Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity
Abstract
1. Introduction
2. Formulation of the Collision Problem
3. Analytical Solution to the Variational Inequality
4. ST-PDAS Approximation
| Algorithm 1: (ST-PDAS). |
Initialization: set iteration number and initialize active set . Iteration: solve the linear system: Find such that |
- The factors are and in the definition of active and inactive sets (30).
- The computational domain Q is extended to to fit the final time in the trial and the test spaces.
- At the contact boundary , for extended grid points , , and for , where the inactive set meets the active set (here ), we realize the Neumann condition in (18) by using the finite difference defined asThe finite difference approximation (32) for preserves iterates from instabilities happening near discontinuities.
- To avoid the instability of iteration (30) that becomes possible after collision for , we use re-initialization of the inactive set with , satisfying the monotony conditionThe heuristic re-initialization (33) remedies the M-property of the stiffness matrix and prevents iterates from cycling without it during contact transitions.
5. Numerical Benchmark
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguirregabiria, J.M.; Hernández, A.; Rivas, M. Falling elastic bars and springs. Am. J. Phys. 2007, 75, 583–587. [Google Scholar] [CrossRef]
- Younis, M.I. MEMS Linear and Nonlinear Statics and Dynamics; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- He, J.H. Periodic solution of a micro-electromechanical system. Facta Univ. Ser. Mech. Eng. 2024, 22, 187–198. [Google Scholar] [CrossRef]
- Gwinner, J.; Jadamba, B.; Khan, A.A.; Raciti, F. Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications; Chapman and Hall/CRC: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Migórski, S.; Ochal, A.; Sofonea, M. Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Lebeau, G.; Schatzman, M. A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Equ. 1984, 53, 309–361. [Google Scholar] [CrossRef]
- Laursen, T.A. Computational Contact and Impact Mechanics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Wriggers, P. Computational Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Chouly, F.; Hild, P.; Renard, Y. Finite Element Approximation of Contact and Friction in Elasticity; Birkhäuser: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Haslinger, J.; Neittaanmäki, P. Finite Element Approximation for Optimal Shape, Material and Topology Design; Wiley: Chichester, UK, 1996. [Google Scholar]
- Gwinner, J.; Stephan, E.P. Advanced Boundary Element Methods. Treatment of Boundary Value, Transmission and Contact Problems; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Steinbach, O.; Wendland, W.L. Boundary element methods for contact problems. In Advanced Multibody System Dynamics; Schiehlen, W., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 433–438. [Google Scholar] [CrossRef]
- Bauer, E.; Kovtunenko, V.; Krejčí, P.; Monteiro, G.; Paoli, L.; Petrov, A. Non-convex sweeping processes in contact mechanics. Nonlinear Anal. Real World Appl. 2025, 87, 104456. [Google Scholar] [CrossRef]
- Kashiwabara, T.; Itou, H. Unique solvability of a crack problem with Signorini-type and Tresca friction conditions in a linearized elastodynamic body. Phil. Trans. R. Soc. A 2022, 380, 20220225. [Google Scholar] [CrossRef]
- Piersanti, P.; White, K.; Dragnea, B.; Temam, R. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface in the static and time-dependent case. Anal. Appl. 2022, 20, 1159–1191. [Google Scholar] [CrossRef]
- Rudoy, E.M.; Sazhenkov, S.A. The homogenized dynamical model of a thermoelastic composite stitched with reinforcing filaments. Phil. Trans. R. Soc. A 2024, 382, 20230304. [Google Scholar] [CrossRef]
