Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = recirculated aquaculture systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5366 KiB  
Review
Recirculating Aquaculture Systems (RAS) for Cultivating Oncorhynchus mykiss and the Potential for IoT Integration: A Systematic Review and Bibliometric Analysis
by Dorila E. Grandez-Yoplac, Miguel Pachas-Caycho, Josseph Cristobal, Sandy Chapa-Gonza, Roberto Carlos Mori-Zabarburú and Grobert A. Guadalupe
Sustainability 2025, 17(15), 6729; https://doi.org/10.3390/su17156729 - 24 Jul 2025
Viewed by 427
Abstract
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of [...] Read more.
The objective of this research was to conduct a comprehensive review of rainbow trout (Oncorhynchus mykiss) culture in recirculating aquaculture systems (RAS), identify knowledge gaps, and propose strategies oriented towards intelligent and sustainable aquaculture. A systematic review and bibliometric analysis of 387 articles published between 1941 and 2025 in the Scopus database was carried out. Since 2011, there has been a sustained growth in scientific production, with the United States, Denmark, Finland, and Germany standing out as the main contributors. The journals with the highest number of publications were Aquacultural Engineering, Aquaculture, and Aquaculture Research. The conceptual analysis revealed the following three thematic clusters: experimental studies on physiology and metabolism; research focused on nutrition, growth, and yield; and technological developments for water treatment in RAS. This evolution reflects a transition from basic approaches to applied technologies oriented towards sustainability. There was also evidence of a thematic transition toward molecular tools such as proteomics, transcriptomics, and real-time PCR. However, there is still limited integration of smart technologies such as the IoT. It is recommended to incorporate self-calibrating multi-parametric sensors, machine learning models, and autonomous systems for environmental regulation in real time. Full article
(This article belongs to the Special Issue Sustainability in Aquaculture)
Show Figures

Figure 1

15 pages, 2952 KiB  
Article
Experimental Measurements on the Influence of Inlet Pipe Configuration on Hydrodynamics and Dissolved Oxygen Distribution in Circular Aquaculture Tank
by Yanfei Wu, Jianeng Chen, Fukun Gui, Hongfang Qi, Yang Wang, Ying Luo, Yanhong Wu, Dejun Feng and Qingjing Zhang
Water 2025, 17(15), 2172; https://doi.org/10.3390/w17152172 - 22 Jul 2025
Viewed by 268
Abstract
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), [...] Read more.
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), deployment distance ratio (d/r), deployment angle (θ), inlet pipe structure on hydrodynamics and the dissolved oxygen distribution across various tank layers. The flow field distribution in the tanks was measured using Acoustic Doppler Velocimetry (ADV), and the hydrodynamic characteristics, including average velocity (vavg) and the velocity uniformity coefficient (DU50), were quantitatively analyzed. The dissolved oxygen content at different tank layers was recorded using an Aquameter GPS portable multi-parameter water quality analyzer. The findings indicate that average velocity (vavg) and the velocity uniformity coefficient (DU50) are key determinants of the hydrodynamic characteristic of circular aquaculture tanks. Optimal hydrodynamic performance occurs for the vertical single-pipe porous configuration at Q = 9 L/s, d/r = 1/4, and θ = 45°,the average velocity reached 0.0669 m/s, and the uniformity coefficients attained a maximum value of 40.4282. In a vertical single-pipe porous structure, the tank exhibits higher dissolved oxygen levels compared to a horizontal single-pipe single-hole structure. Under identical water inflow rates and deployment distance ratios, dissolved oxygen levels in the surface layer of the circular aquaculture tank are significantly greater than that in the bottom layer. The results of this study provide valuable insights for optimizing the engineering design of industrial circular aquaculture tanks and addressing the dissolved oxygen distribution across different water layers. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

