Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity
Abstract
1. Introduction
2. Formulation of the Collision Problem
3. Analytical Solution to the Variational Inequality
4. ST-PDAS Approximation
Algorithm 1: (ST-PDAS). |
Initialization: set iteration number and initialize active set . Iteration: solve the linear system: Find such that |
- The factors are and in the definition of active and inactive sets (30).
- The computational domain Q is extended to to fit the final time in the trial and the test spaces.
- At the contact boundary , for extended grid points , , and for , where the inactive set meets the active set (here ), we realize the Neumann condition in (18) by using the finite difference defined as
- To avoid the instability of iteration (30) that becomes possible after collision for , we use re-initialization of the inactive set with , satisfying the monotony condition
5. Numerical Benchmark
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguirregabiria, J.M.; Hernández, A.; Rivas, M. Falling elastic bars and springs. Am. J. Phys. 2007, 75, 583–587. [Google Scholar] [CrossRef]
- Younis, M.I. MEMS Linear and Nonlinear Statics and Dynamics; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- He, J.H. Periodic solution of a micro-electromechanical system. Facta Univ. Ser. Mech. Eng. 2024, 22, 187–198. [Google Scholar] [CrossRef]
- Gwinner, J.; Jadamba, B.; Khan, A.A.; Raciti, F. Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications; Chapman and Hall/CRC: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Migórski, S.; Ochal, A.; Sofonea, M. Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Lebeau, G.; Schatzman, M. A wave problem in a half-space with a unilateral constraint at the boundary. J. Differ. Equ. 1984, 53, 309–361. [Google Scholar] [CrossRef]
- Laursen, T.A. Computational Contact and Impact Mechanics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Wriggers, P. Computational Contact Mechanics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Chouly, F.; Hild, P.; Renard, Y. Finite Element Approximation of Contact and Friction in Elasticity; Birkhäuser: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Haslinger, J.; Neittaanmäki, P. Finite Element Approximation for Optimal Shape, Material and Topology Design; Wiley: Chichester, UK, 1996. [Google Scholar]
- Gwinner, J.; Stephan, E.P. Advanced Boundary Element Methods. Treatment of Boundary Value, Transmission and Contact Problems; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Steinbach, O.; Wendland, W.L. Boundary element methods for contact problems. In Advanced Multibody System Dynamics; Schiehlen, W., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 433–438. [Google Scholar] [CrossRef]
- Bauer, E.; Kovtunenko, V.; Krejčí, P.; Monteiro, G.; Paoli, L.; Petrov, A. Non-convex sweeping processes in contact mechanics. Nonlinear Anal. Real World Appl. 2025, 87, 104456. [Google Scholar] [CrossRef]
- Kashiwabara, T.; Itou, H. Unique solvability of a crack problem with Signorini-type and Tresca friction conditions in a linearized elastodynamic body. Phil. Trans. R. Soc. A 2022, 380, 20220225. [Google Scholar] [CrossRef]
- Piersanti, P.; White, K.; Dragnea, B.; Temam, R. A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface in the static and time-dependent case. Anal. Appl. 2022, 20, 1159–1191. [Google Scholar] [CrossRef]
- Rudoy, E.M.; Sazhenkov, S.A. The homogenized dynamical model of a thermoelastic composite stitched with reinforcing filaments. Phil. Trans. R. Soc. A 2024, 382, 20230304. [Google Scholar] [CrossRef]
- Efendiev, M.; Vougalter, V. On the well-posedness of some model with the cubed Laplacian arising in the Mathematical Biology. arXiv 2025, arXiv:2504.10628. [Google Scholar] [CrossRef]
