stresses was 10% and 5%. The diamond-shaped dowel bar of a 50 × 32 mm size showed a 0.48% increase in the LTE, while sizes of 100 × 16 mm and 200 × 8 mm reduced the stress 6.7% and 23.1%, respectively, compared to that in the rounded dowel bar. With rectangular dowel bars, a 4% rise in the stress was noted compared to that with the rounded dowel bar. Increasing the length of the diamond-shaped dowel bar slightly improved the LTE but had no impact on the stress in the concrete slab. The findings from this study can help highway engineers improve pavements’ durability, make cost-effective decisions, contribute to resource savings in large-scale concrete pavement projects, and enhance the overall quality of infrastructure. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 8406 KB  
Article
Flexural Behavior of Precast Rectangular Reinforced Concrete Beams with Intermediate Connection Filled with High-Performance Concrete
by Ahmed Hamoda, Mohamed Emara, Mizan Ahmed, Aref A. Abadel and Vipulkumar Ishvarbhai Patel
Buildings 2024, 14(9), 2823; https://doi.org/10.3390/buildings14092823 - 7 Sep 2024
Cited by 7 | Viewed by 2086
Abstract
Precast rectangular reinforced concrete (PRRC) beams are joined on construction sites using concrete in situ to achieve the desired length. Limited research exists on the effect of intermediate connection shapes and the types of infilled concrete on the flexural performance of PRRC beams. [...] Read more.
Precast rectangular reinforced concrete (PRRC) beams are joined on construction sites using concrete in situ to achieve the desired length. Limited research exists on the effect of intermediate connection shapes and the types of infilled concrete on the flexural performance of PRRC beams. This paper presents a comprehensive experimental and numerical investigation into the performance of PRRC beams with various intermediate connection geometries and infilled materials under flexural loading. The study examines rectangular, triangular, and semi-circular intermediate connections, along with the performance of beams infilled with normal concrete (NC), engineered cementitious composites (ECC), ultra-high-performance ECC (UHPECC), and rubberized ECC (RECC). The experimental results indicate that the rectangular intermediate connection exhibits superior performance in terms of strength and energy absorption compared to the triangular and semi-circular shapes. Beams incorporating UHPECC demonstrated the most significant improvements in strength and energy absorption, outperforming those with ECC and RECC for any shape of intermediate connection. Moreover, beams with rectangular connections and UHPECC infill exhibited the most significant increase in energy absorption and ultimate load compared to the beams with ECC and RECC. The ultimate load of the beams with UHPECC and tensile reinforcement bar diameters of 10 mm and 12 mm increased by 13% and 29%, respectively, compared to the control beam. The energy absorption of the beams with tensile reinforcement bar diameters of 10 and 12 mm was found to be 75% and 184% higher, respectively, than the control beam. In addition, an increase in tensile bar diameter was found to enhance both the energy absorption and the ultimate load capacity of the beams, regardless of the type of infill concrete. Beams incorporating UHPECC demonstrated the most significant improvements in strength and energy absorption, outperforming those with ECC and RECC. In particular, beams with rectangular connections and UHPECC infill exhibited an increase in energy absorption and ultimate load of up to 184% and 29%, respectively. UHPC was calculated to be as high as 184%, and 29%, respectively, compared to the control beams. In addition, an increase in tensile bar diameter was found to enhance both energy absorption and ultimate load capacity. Finite element modeling (FEM) was developed and validated against the experimental results to ensure accuracy. A parametric study was conducted to study the effects of various concrete types in triangular and semi-circular connections, as well as the influence of intermediate connection length on semi-circular connections under flexural loads. The findings reveal that increasing the length of intermediate connections increases the ultimate load of the beams. Full article
(This article belongs to the Special Issue Sustainable Development of Concrete and Composite Structures)
Show Figures

