Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = reanalysis precipitation products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 14608 KiB  
Article
Temporal and Spatial Evolution of Gross Primary Productivity of Vegetation and Its Driving Factors on the Qinghai-Tibet Plateau Based on Geographical Detectors
by Liang Zhang, Cunlin Xin and Meiping Sun
Atmosphere 2025, 16(8), 940; https://doi.org/10.3390/atmos16080940 - 5 Aug 2025
Abstract
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six [...] Read more.
To investigate the spatiotemporal evolution characteristics and primary driving factors of Gross Primary Productivity (GPP) on the Qinghai-Tibet Plateau, we employed an enhanced MODIS-PSN model. Utilizing the fifth-generation global climate reanalysis dataset (ECMWF ERA5), we generated GPP remote sensing products by integrating six natural factors. Through correlation analysis and geographical detector modeling, we quantitatively analyzed the spatiotemporal dynamics and key drivers of vegetation GPP across the Qinghai-Tibet Plateau from 2001 to 2022. The results demonstrate that GPP changes across the Qinghai-Tibet Plateau display pronounced spatial heterogeneity. The humid northeastern and southeastern regions exhibit significantly positive change rates, primarily distributed across wetland and forest ecosystems, with a maximum mean annual change rate of 12.40 gC/m2/year. In contrast, the central and southern regions display a decreasing trend, with the minimum change rate reaching −1.61 gC/m2/year, predominantly concentrated in alpine grasslands and desert areas. Vegetation GPP on the Qinghai-Tibet Plateau shows significant correlations with temperature, vapor pressure deficit (VPD), evapotranspiration (ET), leaf area index (LAI), precipitation, and radiation. Among the factors analyzed, LAI demonstrates the strongest explanatory power for spatial variations in vegetation GPP across the Qinghai-Tibet Plateau. The dominant factors influencing vegetation GPP on the Qinghai-Tibet Plateau are LAI, ET, and precipitation. The pairwise interactions between these factors exhibit linear enhancement effects, demonstrating synergistic multifactor interactions. This study systematically analyzed the response mechanisms and variations of vegetation GPP to multiple driving factors across the Qinghai-Tibet Plateau from a spatial heterogeneity perspective. The findings provide both a critical theoretical framework and practical insights for better understanding ecosystem response dynamics and drought conditions on the plateau. Full article
Show Figures

Figure 1

13 pages, 10728 KiB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 261
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

21 pages, 6605 KiB  
Article
Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index
by Denis Krivoguz
Climate 2025, 13(7), 151; https://doi.org/10.3390/cli13070151 - 17 Jul 2025
Viewed by 670
Abstract
Rostov Oblast is one of the key grain-producing regions in Russia, accounting for 6% of the total grain production. However, it faces an increasing risk of climate aridization, which requires an accurate scientific assessment to ensure the food security of the country. The [...] Read more.
Rostov Oblast is one of the key grain-producing regions in Russia, accounting for 6% of the total grain production. However, it faces an increasing risk of climate aridization, which requires an accurate scientific assessment to ensure the food security of the country. The present study analyzes the spatial and temporal dynamics of climate aridification in the Rostov region for the period 1951–2054. This analysis is based on ERA5 reanalysis data and CMIP6 forecast models (MPI-ESM1-2-HR, CanESM5, BCC-CSM2-MR). The analysis indicates that the annual mean temperature in the region has increased by 2–3 °C since the 1950s, reaching 12 °C in 2023. At the same time, precipitation shows significant interannual variability with no detectable long-term trend. Spatial analysis reveals a stable meridional temperature gradient and zonality of precipitation distribution. The southeastern parts of the region are characterized by the highest degree of aridification. Projection models indicate further warming (+1.5–3 °C by 2054) and increasing contrasts between western (wetter) and eastern (drier) areas. Projections derived from the CMIP6 models indicate an intensification of aridification, accompanied by a decrease in the De Martonne index of 15–25% by the year 2054. The area of territories with arid climates is expected to increase from 30% to 40%. The most vulnerable regions will be in the southeast part of Rostov Oblast, where the De Martonne index values are predicted to decrease to less than 10. The potential increase in temperature and evapotranspiration, coupled with spatial differentiation, could pose significant risks to the sustainability of the agro-industrial complex, particularly in the southeastern part of the region. Full article
Show Figures