21 pages, 557 KiB  
Review
Integrated Application of Biofloc Technology in Aquaculture: A Review
by Changwei Li, Zhenbo Ge, Limin Dai and Yuan Chen
Water 2025, 17(14), 2107; https://doi.org/10.3390/w17142107 - 15 Jul 2025
Viewed by 608
Abstract
Although biofloc technology (BFT) currently offers advantages such as improving aquaculture water quality, providing natural bait for cultured animals, and reducing pests and diseases, single BFT systems face technical bottlenecks, including the complex regulation of the carbon–nitrogen ratio, accumulation of suspended substances, and [...] Read more.
Although biofloc technology (BFT) currently offers advantages such as improving aquaculture water quality, providing natural bait for cultured animals, and reducing pests and diseases, single BFT systems face technical bottlenecks, including the complex regulation of the carbon–nitrogen ratio, accumulation of suspended substances, and acidification of the bottom sludge. Therefore, constructing a composite system with complementary functions through technology integration, such as with aquaponics, biofilm technology, integrated multi-trophic aquaculture systems (IMTAs), and recirculating aquaculture systems (RASs), has become the key path to breaking through industrialization barriers. This paper systematically reviews the action mechanisms, synergistic effects, and challenges of the four mainstream integration models incorporating BFT, providing theoretical support for the environmental–economic balance of intensive aquaculture. Full article
(This article belongs to the Special Issue Aquaculture Productivity and Environmental Sustainability)
Show Figures

Graphical abstract

15 pages, 1061 KiB  
Article
Preliminary Study on Some Blood Parameters of White Snook (Centropomus viridis) Broodstock Reared in Aquaculture Recirculating System (RAS)
by Iris Adriana Hernández-López, Virginia Patricia Domínguez-Jiménez, Rosa María Medina-Guerrero, Rodolfo Lozano-Olvera, Oscar Basilio Del Rio-Zaragoza, Leonardo Ibarra-Castro, Juan Manuel Martínez-Brown and Emyr Saúl Peña-Marín
Fishes 2025, 10(7), 347; https://doi.org/10.3390/fishes10070347 - 14 Jul 2025
Viewed by 235
Abstract
The white snook (Centropomus viridis) is an emerging aquaculture species with high market acceptance, exhibiting catadromous and protandric hermaphroditic characteristics in adulthood. This study aimed to preliminarily characterize certain hematological and biochemical parameters, as well as blood cell morphology, for identifying [...] Read more.
The white snook (Centropomus viridis) is an emerging aquaculture species with high market acceptance, exhibiting catadromous and protandric hermaphroditic characteristics in adulthood. This study aimed to preliminarily characterize certain hematological and biochemical parameters, as well as blood cell morphology, for identifying possible variations between sexes maintained under aquaculture recirculating system (RAS) conditions. The white snook broodstock was anesthetized with clove oil, and biometric values, as well as sex classification, were measured. Then, blood samples were collected from 14 females (7132 ± 1610 g) and 20 males (2200 ± 0.963 g) via caudal vessel puncture to analyze selected hematological parameters, blood biochemistry, and cellular morphology. Fulton’s condition factor (K) showed no differences between sexes, indicating a healthy fish status. Females showed significantly higher serum cholesterol, glucose, and triglyceride levels than males. Also, hematocrit (HCT) and mean corpuscular volume (MCV) were elevated in females. No sex-related differences were observed in red or white cell counts or in blood cell dimensions. Morphological characterization identified erythrocytes, thrombocytes, and three types of leukocytes: lymphocytes (small and large lymphocytes), neutrophils, and monocytes, with no eosinophils or basophils detected in either sex. These findings provide fundamental reference values for the hematological and biochemical profiles of C. viridis broodstock in captivity and highlight sex-specific differences relevant for reproductive and health monitoring. However, it should be considered that the sample size used to establish reference ranges for the species is small, so it is recommended to implement a monitoring plan for this and other broodstocks of this emerging species. Full article
Show Figures

Figure 1

31 pages, 3790 KiB  
Systematic Review
Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
by Erick Arturo Betanzo-Torres, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela and Luis Carlos Sandoval Herazo
Sustainability 2025, 17(14), 6298; https://doi.org/10.3390/su17146298 - 9 Jul 2025
Viewed by 742
Abstract
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as [...] Read more.
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as pollution caused by nutrient discharges into surface waters due to the water exchange required to maintain water quality in fishponds. Given this context, the objectives of this study were as follows: (1) to review which emergent and floating plant species are used in constructed wetlands (CWs) for the bioremediation of aquaculture wastewater; (2) to identify the aquaculture species whose wastewater has been treated with CW systems; and (3) to examine the integration of CWs with recirculating aquaculture systems (RASs) for water reuse. A systematic literature review was conducted, selecting 70 scientific articles published between 2003 and 2023. The results show that the most used plant species in CW systems were Phragmites australis, Typha latifolia, Canna indica, Eichhornia crassipes, and Arundo donax, out of a total of 43 identified species. These plants treated wastewater generated by 25 aquaculture species, including Oreochromis niloticus, Litopenaeus vannamei, Ictalurus punctatus, Clarias gariepinus, Tachysurus fulvidraco, and Cyprinus carpio, However, only 40% of the reviewed studies addressed aspects related to the incorporation of RAS elements in their designs. In conclusion, the use of plants for wastewater treatment in CW systems is feasible; however, its application remains largely at the experimental scale. Evidence indicates that there are limited real-scale applications and few studies focused on the reuse of treated water for agricultural purposes. This highlights the need for future research aimed at production systems that integrate circular economy principles in this sector, through RAS–CW systems. Additionally, there is a wide variety of plant species that remain unexplored for these purposes. Full article
Show Figures