- Efendiev, M.; Vougalter, V. On the well-posedness of some model with the cubed Laplacian arising in the Mathematical Biology. arXiv 2025, arXiv:2504.10628. [Google Scholar] [CrossRef]
- Egger, H.; Fellner, K.; Pietschmann, J.F.; Tang, B.Q. Analysis and numerical solution of coupled volume-surface reaction-diffusion systems with application to cell biology. Appl. Math. Comput. 2018, 226, 351–367. [Google Scholar] [CrossRef]
- Liu, W.; Borikarnphanichphaisal, K.; Song, J.; Vasilieva, O.; Svinin, M. Safe 3D coverage control for multi-agent systems. Actuators 2025, 14, 186. [Google Scholar] [CrossRef]
- Dirani, N.; Monasse, L. An explicit pseudo-energy conservative scheme for contact between deformable solids. Int. J. Numer. Meth. Engng. 2024, 125, e7395. [Google Scholar] [CrossRef]
- Doyen, D.; Ern, A.; Piperno, S. Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 2011, 33, 223–249. [Google Scholar] [CrossRef]
- Dabaghi, F.; Krejčí, P.; Petrov, A.; Pousin, J.; Renard, Y. A weighted finite element mass redistribution method for dynamic contact problems. J. Comput. Appl. Math. 2019, 345, 338–356. [Google Scholar] [CrossRef]
- Dabaghi, F.; Petrov, A.; Pousin, J.; Renard, Y. A robust finite element redistribution approach for elastodynamic contact problems. Appl. Numer. Math. 2016, 103, 48–71. [Google Scholar] [CrossRef]
- Khenous, H.B.; Laborde, P.; Renard, Y. Comparison of two approaches for the discretization of elastodynamic contact problems. C. R. Acad. Sci. Paris Ser. I 2006, 342, 791–796. [Google Scholar] [CrossRef]
- Paoli, L.; Schatzman, M. A numerical scheme for impact problems I: The one-dimensional case. SIAM J. Numer. Anal. 2002, 40, 702–733. [Google Scholar] [CrossRef]
- Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Hilber, H.M.; Hughes, T.J.R.; Taylor, R.L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 1977, 5, 283–292. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Atlasiuk, O.M. Poroelastic medium with non-penetrating crack driven by hydraulic fracture: FEM approximation using HHT-α and semi-smooth Newton methods. Algorithms 2025. submitted for publication. [Google Scholar]
- Kovtunenko, V.A.; Renard, Y. Convergence analysis of semi-smooth Newton method for mixed FEM approximations of dynamic two-body contact and crack problems. J. Comput. Appl. Math. 2025, 471, 116722. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Renard, Y. FEM approximation of dynamic contact problem for fracture under fluid volume control using HHT-α and semi-smooth Newton methods. Appl. Numer. Math. 2025, 218, 148–158. [Google Scholar] [CrossRef]
- Khludnev, A.; Kovtunenko, V. Analysis of Cracks in Solids; Advances in Fracture Mechanics Series; WIT-Press: Southampton, UK; Boston, MA, USA, 2000; Volume 6. [Google Scholar]
- Khludnev, A.M.; Sokolowski, J. Modeling and Control in Solid Mechanics; Birkhäuser: Basel, Switzerland, 1997. [Google Scholar] [CrossRef]
- Fernando, M.P.; Mallikarjunaiah, S.M. An AT1 phase-field framework for quasi-static anti-plane shear fracture: Unifying ξ-based adaptivity and nonlinear strain energy density function. arXiv 2025, arXiv:2506.23249. [Google Scholar] [CrossRef]
- Itou, H.; Kovtunenko, V.; Rajagopal, K. The Boussinesq flat-punch indentation problem within the context of linearized viscoelasticity. Int. J. Eng. Sci. 2020, 151, 103272. [Google Scholar] [CrossRef]
- Khludnev, A.M.; Kovtunenko, V.A.; Tani, A. Evolution of a crack with kink and non-penetration. J. Math. Soc. Japan 2008, 60, 1219–1253. [Google Scholar] [CrossRef]