Figure 1

26 pages, 10223 KiB  
Article
Evaluation of the Accuracy and Applicability of Reanalysis Precipitation Products in the Lower Yarlung Zangbo Basin
by Anqi Tan, Ming Li, Heng Liu, Liangang Chen, Tao Wang, Binghui Yang, Min Wan and Yong Shi
Remote Sens. 2025, 17(14), 2396; https://doi.org/10.3390/rs17142396 - 11 Jul 2025
Viewed by 495
Abstract
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station [...] Read more.
The lower Yarlung Zangbo River Basin’s Great Bend region, characterized by extreme topography and intense orographic precipitation processes, presents significant challenges for accurate precipitation estimation using reanalysis products. Therefore, this study evaluates four widely used products (ERA5-Land, MSWEP, CMA, and TPMFD) against station observations (2014–2022) in this critical area. Performance was rigorously assessed using correlation analysis, error metrics (RMSE, MAE, RBIAS), and spatial regression. The region exhibits strong seasonality, with 62.1% of annual rainfall occurring during the monsoon (June-October). Results indicate TPMFD performed best overall, capturing spatiotemporal patterns effectively (correlation coefficients 0.6–0.8, low RBIAS). Conversely, ERA5-Land significantly overestimated precipitation, particularly in rugged northeast areas, suggesting poor representation of orographic effects. MSWEP and CMA underestimated rainfall with variable temporal consistency. Topographic analysis confirmed slope, aspect, and longitude strongly control precipitation distribution, aligning with classical orographic mechanisms (e.g., windward enhancement, lee-side rain shadows) and monsoonal moisture transport. Spatial regression revealed terrain features explain 15.4% of flood-season variation. TPMFD most accurately captured these terrain-precipitation relationships. Consequently, findings underscore the necessity for terrain-sensitive calibration and data fusion strategies in mountainous regions to improve precipitation products and hydrological modeling under orographic influence. Full article
Show Figures

Figure 1

39 pages, 31656 KiB  
Article
Assessment of Satellite and Reanalysis Precipitation Data Using Statistical and Wavelet Analysis in Semi-Arid, Morocco
by Achraf Chakri, Nour-Eddine Laftouhi, Lahcen Zouhri, Hassan Ibouh and Mounsif Ibnoussina
Water 2025, 17(11), 1714; https://doi.org/10.3390/w17111714 - 5 Jun 2025
Viewed by 713
Abstract
Climate change, marked by decreasing rainfall and increasing extreme events, represents a major challenge for water resources, particularly in semi-arid regions. To estimate aquifer recharge, it is essential to assess the fraction of precipitation contributing to groundwater recharge and to implement a water [...] Read more.
Climate change, marked by decreasing rainfall and increasing extreme events, represents a major challenge for water resources, particularly in semi-arid regions. To estimate aquifer recharge, it is essential to assess the fraction of precipitation contributing to groundwater recharge and to implement a water balance model. However, the limited number of rainfall stations has led researchers to rely on satellite and reanalysis rainfall products. The accuracy of these datasets is essential for reliable hydrological modeling. In this study, we evaluated five rainfall products—CHIRPS, ERA5_Ag, CFSR, GPM, and PERSIANN-CDR—by comparing them to ground measurements from gauging stations in the central Haouz region of Marrakech. The evaluation was conducted at three temporal scales: daily, monthly, and annual. Statistical metrics, including RMSE, MAE, NSE, Bias, and Pearson correlation, as well as classification metrics (accuracy, F1 score, recall, precision, and Cohen’s Kappa), and wavelet analysis, were applied to assess the accuracy of the products. The results identified ERA5_Ag and GPM as the most accurate products in capturing rainfall events. Nevertheless, ERA5_Ag showed a high bias. After applying the quantile mapping method to correct the bias, the product exhibited greater accuracy. The corrected datasets from these two products will be used to estimate recharge over the last 30 years, contributing to the development of a hydrogeological model for groundwater dynamics. Full article
(This article belongs to the Special Issue Hydrogeological and Hydrochemical Investigations of Aquifer Systems)
Show Figures