Figure 1

31 pages, 17361 KiB  
Article
Path Planning Design and Experiment for a Recirculating Aquaculture AGV Based on Hybrid NRBO-ACO with Dueling DQN
by Zhengjiang Guo, Yingkai Xia, Jiajun Liu, Jian Gao, Peng Wan and Kan Xu
Drones 2025, 9(7), 476; https://doi.org/10.3390/drones9070476 - 5 Jul 2025
Viewed by 256
Abstract
This study introduces an advanced automated guided vehicle (AGV) specifically designed for application in recirculating aquaculture systems (RASs). The proposed AGV seamlessly integrates automated feeding, real-time monitoring, and an intelligent path-planning system to enhance operational efficiency. To achieve optimal and adaptive navigation, a [...] Read more.
This study introduces an advanced automated guided vehicle (AGV) specifically designed for application in recirculating aquaculture systems (RASs). The proposed AGV seamlessly integrates automated feeding, real-time monitoring, and an intelligent path-planning system to enhance operational efficiency. To achieve optimal and adaptive navigation, a hybrid algorithm is developed, incorporating Newton–Raphson-based optimisation (NRBO) alongside ant colony optimisation (ACO). Additionally, dueling deep Q-networks (dueling DQNs) dynamically optimise critical parameters, thereby improving the algorithm’s adaptability to the complexities of RAS environments. Both simulation-based and real-world experiments substantiate the system’s effectiveness, demonstrating superior convergence speed, path quality, and overall operational efficiency compared to traditional methods. The findings of this study highlight the potential of AGV to enhance precision and sustainability in recirculating aquaculture management. Full article
Show Figures

Figure 1

19 pages, 5884 KiB  
Article
Partitioned Recirculating Renovation for Traditional Rice–Fish Farming Induced Substantial Alterations in Bacterial Communities Within Paddy Soil
by Yiran Hou, Hongwei Li, Rui Jia, Linjun Zhou, Bing Li and Jian Zhu
Agronomy 2025, 15(7), 1636; https://doi.org/10.3390/agronomy15071636 - 4 Jul 2025
Viewed by 404
Abstract
Integrated agriculture–aquaculture (IAA), represented by integrated rice–fish farming, offers a sustainable production method that addresses global food issues and ensures food security. Partitioned recirculating renovation based on traditional integrated rice–fish farming is an effective way to facilitate the convenient harvesting of aquatic products [...] Read more.
Integrated agriculture–aquaculture (IAA), represented by integrated rice–fish farming, offers a sustainable production method that addresses global food issues and ensures food security. Partitioned recirculating renovation based on traditional integrated rice–fish farming is an effective way to facilitate the convenient harvesting of aquatic products and avoid difficulties associated with mechanical operations. To elucidate the impact of partitioned recirculating renovation on the bacterial communities within paddy field ecosystems, we investigated the soil environmental conditions and soil bacterial communities within integrated rice–fish farming, comparing those with and without partitioned recirculating renovations. The findings indicated a significant reduction in the bacterial community richness within paddy soil in the ditch (fish farming area), along with noticeable changes in the relative proportions of the predominant bacterial phyla in both the ditch and the rice cultivation area following the implementation of partitioned recirculating renovation. In both the ditch and the rice cultivation area, partitioned recirculating renovation diminished the edges and nodes in the co-occurrence networks for soil bacterial communities and considerably lowered the robustness index, negatively impacting the stability of bacterial communities in paddy soil. Simultaneously, the partitioned recirculating renovation substantially influenced the bacterial community assembly process, enhancing the relative contributions of stochastic processes such as dispersal limitation, drift, and homogenizing dispersal. In addition, partitioned recirculating renovation significantly altered the soil environmental conditions in both the ditch and the rice cultivation area, with environmental factors being markedly correlated with the soil bacterial community, especially the total nitrogen (TN) and total phosphorus (TP), which emerged as the primary environmental drivers influencing the soil bacterial community. Overall, these results elucidated the ecological impacts of partitioned recirculating renovation on the paddy soil from a microbiomic perspective, providing a microbial basis for optimizing partitioned rice–fish systems. Full article
(This article belongs to the Special Issue Microbial Interactions and Functions in Agricultural Ecosystems)
Show Figures