- Egger, H.; Fellner, K.; Pietschmann, J.F.; Tang, B.Q. Analysis and numerical solution of coupled volume-surface reaction-diffusion systems with application to cell biology. Appl. Math. Comput. 2018, 226, 351–367. [Google Scholar] [CrossRef]
- Liu, W.; Borikarnphanichphaisal, K.; Song, J.; Vasilieva, O.; Svinin, M. Safe 3D coverage control for multi-agent systems. Actuators 2025, 14, 186. [Google Scholar] [CrossRef]
- Dirani, N.; Monasse, L. An explicit pseudo-energy conservative scheme for contact between deformable solids. Int. J. Numer. Meth. Engng. 2024, 125, e7395. [Google Scholar] [CrossRef]
- Doyen, D.; Ern, A.; Piperno, S. Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 2011, 33, 223–249. [Google Scholar] [CrossRef]
- Dabaghi, F.; Krejčí, P.; Petrov, A.; Pousin, J.; Renard, Y. A weighted finite element mass redistribution method for dynamic contact problems. J. Comput. Appl. Math. 2019, 345, 338–356. [Google Scholar] [CrossRef]
- Dabaghi, F.; Petrov, A.; Pousin, J.; Renard, Y. A robust finite element redistribution approach for elastodynamic contact problems. Appl. Numer. Math. 2016, 103, 48–71. [Google Scholar] [CrossRef]
- Khenous, H.B.; Laborde, P.; Renard, Y. Comparison of two approaches for the discretization of elastodynamic contact problems. C. R. Acad. Sci. Paris Ser. I 2006, 342, 791–796. [Google Scholar] [CrossRef]
- Paoli, L.; Schatzman, M. A numerical scheme for impact problems I: The one-dimensional case. SIAM J. Numer. Anal. 2002, 40, 702–733. [Google Scholar] [CrossRef]
- Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Hilber, H.M.; Hughes, T.J.R.; Taylor, R.L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 1977, 5, 283–292. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Atlasiuk, O.M. Poroelastic medium with non-penetrating crack driven by hydraulic fracture: FEM approximation using HHT-α and semi-smooth Newton methods. Algorithms 2025. submitted for publication. [Google Scholar]
- Kovtunenko, V.A.; Renard, Y. Convergence analysis of semi-smooth Newton method for mixed FEM approximations of dynamic two-body contact and crack problems. J. Comput. Appl. Math. 2025, 471, 116722. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Renard, Y. FEM approximation of dynamic contact problem for fracture under fluid volume control using HHT-α and semi-smooth Newton methods. Appl. Numer. Math. 2025, 218, 148–158. [Google Scholar] [CrossRef]
- Khludnev, A.; Kovtunenko, V. Analysis of Cracks in Solids; Advances in Fracture Mechanics Series; WIT-Press: Southampton, UK; Boston, MA, USA, 2000; Volume 6. [Google Scholar]
- Khludnev, A.M.; Sokolowski, J. Modeling and Control in Solid Mechanics; Birkhäuser: Basel, Switzerland, 1997. [Google Scholar] [CrossRef]
- Fernando, M.P.; Mallikarjunaiah, S.M. An AT1 phase-field framework for quasi-static anti-plane shear fracture: Unifying ξ-based adaptivity and nonlinear strain energy density function. arXiv 2025, arXiv:2506.23249. [Google Scholar] [CrossRef]
- Itou, H.; Kovtunenko, V.; Rajagopal, K. The Boussinesq flat-punch indentation problem within the context of linearized viscoelasticity. Int. J. Eng. Sci. 2020, 151, 103272. [Google Scholar] [CrossRef]
- Khludnev, A.M.; Kovtunenko, V.A.; Tani, A. Evolution of a crack with kink and non-penetration. J. Math. Soc. Japan 2008, 60, 1219–1253. [Google Scholar] [CrossRef]
- Nikolaeva, N. Junction problem for elastic Timoshenko inclusions in elastic bodies with a crack. J. Appl. Ind. Math. 2024, 18, 775–787. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhatta, D.; Mallikarjunaiah, S.M. Computational insights into orthotropic fracture: Crack-tip fields in strain-limiting materials under non-uniform loads. arXiv 2025, arXiv:2507.01150. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Lazarev, N.P. Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle. Phil. Trans. R. Soc. A 2024, 382, 20230298. [Google Scholar] [CrossRef]