Graphical abstract

27 pages, 56208 KiB  
Article
Seasonal Precipitation and Anomaly Analysis in Middle East Asian Countries Using Google Earth Engine
by Neyara Radwan, Bijay Halder, Minhaz Farid Ahmed, Samyah Salem Refadah, Mohd Yawar Ali Khan, Miklas Scholz, Saad Sh. Sammen and Chaitanya Baliram Pande
Water 2025, 17(10), 1475; https://doi.org/10.3390/w17101475 - 14 May 2025
Viewed by 2609
Abstract
Middle East (ME) countries have arid and semi-arid climates with low annual precipitation and considerable geographical and temporal variability, which contribute to their extremely erratic rainfall. The generation of timely and accurate climatic information for the ME is anticipated to be aided by [...] Read more.
Middle East (ME) countries have arid and semi-arid climates with low annual precipitation and considerable geographical and temporal variability, which contribute to their extremely erratic rainfall. The generation of timely and accurate climatic information for the ME is anticipated to be aided by global reanalysis products and satellite-based precipitation estimations. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Hazards Group Infra-Red Precipitation (CHIRPS) on Google Earth Engine (GEE) were used to study rainfall in eleven chosen ME counties from 2000 to 2023. This study shows that Saudi Arabia (509.64 mm/December–January–February; DJF), Iraq (211.50 mm/September–October–November; SON), Iran (306.35 mm/SON), Jordan (161.28 mm/DJF), Kuwait (44.66 mm), Syria (246.51 mm/DJF), UAE–Qatar–Bahrain (28.62 mm/SON), Oman (64.90 mm/June–July–August; JJA), and Yemen (240.27 mm/SON) were the countries with the highest rainfall. Due to improved ground station integration, CHIRPS also reports larger rainfall anomalies, with a peak of 59.15 mm in DJF, mainly in northern Iran, Iraq, and Syria. PERSIANN understates heavy rainfall, probably because it relies on infrared satellite data, with a maximum anomaly of 4.15 mm. Saudi Arabia saw heavy rain during the JJA months, while others received less. More accurate rainfall forecasts in the ME can lessen the effects of floods and droughts, promoting environmental resilience and regional economic stability. Therefore, a more comprehensive understanding of all the relevant components is necessary to address these difficulties. Both environmental and human impacts must be taken into account for sustainable solutions. Full article
Show Figures

Figure 1

20 pages, 23461 KiB  
Article
Direct and Indirect Effects of Large-Scale Forest Restoration on Water Yield in China’s Large River Basins
by Yaoqi Zhang and Lu Hao
Remote Sens. 2025, 17(9), 1581; https://doi.org/10.3390/rs17091581 - 29 Apr 2025
Cited by 1 | Viewed by 527
Abstract
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due [...] Read more.
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due to the limited observational constraints on moisture transport. Here, we integrate the Budyko model with the Lagrangian-based UTrack moisture-tracking dataset to disentangle the direct (via ET) and indirect (via precipitation) large-scale hydrological impacts of China’s four-decade forest restoration campaign across eight major river basins. Multisource validation datasets, including gauged runoff records, hydrological reanalysis products, and satellite-derived forest cover maps, were systematically incorporated to verify the Budyko model at the nested spatial scales. Our scenario analyses reveal that during 1980–2015, extensive afforestation individually reduced China’s terrestrial water yield by −28 ± 25 mm yr−1 through dominant ET increases. Crucially, atmospheric moisture recycling mechanisms attenuated this water loss by 12 ± 5 mm yr−1 nationally, with marked spatial heterogeneity across the basins. In some moisture-limited watersheds in the Yellow River Basin, the negative ET effect was compensated for to a certain extent by precipitation recycling, demonstrating net positive hydrological outcomes. We conclude that China’s forest expansion imposes local water stress (direct effect) by elevating ET, while the concomitant strengthening of continental-scale moisture recycling generates compensatory water gains (indirect effect). These findings advance the mechanistic understanding of the vegetation-climate-water nexus, providing quantitative references for optimizing forestation strategies under atmospheric water connectivity constraints. Full article
Show Figures