- Nikolaeva, N. Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack. J. Appl. Ind. Math. 2024, 18, 775–787. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhatta, D.; Mallikarjunaiah, S.M. Computational insights into orthotropic fracture: Crack-tip fields in strain-limiting materials under non-uniform loads. arXiv 2025, arXiv:2507.01150. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Lazarev, N.P. Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle. Phil. Trans. R. Soc. A 2024, 382, 20230298. [Google Scholar] [CrossRef]
- Popova, T. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a delaminated rigid inclusion. Lobachevskii J. Math. 2024, 45, 5402–5413. [Google Scholar] [CrossRef]
- Alekseev, G.; Spivak, Y. Optimization-based numerical analysis of three-dimensional magnetic cloaking problems. Comput. Math. Math. Phys. 2021, 61, 212–225. [Google Scholar] [CrossRef]
- Fellner, K.; Kovtunenko, V.A. A singularly perturbed nonlinear Poisson–Boltzmann equation: Uniform and super-asymptotic expansions. Math. Meth. Appl. Sci. 2015, 38, 3575–3586. [Google Scholar] [CrossRef]
- Lyu, J.H.; Lin, T.C. Asymptotic analysis of boundary layer solutions to Poisson–Boltzmann type equations in general bounded smooth domains. arXiv 2025, arXiv:2506.20953. [Google Scholar] [CrossRef]
- Ito, K.; Kunisch, K. Lagrange Multiplier Approach to Variational Problems and Applications; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Hintermüller, M.; Kovtunenko, V.A.; Kunisch, K. Generalized Newton methods for crack problems with non-penetration condition. Numer. Meth. Partial Differ. Equ. 2005, 21, 586–610. [Google Scholar] [CrossRef]
- Hintermüller, M.; Kovtunenko, V.A.; Kunisch, K. A Papkovich–Neuber-based numerical approach to cracks with contact in 3D. IMA J. Appl. Math. 2009, 74, 325–343. [Google Scholar] [CrossRef]
- Abide, S.; Barboteu, M.; Cherkaoui, S.; Danan, D.; Dumont, S. Inexact primal–dual active set method for solving elastodynamic frictional contact problems. Comput. Math. Appl. 2021, 82, 36–59. [Google Scholar] [CrossRef]
- Nguyen, V.A.T.; Abide, S.; Barboteu, M.; Dumont, S. An improved normal compliance method for non-smooth contact dynamics. Banach Center Publ. 2024, 124, 191–217. [Google Scholar] [CrossRef]
- Kovtunenko, V.A. Space-time finite element based primal-dual active set method for the non-smooth problem of impact of rigid obstacle by elastic bar. Comput. Math. Model. 2025, 36. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Petrov, A.; Renard, Y. Space-time FEM solution of dynamic contact problem with discontinuous velocity for multiple impact of deformed bar using PDAS method. Math. Meth. Appl. Sci. 2025. submitted for publication. [Google Scholar]
- Zank, M. Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations; Verlag der TU Graz: Graz, Austria, 2020. [Google Scholar]
- Zlotnik, A. Convergence rate estimates of finite-element methods for second order hyperbolic equation. In Numerical Methods and Applications; Marchuk, G.I., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 155–220. [Google Scholar] [CrossRef]








| N | h | DOF | M | M/DOF |
|---|---|---|---|---|
| 11 | 0.1 | 451 | 390 | 0.86 |
| 21 | 0.05 | 1701 | 1580 | 0.92 |
| 31 | 0.033 | 3751 | 3570 | 0.95 |
| 41 | 0.025 | 6601 | 6360 | 0.96 |
| 51 | 0.02 | 10,251 | 9950 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovtunenko, V.A. Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation 2025, 13, 210. https://doi.org/10.3390/computation13090210
Kovtunenko VA. Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation. 2025; 13(9):210. https://doi.org/10.3390/computation13090210
Chicago/Turabian StyleKovtunenko, Victor A. 2025. "Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity" Computation 13, no. 9: 210. https://doi.org/10.3390/computation13090210
APA StyleKovtunenko, V. A. (2025). Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation, 13(9), 210. https://doi.org/10.3390/computation13090210