Figure 1

14 pages, 3326 KiB  
Article
Performance Study of a Sewage Collection Device for Seawater Pond Recirculating Aquaculture System
by Zhixiang Cao, Zhongming Huang, Zhilong Xu and Yu Zhang
Water 2025, 17(13), 1972; https://doi.org/10.3390/w17131972 - 30 Jun 2025
Viewed by 251
Abstract
This study addresses the challenge of solid pollutant collection in seawater pond recirculating aquaculture by designing a novel funnel-shaped sewage collection device and evaluating its performance through Computational Fluid Dynamics (CFD) simulations and experimental validation. The results reveal that the device forms a [...] Read more.
This study addresses the challenge of solid pollutant collection in seawater pond recirculating aquaculture by designing a novel funnel-shaped sewage collection device and evaluating its performance through Computational Fluid Dynamics (CFD) simulations and experimental validation. The results reveal that the device forms a rotating flow field, effectively concentrating solid particles in a central low-velocity zone with a diameter of approximately 2 m when the sewage pump is inactive. The optimal bottom dip angle for efficient sewage discharge is determined to be 21 degrees, with flow velocities near the outlet ranging between 0.031 and 0.062 m per second, sufficient to mobilize particles smaller than 5 mm. Prototype testing demonstrates a solid pollutant collection efficiency of 75.7 percent, confirming the device’s practical effectiveness in improving water quality and operational performance. This research offers a validated and efficient solution for solid waste management in aquaculture systems. Full article
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 450
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

13 pages, 914 KiB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Viewed by 383
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

17 pages, 1153 KiB  
Article
Metabolic Profile of Senegalese Sole (Solea senegalensis) Muscle: Effect of Fish–Macroalgae IMTA-RAS Aquaculture
by Flaminia Cesare Marincola, Chiara Palmas, Miguel A. Lastres Couto, Isabel Paz, Javier Cremades, José Pintado, Leonardo Bruni and Gianfranco Picone
Molecules 2025, 30(12), 2518; https://doi.org/10.3390/molecules30122518 - 9 Jun 2025
Viewed by 1003
Abstract
The aquaculture sector is essential for meeting seafood demand while ensuring sustainability. It involves farming fish, mollusks, crustaceans, other invertebrates, and algae in controlled environments, helping to conserve marine resources and reduce ecological pressures. Sustainable practices, such as an integrated multitrophic recirculating aquaculture [...] Read more.
The aquaculture sector is essential for meeting seafood demand while ensuring sustainability. It involves farming fish, mollusks, crustaceans, other invertebrates, and algae in controlled environments, helping to conserve marine resources and reduce ecological pressures. Sustainable practices, such as an integrated multitrophic recirculating aquaculture system (IMTA-RAS) with fish and seaweed, can minimize the environmental impact of fish aquaculture. However, the impact of the introduction of macroalgae on the fish muscle metabolism has not been studied. This research examines the impact of growing Senegalese sole (Solea senegalensis) together with sea lettuce (Ulva ohnoi) on fish metabolism using high-resolution 1H-NMR-based metabolomics. Three farming systems were compared. These were E1, a recirculating aquaculture system (RAS); E2, an IMTA-RAS integrating U. ohnoi for biofiltration; and E3, an IMTA-RAS with U. ohnoi and Phaeobacter sp. strain 4UAC3, a probiotic bacterium isolated from wild U. australis known to counteract fish pathogens. A metabolomic analysis revealed that energy metabolism was enhanced in IMTA-RAS and even more in IMTA-RAS-Phaeobacter–grown fish, increasing overall metabolic activity. These results indicate that the presence of the algae with the probiotic had a clear impact on the physiological state of the fish, and this deserves further investigation. This study contributes to the understanding of the physiological responses of fish to innovative aquaculture practices, supporting the development of more sustainable and efficient management that reduces the environmental impact and increases fish health and welfare. Full article
Show Figures