Graphical abstract

17 pages, 22777 KiB  
Article
The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin
by Yaoqiang Zhou, Jiayu Li, Wenhao Jia, Fei Zhang, Hongjie Zhang and Sen Wang
Water 2025, 17(8), 1116; https://doi.org/10.3390/w17081116 - 9 Apr 2025
Viewed by 530
Abstract
It is important to comprehend the evolution of drought characteristics and the relationships between different kinds of droughts for effective drought mitigation and early warnings. The study area was the Pearl River Basin, where spatiotemporal changes in the multiscale water balance and soil [...] Read more.
It is important to comprehend the evolution of drought characteristics and the relationships between different kinds of droughts for effective drought mitigation and early warnings. The study area was the Pearl River Basin, where spatiotemporal changes in the multiscale water balance and soil moisture at various depths were analyzed. The meteorological data used in this study were derived from the China Meteorological Forcing Dataset, while the soil moisture data were obtained from the ECMWF ERA5-Land reanalysis dataset. The Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Soil Moisture Index (SSI) were applied to represent meteorological and agricultural droughts, respectively. By using the run theory for drought event identification, the characteristic values of drought events were analyzed. The correlation between the multiscale SPEI and SSI was examined to represent the propagation time from meteorological drought to agricultural drought. This study indicated that while the western part of the Pearl River Basin experienced a worsening atmospheric moisture deficit and the southern part had intensifying dry conditions for soil moisture, the rest of the basin remained relatively moist and stable. Soil conditions were moister in the deeper soil layers. The durations of agricultural droughts have generally been shorter than those of meteorological droughts over the past 40 years. Within the top three soil layers, the severity, duration, and frequency of drought events progressively increased, increased, and decreased, respectively, as soil depth increased. The propagation time scale from a meteorological drought to a four-layer agricultural drought was typically within 1–5 months. This study advanced existing research by systematically analyzing drought propagation times across soil depths and seasons in the Pearl River Basin. The methodology in this study is applicable to other basins to analyze drought complexities under climate change, contributing to global drought resilience strategies. Understanding the spatiotemporal characteristics of meteorological and agricultural droughts and the propagation time between them can help farmers and agricultural departments predict droughts and take appropriate drought-resistant measures to alleviate the damage of droughts on agricultural production. Full article
Show Figures

Figure 1

29 pages, 15893 KiB  
Article
Application of Temporal Fusion Transformers to Run-Of-The-River Hydropower Scheduling
by Rafael Francisco, José Pedro Matos, Rui Marinheiro, Nuno Lopes, Maria Manuela Portela and Pedro Barros
Hydrology 2025, 12(4), 81; https://doi.org/10.3390/hydrology12040081 - 3 Apr 2025
Cited by 2 | Viewed by 1207
Abstract
This study explores the application of Temporal Fusion Transformers (TFTs) to improve the predictability of hourly potential hydropower production for a small run–of–the–river hydropower plant in Portugal. Accurate hourly power forecasts are essential for optimizing participation in the spot electricity market, where deviations [...] Read more.
This study explores the application of Temporal Fusion Transformers (TFTs) to improve the predictability of hourly potential hydropower production for a small run–of–the–river hydropower plant in Portugal. Accurate hourly power forecasts are essential for optimizing participation in the spot electricity market, where deviations incur penalties. This research introduces the novel application of the TFT, a deep–learning model tailored for time series forecasting and uncovering complex patterns, to predict hydropower production based on meteorological data, historical production records, and plant capacity. Key challenges such as filtering observed hydropower outputs (to remove strong, and unpredictable human influence) and adapting the historical series to installed capacity increases are discussed. An analysis of meteorological information from several sources, including ground information, reanalysis, and forecasting models, was also undertaken. Regarding the latter, precipitation forecasts from the European Centre for Medium–Range Weather Forecasts (ECMWF) proved to be more accurate than those of the Global Forecast System (GFS). When combined with ECMWF data, the TFT model achieved significantly higher accuracy in potential hydropower production predictions. This work provides a framework for integrating advanced machine learning models into operational hydropower scheduling, aiming to reduce classical modeling efforts while maximizing energy production efficiency, reliability, and market performance. Full article
Show Figures