- Popova, T. Numerical solution of the equilibrium problem for a two-dimensional elastic body with a delaminated rigid inclusion. Lobachevskii J. Math. 2024, 45, 5402–5413. [Google Scholar] [CrossRef]
- Alekseev, G.; Spivak, Y. Optimization-based numerical analysis of three-dimensional magnetic cloaking problems. Comput. Math. Math. Phys. 2021, 61, 212–225. [Google Scholar] [CrossRef]
- Fellner, K.; Kovtunenko, V.A. A singularly perturbed nonlinear Poisson–Boltzmann equation: Uniform and super-asymptotic expansions. Math. Meth. Appl. Sci. 2015, 38, 3575–3586. [Google Scholar] [CrossRef]
- Lyu, J.H.; Lin, T.C. Asymptotic analysis of boundary layer solutions to Poisson–Boltzmann type equations in general bounded smooth domains. arXiv 2025, arXiv:2506.20953. [Google Scholar] [CrossRef]
- Ito, K.; Kunisch, K. Lagrange Multiplier Approach to Variational Problems and Applications; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Hintermüller, M.; Kovtunenko, V.A.; Kunisch, K. Generalized Newton methods for crack problems with non-penetration condition. Numer. Meth. Partial Differ. Equ. 2005, 21, 586–610. [Google Scholar] [CrossRef]
- Hintermüller, M.; Kovtunenko, V.A.; Kunisch, K. A Papkovich–Neuber-based numerical approach to cracks with contact in 3D. IMA J. Appl. Math. 2009, 74, 325–343. [Google Scholar] [CrossRef]
- Abide, S.; Barboteu, M.; Cherkaoui, S.; Danan, D.; Dumont, S. Inexact primal–dual active set method for solving elastodynamic frictional contact problems. Comput. Math. Appl. 2021, 82, 36–59. [Google Scholar] [CrossRef]
- Nguyen, V.A.T.; Abide, S.; Barboteu, M.; Dumont, S. An improved normal compliance method for non-smooth contact dynamics. Banach Center Publ. 2024, 124, 191–217. [Google Scholar] [CrossRef]
- Kovtunenko, V.A. Space-time finite element based primal-dual active set method for the non-smooth problem of impact of rigid obstacle by elastic bar. Comput. Math. Model. 2025, 36. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Petrov, A.; Renard, Y. Space-time FEM solution of dynamic contact problem with discontinuous velocity for multiple impact of deformed bar using PDAS method. Math. Meth. Appl. Sci. 2025. submitted for publication. [Google Scholar]
- Zank, M. Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations; Verlag der TU Graz: Graz, Austria, 2020. [Google Scholar]
- Zlotnik, A. Convergence rate estimates of finite-element methods for second order hyperbolic equation. In Numerical Methods and Applications; Marchuk, G.I., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 155–220. [Google Scholar] [CrossRef]
N | h | DOF | M | M/DOF |
---|---|---|---|---|
11 | 0.1 | 451 | 390 | 0.86 |
21 | 0.05 | 1701 | 1580 | 0.92 |
31 | 0.033 | 3751 | 3570 | 0.95 |
41 | 0.025 | 6601 | 6360 | 0.96 |
51 | 0.02 | 10,251 | 9950 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovtunenko, V.A. Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation 2025, 13, 210. https://doi.org/10.3390/computation13090210
Kovtunenko VA. Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation. 2025; 13(9):210. https://doi.org/10.3390/computation13090210
Chicago/Turabian StyleKovtunenko, Victor A. 2025. "Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity" Computation 13, no. 9: 210. https://doi.org/10.3390/computation13090210
APA StyleKovtunenko, V. A. (2025). Space-Time Primal-Dual Active Set Method: Benchmark for Collision of Elastic Bar with Discontinuous Velocity. Computation, 13(9), 210. https://doi.org/10.3390/computation13090210