Figure 1

13 pages, 1348 KiB  
Article
Morphometric, Nutritional, and Blood Analyses in Hybrid Striped Bass (Morone chrysops x Morone saxatilis, Walbaum 1972) Reared in a Recirculating Aquaculture System (RAS) Implant in Sicily, Italy
by Francesca Aragona, Syed Sikandar Habib, Francesco Fazio, Alessandro Zumbo, Antonino Costa, Kristian Riolo, Alessia Giannetto and Vincenzo Parrino
Fishes 2025, 10(6), 278; https://doi.org/10.3390/fishes10060278 - 6 Jun 2025
Cited by 1 | Viewed by 398
Abstract
Hybrid striped bass (HSB), a cross between white bass (Morone chrysops) and striped bass (Morone saxatilis), has garnered attention in aquaculture due to its adaptability, rapid growth, and high market value. This study investigates the morphometric, nutritional, and blood [...] Read more.
Hybrid striped bass (HSB), a cross between white bass (Morone chrysops) and striped bass (Morone saxatilis), has garnered attention in aquaculture due to its adaptability, rapid growth, and high market value. This study investigates the morphometric, nutritional, and blood characteristics of HSB reared in a recirculating aquaculture system (RAS) in Sicily, Italy, over a 22-month grow-out period. The fish were managed under standardized feeding and water quality protocols, with weekly monitoring of the physicochemical parameters. A total of 21 clinically healthy fish, averaging 571.33 ± 129.32 in body weight, were randomly sampled in the spring season from a commercial RAS facility equipped with biological filtration, UV sterilization, and seasonally regulated water parameters. The results revealed strong positive correlations between the morphometric parameters and blood indices, such as red blood cell (RBC) count, hemoglobin (Hb) levels, and hematocrit (Hct), highlighting their importance as health indicators. The proximate composition revealed an average moisture content of 75.55 ± 1.49, crude protein at 20.29 ± 0.26, total lipid at 4.25 ± 0.97, and ash content at 1.69 ± 0.17. Additionally, statistical analyses, including a principal component analysis (PCA), identified relationships between body size, nutritional content, and blood parameters, emphasizing the role of body size in influencing nutritional and health outcomes. The findings of this study are crucial for optimizing farming protocols and improving the health and productivity of HSB in RAS under Mediterranean conditions. Full article
(This article belongs to the Special Issue Fish Hematology)
Show Figures

Graphical abstract

22 pages, 2268 KiB  
Article
Evaluation of Water Quality in the Production of Rainbow Trout (Oncorhynchus mykiss) in a Recirculating Aquaculture System (RAS) in the Precordilleran Region of Northern Chile
by Renzo Pepe-Victoriano, Piera Pepe-Vargas, Anahí Pérez-Aravena, Héctor Aravena-Ambrosetti, Jordan I. Huanacuni, Felipe Méndez-Abarca, Germán Olivares-Cantillano, Olger Acosta-Angulo and Luis Espinoza-Ramos
Water 2025, 17(11), 1685; https://doi.org/10.3390/w17111685 - 2 Jun 2025
Viewed by 1485
Abstract
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen [...] Read more.
Water quality and the culture performance of juvenile rainbow trout (Oncorhynchus mykiss) were evaluated between 2014 and 2017 in a recirculating aquaculture system (RAS) in the Chilean Altiplano. Key parameters such as temperature, total ammonia nitrogen (TAN), nitrates, and dissolved oxygen were monitored, with values ranging from 7 to 21 °C, <0.1 to 0.63 mg/L, 2.0 to 135 mg/L, and 1.8 to 7.5 mg/L, respectively. Additional parameters—including alkalinity, arsenic, chlorine, true color, conductivity, hardness, phosphorus, pH, potassium, suspended solids, and salinity—were also assessed, comparing different points within the system (head tank, culture tanks, and settling tanks). The results showed that water quality remained within acceptable ranges for aquaculture, although fluctuations in pH and low alkalinity levels caused stress in the fish. Despite these challenges, the specific growth rate (SGR) was 1.49, the feed conversion ratio (FCR) was 1.52, and weight gain reached 298.7%, with a survival rate of 96.2%. This study demonstrates that aquaculture in the Altiplano is feasible and can contribute to the sustainable development of aquaculture in the region. Furthermore, it highlights the importance of comprehensive water quality monitoring to optimize RAS performance in challenging environments. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