Figure 1

25 pages, 7970 KiB  
Article
Bayesian Model Averaging for Satellite Precipitation Data Fusion: From Accuracy Estimation to Runoff Simulation
by Shaowei Ning, Yang Cheng, Yuliang Zhou, Jie Wang, Yuliang Zhang, Juliang Jin and Bhesh Raj Thapa
Remote Sens. 2025, 17(7), 1154; https://doi.org/10.3390/rs17071154 - 25 Mar 2025
Cited by 1 | Viewed by 902
Abstract
Precipitation plays a vital role in the hydrological cycle, directly affecting water resource management and influencing flood and drought risk prediction. This study proposes a Bayesian Model Averaging (BMA) framework to integrate multiple precipitation datasets. The framework enhances estimation accuracy for hydrological simulations. [...] Read more.
Precipitation plays a vital role in the hydrological cycle, directly affecting water resource management and influencing flood and drought risk prediction. This study proposes a Bayesian Model Averaging (BMA) framework to integrate multiple precipitation datasets. The framework enhances estimation accuracy for hydrological simulations. The BMA framework synthesizes four precipitation products—Climate Hazards Group Infrared Precipitation with Station (CHIRPS), the fifth-generation ECMWF Atmospheric Reanalysis (ERA5), Global Satellite Mapping of Precipitation (GSMaP), and Integrated Multi-satellitE Retrievals (IMERG)—over China’s Ganjiang River Basin from 2008 to 2020. We evaluated the merged dataset’s performance against its constituent datasets and the Multi-Source Weighted-Ensemble Precipitation (MSWEP) at daily, monthly, and seasonal scales. Evaluation metrics included the correlation coefficient (CC), root mean square error (RMSE), and Kling–Gupta efficiency (KGE). The Variable Infiltration Capacity (VIC) hydrological model was further applied to assess how these datasets affect runoff simulations. The results indicate that the BMA-merged dataset substantially improves precipitation estimation accuracy when compared with individual inputs. The merged product achieved optimal daily performance (CC = 0.72, KGE = 0.70) and showed superior seasonal skill, notably reducing biases in autumn and winter. In hydrological applications, the BMA-driven VIC model effectively replicated observed runoff patterns, demonstrating its efficacy for regional long-term predictions. This study highlights BMA’s potential for optimizing hydrological model inputs, providing critical insights for sustainable water management and risk reduction in complex basins. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