Figure 1

16 pages, 4114 KB  
Article
Effect of Weighted Vest at 0%, 5% and 10% of Body Mass on Gasometry Biomarkers and Performance during a Rectangular Test in Trained Trail Runners
by Francisco Javier Martínez-Noguera, Pedro E. Alcaraz and Cristian Marín-Pagán
Sports 2024, 12(9), 229; https://doi.org/10.3390/sports12090229 - 23 Aug 2024
Cited by 1 | Viewed by 6076
Abstract
Trail runners (TRs) must carry an extra load of equipment, food (bars and gels) and liquids, to delay the anticipation of fatigue and dehydration during their competitions. Therefore, we aimed to evaluate how an extra load can influence the metabolic level. Thirteen well-trained [...] Read more.
Trail runners (TRs) must carry an extra load of equipment, food (bars and gels) and liquids, to delay the anticipation of fatigue and dehydration during their competitions. Therefore, we aimed to evaluate how an extra load can influence the metabolic level. Thirteen well-trained trail runners performed a randomized crossover study (total n = 39), completing three treadmill running sessions with a weighted vest of 0%, 5% and 10% of their body mass during a combined test (rectangular test + ramp test). In addition, biomarkers of oxygen metabolism, acid–base and electrolyte status pre-, during and post-test, as well as the rectangular from capillary blood of the finger and time to exhaustion, were analyzed. Repeated-measures ANOVA showed no significant difference between conditions for any of the analyzed biomarkers of blood gas. However, one-way ANOVA showed a significant difference in trial duration between conditions (p ≤ 0.001). Tukey’s post hoc analysis observed a significant decrease in time to exhaustion in the weighted vest of 10% compared to 0% (p ≤ 0.001) and 5% (p ≤ 0.01) and 5% compared to 0% (p = 0.030). In addition, repeated-measures ANOVA detected a significant difference in pH in the group x time interaction (p = 0.035). Our results show that increasing the weighted vest (5% and 10%) anticipates fatigue in runners trained in TR. In addition, increasing the load decreased pH by a smaller magnitude at 10% compared to 0% and 5% at the end of the exercise protocol. Full article
(This article belongs to the Special Issue Sport Physiology and Physical Performance)
Show Figures

Figure 1

47 pages, 10769 KB  
Article
Design of a Trailer Adapted for Accommodation and Transport of Beehives
by Eduardo Garzón, Vanesa García-Garzón, Javier Pascual García and Pedro Jose Sánchez-Soto
Designs 2024, 8(4), 82; https://doi.org/10.3390/designs8040082 - 20 Aug 2024
Viewed by 1387
Abstract
There is relevant interest concerning beehives, taking into account climate change and its influence on bees’ behavior. A part of the industrial engineering sector is focusing on beekeeping applications. More specifically, the present study aims to develop a trailer for the transport of [...] Read more.
There is relevant interest concerning beehives, taking into account climate change and its influence on bees’ behavior. A part of the industrial engineering sector is focusing on beekeeping applications. More specifically, the present study aims to develop a trailer for the transport of beehives adapted to be placed or fixed to a tractor or a vehicle trailer, with the objective of transporting the beehives safely and stably during transhumance. The proposed novel design relates to a trailer that incorporates a device for housing a rectangular section of the beehives, which can be adapted for fixing or housing in a vehicle or in a vehicle trailer. The device comprises a lower support structure, adapted to support a plurality of rectangular sections of beehives stacked horizontally on the lower structure, an upper frame adapted to house the beehives inside, and two or more connecting elements between the lower structure and the upper frame. The connection of the trailer with the device facilitates the loading and unloading of the beehives by mechanical means. The different parts have been designed as individual pieces and then assembly is carried out to achieve the complete design. This method of implementation is because the simulation of individual components is simpler and easier, since if it is carried out through assembly, the type of joint, such as welding, and the length of the weld would have to be indicated at each point of contact between components, along with its thickness and all the necessary parameters. Therefore, in those welding points, fixed fastenings are indicated and so will simplify it. In accordance with the individual creation of each part, its own load simulation has been carried out. Static analyses are performed taking into account structural elements of this proposed design, with restrictions and loads being established. The analysis, including upper bars and supports, has been completed with several situations. Based on stress values, deformations have been determined and calculations evaluated. The trays have been manufactured using flat steel bars and angled bars for the legs and support of the hives. Full article
Show Figures

Figure 1

12 pages, 2681 KB  
Article
Analogue of High-Q Transparency Band and Sensitivity in All-Dielectric Metasurfaces Supporting Bound States in the Continuum
by Ling Shuai, Suxia Xie, Haoxuan Nan and Xin Guan
Photonics 2024, 11(8), 775; https://doi.org/10.3390/photonics11080775 - 20 Aug 2024
Cited by 1 | Viewed by 1757
Abstract
Bound states in the continuum (BICs), which are characterized by their high-quality factor, have become a focal point in modern optical research. This study investigates BICs within a periodic array of dielectric resonators, specifically composed of a silicon rectangular bar coupled with four [...] Read more.
Bound states in the continuum (BICs), which are characterized by their high-quality factor, have become a focal point in modern optical research. This study investigates BICs within a periodic array of dielectric resonators, specifically composed of a silicon rectangular bar coupled with four silicon rectangular blocks. Through the analysis of mode coupling, we demonstrate that the interaction between the blocks significantly modulates the eigenmodes of the bar, causing a redshift in all modes and enabling the formation of electromagnetically induced transparency based on BICs (EIT-BIC). Unlike typical EIT mechanisms, this EIT-BIC arises from the coupling of “bright” and “dark” modes both from the rectangular bar, offering novel insights for nanophotonic and photonic device design. Further, our systematic exploration of BIC formation mechanisms and their sensing properties by breaking structural symmetries and changing environmental refractive indices has shed light on the underlying physics. This research not only consolidates a robust theoretical framework for understanding BIC behavior but also paves the way for high-quality factor resonator and sensor development, as well as the precise control of photonic states. The findings significantly deepen our understanding of these phenomena and hold substantial promise for future photonic applications. Full article
Show Figures