12 pages, 1518 KiB  
Article
Design and Performance Evaluation of a Feed Distribution Device in the Small-Scale Pneumatic Conveying Feeder for Recirculating Aquaculture Systems
by Liang Wang, Mingdong Ji, Kang Wu, Xudong Weng and Haijun Li
Fishes 2025, 10(6), 255; https://doi.org/10.3390/fishes10060255 - 29 May 2025
Viewed by 323
Abstract
Due to its good adaptability, the pneumatic conveying feeder has been widely developed and applied in recirculating aquaculture systems (RASs). Its important performances include the integrity of feed pellets and the feeding accuracy. The aim of this study was to design and evaluate [...] Read more.
Due to its good adaptability, the pneumatic conveying feeder has been widely developed and applied in recirculating aquaculture systems (RASs). Its important performances include the integrity of feed pellets and the feeding accuracy. The aim of this study was to design and evaluate a feed distribution device for a small-scale pneumatic conveying feeder. A cylindrical hopper with a feed capacity of 4 kg and a feed distribution device were designed based on theoretical calculations. The motion and force of feed pellets during the distribution process were studied using the discrete element method (DEM) simulation to evaluate the integrity of feed pellets. Additionally, to evaluate feeding accuracy, the effect of discharge disk rotational speed on single feeding quantity was studied using DEM simulations and experimental validations, as well as the effect of the proportion of feed pellets in the hopper. Results showed that the maximum force on feed pellets was 1.25 N during the distribution process. It was inferred that the feed pellets can be distributed without breaking based on their shear strength. When the rotational speed of the discharge disk was set at a maximum of 28 rpm, the relative error of single feeding quantity between simulation and actual experiments was 4.43%, and the single feeding mass was 62.74 g, suggesting an optimal speed. In addition, the average single feeding quantity ranged from 262 to 301 feed pellets at the different proportions of feed pellets in the hopper, and its coefficient of variation was 12.46%, which generally meets the distribution requirements of the small-scale feeder. This study provides a feed distribution device for a small-scale pneumatic conveying feeder and offers references for the relevant analysis of DEM simulation. Full article
(This article belongs to the Section Fishery Facilities, Equipment, and Information Technology)
Show Figures

Figure 1

17 pages, 1839 KiB  
Article
CNN-Transformer-BiGRU: A Pump Fault Detection Model for Industrialized Recirculating Aquaculture Systems
by Wei Shao, Chengquan Zhou, Dawei Sun, Chen Li and Hongbao Ye
Appl. Sci. 2025, 15(11), 6114; https://doi.org/10.3390/app15116114 - 29 May 2025
Viewed by 536
Abstract
Background: Modern aquaculture is increasingly adopting industrialized recirculating aquaculture systems, in which the stable operation of its circulating water pump is essential. Yet, given the complex working conditions, this pump is prone to malfunctioning, so its timely fault prediction and accurate diagnosis are [...] Read more.
Background: Modern aquaculture is increasingly adopting industrialized recirculating aquaculture systems, in which the stable operation of its circulating water pump is essential. Yet, given the complex working conditions, this pump is prone to malfunctioning, so its timely fault prediction and accurate diagnosis are imperative. Traditional fault detection methods rely on manual feature extraction, limiting their ability to identify complex faults, and deep learning methods suffer from unstable recognition accuracy. To address these issues, a three-class fault detection method for water pumps based on a convolutional neural network, transformer, and bidirectional gated recurrent unit (CNN-transformer-BiGRU) is proposed here. Methods: It first uses the continuous wavelet transform to convert one-dimensional vibration signals into time–frequency images for input into a CNN to extract the time-domain and frequency-domain features. Next, the transformer enhances the model’s hierarchical learning ability. Finally, the BiGRU captures the forward/backward feature information in the signal sequence. Results: The experimental results show that this method’s accuracy in fault detection is 91.43%, significantly outperforming traditional machine learning models. Using it improved the accuracy, precision, and recall by 1.86%, 1.97%, and 1.86%, respectively, relative to the convolutional neural network and long short-term memory (CNN-LSTM) model. Conclusions: Hence, the proposed model has superior performance indicators. Applying it to aquaculture systems can effectively ensure their stable operation. Full article
Show Figures

Figure 1

Back to TopTop