21 pages, 2607 KiB  
Article
Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region
by Arathi Rameshan, Prashant Singh and Bodo Ahrens
Atmosphere 2025, 16(3), 327; https://doi.org/10.3390/atmos16030327 - 13 Mar 2025
Viewed by 784
Abstract
The scarcity of in situ observation stations and the unreliability of long-term satellite data necessitate the use of reanalysis datasets to study elevation-dependent climate change (EDCC) in the third pole (TP) region. We analyzed elevation-dependent temperature and precipitation patterns over TP using the [...] Read more.
The scarcity of in situ observation stations and the unreliability of long-term satellite data necessitate the use of reanalysis datasets to study elevation-dependent climate change (EDCC) in the third pole (TP) region. We analyzed elevation-dependent temperature and precipitation patterns over TP using the ECMWF Atmospheric Reanalysis Fifth Generation (ERA5), a global reanalysis product with coarse resolution, along with three high-resolution regional reanalysis datasets that cover our study domain: Indian Monsoon Data Assimilation and Analysis (IMDAA), High Asia Refined Analysis—Version 2 (HAR-v2), and Tibetan Plateau Regional Reanalysis (TPRR). Comparing the performance of the four reanalysis datasets in capturing EDCC over TP is crucial, as these datasets provide spatially and temporally consistent data at an optimum resolution that greatly aids EDCC research. Our study results reveal the following: (1) A positive elevation-dependent warming trend is observed across all four datasets in winter and autumn, with varying magnitudes of warming across the datasets. (2) All four datasets exhibit positive elevation-dependent wetting trends in all seasons, except autumn. These are primarily driven by pronounced drying trends at lower elevations and relatively minimal changes in precipitation trends at higher elevations. (3) ERA5 and IMDAA exhibit similar results in capturing elevation-dependent climate change, whereas the TPRR dataset reveals more extreme and unique features in temperature trends compared to the other three datasets. HAR-v2 shows smaller variations in temperature and precipitation trends across different elevations and seasons, in contrast to the other three datasets. While all reanalysis datasets indicate EDCC in the TP, their varying degrees of seasonal and spatial differences underscore the need for a careful evaluation before using them as reference data. Comparison of reanalysis datasets with available observational records, such as in situ measurements and satellite data, over overlapping spatial and temporal domains is essential to assess their quality. This evaluation can help identify the most suitable reanalysis dataset, or combination of datasets, to serve as reliable a reference even in regions or periods without observational data. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 9426 KiB  
Article
Ensemble Streamflow Simulations in a Qinghai–Tibet Plateau Basin Using a Deep Learning Method with Remote Sensing Precipitation Data as Input
by Jinqiang Wang, Zhanjie Li, Ling Zhou, Chi Ma and Wenchao Sun
Remote Sens. 2025, 17(6), 967; https://doi.org/10.3390/rs17060967 - 9 Mar 2025
Viewed by 1502
Abstract
Satellite and reanalysis-based precipitation products have played a crucial role in addressing the challenges associated with limited ground-based observational data. These products are widely utilized in hydrometeorological research, particularly in data-scarce regions like the Qinghai–Tibetan Plateau (QTP). This study proposed an ensemble streamflow [...] Read more.
Satellite and reanalysis-based precipitation products have played a crucial role in addressing the challenges associated with limited ground-based observational data. These products are widely utilized in hydrometeorological research, particularly in data-scarce regions like the Qinghai–Tibetan Plateau (QTP). This study proposed an ensemble streamflow simulation method using remote sensing precipitation data as input. By employing a 1D Convolutional Neural Networks (1D CNN), streamflow simulations from multiple models are integrated and a Shapley Additive exPlanations (SHAP) interpretability analysis was conducted to examine the contributions of individual models on ensemble streamflow simulation. The method is demonstrated using GPM IMERG (Global Precipitation Measurement Integrated Multi-satellite Retrievals) remote sensing precipitation data for streamflow estimation in the upstream region of the Ganzi gauging station in the Yalong River basin of QTP for the period from 2010 to 2019. Streamflow simulations were carried out using models with diverse structures, including the physically based BTOPMC (Block-wise use of TOPMODEL) and two machine learning models, i.e., Random Forest (RF) and Long Short-Term Memory Neural Networks (LSTM). Furthermore, ensemble simulations were compared: the Simple Average Method (SAM), Weighted Average Method (WAM), and the proposed 1D CNN method. The results revealed that, for the hydrological simulation of each individual models, the Kling–Gupta Efficiency (KGE) values during the validation period were 0.66 for BTOPMC, 0.71 for RF, and 0.74 for LSTM. Among the ensemble approaches, the validation period KGE values for SAM, WAM, and the 1D CNN-based nonlinear method were 0.74, 0.73, and 0.82, respectively, indicating that the nonlinear 1D CNN approach achieved the highest accuracy. The SHAP-based interpretability analysis further demonstrated that RF made the most significant contribution to the ensemble simulation, while LSTM contributed the least. These findings highlight that the proposed 1D CNN ensemble simulation framework has great potential to improve streamflow estimations using remote sensing precipitation data as input and may provide new insight into how deep learning methods advance the application of remote sensing in hydrological research. Full article
Show Figures