Figure 1

30 pages, 20105 KB  
Article
MULTITHMT: A MATLAB Application for Multidimensional Transient Heat and Mass Transfer Processes
by M. Özgün Korukçu
Processes 2024, 12(7), 1411; https://doi.org/10.3390/pr12071411 - 6 Jul 2024
Viewed by 2868
Abstract
Transient heat conduction and mass transfer have many applications in industry such as heating, cooling, cooking, quenching of steels, freezing, and convective drying of vegetables or fruits. A novel, interactive, and fast MATLAB application, named MULTITHMT, is improved to solve multidimensional transient heat [...] Read more.
Transient heat conduction and mass transfer have many applications in industry such as heating, cooling, cooking, quenching of steels, freezing, and convective drying of vegetables or fruits. A novel, interactive, and fast MATLAB application, named MULTITHMT, is improved to solve multidimensional transient heat and mass transfer problems. Exact solutions are obtained for infinite rectangular bars, short cylinders, rectangular prisms, and spherical geometries. Instantaneous temperature and moisture content at any location in the objects are obtained and temperature and moisture content at the final time are displayed in two- and three-dimensional graphics. Quenching of steel for rectangle bars and cooking of cylindrical or rectangular prism-shaped meat are represented for transient heat transfer. Cooling of spherical commercial bronze and iron is also investigated. For transient mass transfer, convective drying of rectangular prunes, bananas of short cylinders, and spherical cornelian cherries with different operational conditions is calculated. Drying of cubes with the same shape and different moisture diffusivities is investigated. MULTITHMT is the only program that uses exact solutions to calculate multidimensional heat and mass transfer problems in the available literature. It is also the only application that can calculate the target time with a given temperature or moisture content for any specific location in the studied multidimensional objects. This application can be used for educational purposes in several engineering departments and industrial applications where transient heat and mass transfer processes are needed. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 5873 KB  
Article
Carbon Fiber Reinforced Polymer (CFRP) for Structural Capacity Enhancement of RC Beams Incorporating Innovative Side Hybrid (SH) Technique
by Md. Akter Hosen, Mahaad Issa Shammas, Khalid Ahmed Al Kaaf, Mohd Zamin Jumaat, U. Johnson Alengaram, Nor Hafizah Ramli Sulong and Huzaifa Bin Hashim
Buildings 2024, 14(7), 1919; https://doi.org/10.3390/buildings14071919 - 23 Jun 2024
Cited by 2 | Viewed by 3520
Abstract
Reinforced concrete (RC) infrastructure is an essential part of modern civilization. However, the serviceability of RC infrastructure in extreme weather has become challenging due to the susceptibility of the initiation of cracks. Hence, the demand for strengthening and retrofitting RC infrastructure is rapidly [...] Read more.
Reinforced concrete (RC) infrastructure is an essential part of modern civilization. However, the serviceability of RC infrastructure in extreme weather has become challenging due to the susceptibility of the initiation of cracks. Hence, the demand for strengthening and retrofitting RC infrastructure is rapidly increasing. The RC specimens strengthened with existing externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques; however, they suffered a prematurely brittle or debonding failure. Hence, the merging of side near surface mounting (SNSM) and side externally bonded reinforcement (S-EBR) methods ended up resulting in the development of an innovative side hybrid (SH) strengthening approach that is designed to overcome these drawbacks. In this investigation, six rectangular RC beam specimens were flexurally strengthened utilizing carbon fiber-reinforced polymer (CFRP) with the SH technique, and then four-point bending experiments were performed to failure. The beam specimens were categorized into two types: (I) control specimens and (II) specimens strengthened with the SH technique applying CFRP varying bonded length from 1600 mm to 1900 mm. The initial cracking, yield, and ultimate load-bearing capabilities, deflection, failure modes, cracking characteristics, stiffness, energy absorption capacity, and strain on the utmost fiber of concrete, the tensile strain of major steel rebars, SNSM bars, and S-EB plates were assessed from the experimental investigation. The SH technique substantially improved the flexural performance of the beam specimens. The initial cracking load, yield, and ultimate load-bearing capabilities were enhanced remarkably by 387%, 108%, and 163%, respectively, over the reference specimen. The flexural stiffness and energy absorption capacity substantially improved by 120% and 103%, respectively, compared with the reference specimen. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

Back to TopTop