Figure 1

17 pages, 4259 KiB  
Article
Analyzing an Extreme Rainfall Event in Himachal Pradesh, India, to Contribute to Sustainable Development
by Nitin Lohan, Sushil Kumar, Vivek Singh, Raj Pritam Gupta and Gaurav Tiwari
Sustainability 2025, 17(5), 2115; https://doi.org/10.3390/su17052115 - 28 Feb 2025
Cited by 1 | Viewed by 2143
Abstract
In the Himalayan regions of complex terrains, such as Himachal Pradesh, the occurrence of extreme rainfall events (EREs) has been increasing, triggering landslides and flash floods. Investigating the dynamics and precipitation characteristics and improving the prediction of such events are crucial and could [...] Read more.
In the Himalayan regions of complex terrains, such as Himachal Pradesh, the occurrence of extreme rainfall events (EREs) has been increasing, triggering landslides and flash floods. Investigating the dynamics and precipitation characteristics and improving the prediction of such events are crucial and could play a vital role in contributing to sustainable development in the region. This study employs a high-resolution numerical weather prediction framework, the weather research and forecasting (WRF) model, to deeply investigate an ERE which occurred between 8 July and 13 July 2023. This ERE caused catastrophic floods in the Mandi and Kullu districts of Himachal Pradesh. The WRF model was configured with nested domains of 12 km and 4 km horizontal grid resolutions, and the results were compared with global high-resolution precipitation products and the fifth-generation European Centre for Medium-Range Weather Forecasts atmospheric reanalysis dataset. The selected case study was amplified by the synoptic scale features associated with the position and intensity of the monsoon trough, including mesoscale processes like orographic lifting. The presence of a western disturbance and the heavy moisture transported from the Arabian Sea and the Bay of Bengal both intensified this event. The model has effectively captured the spatial distribution and large-scale dynamics of the phenomenon, demonstrating the importance of high-resolution numerical modeling in accurately simulating localized EREs. Statistical evaluation revealed that the WRF model overestimated extreme rainfall intensity, with the root mean square error reaching 17.33 mm, particularly during the convective peak phase. The findings shed light on the value of high-resolution modeling in capturing localized EREs and offer suggestions for enhancing disaster management and flood forecasting. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

24 pages, 11231 KiB  
Article
Assessing AgERA5 and MERRA-2 Global Climate Datasets for Small-Scale Agricultural Applications
by Konstantinos Soulis, Evangelos Dosiadis, Evangelos Nikitakis, Ioannis Charalambopoulos, Orestis Kairis, Aikaterini Katsogiannou, Stergia Palli Gravani and Dionissios Kalivas
Atmosphere 2025, 16(3), 263; https://doi.org/10.3390/atmos16030263 - 24 Feb 2025
Cited by 2 | Viewed by 1969
Abstract
AgERA5 (ECMWF) is a relatively new climate dataset specifically designed for agricultural applications. MERRA-2 (NASA) is also used in agricultural applications; however, it was not specifically designed for this purpose. Despite the proven value of these datasets in assessing global climate patterns, their [...] Read more.
AgERA5 (ECMWF) is a relatively new climate dataset specifically designed for agricultural applications. MERRA-2 (NASA) is also used in agricultural applications; however, it was not specifically designed for this purpose. Despite the proven value of these datasets in assessing global climate patterns, their effectiveness in small-scale agricultural contexts remains unclear. This research aims to fill this gap by assessing the suitability and performance of AgERA5 and MERRA-2 in precision irrigation management, which is crucial for regions with limited ground data availability. The wine-making region of Nemea, Greece, with its complex and challenging terrain is used as a characteristic case study. The datasets are assessed for key weather variables and for irrigation planning, using detailed local meteorological station data as a reference. The results reveal that both products have serious limitations in small scale irrigation scheduling applications in contrast to what was reported in previous studies for other regions. The uneven performance of global datasets in different regions due to lack of sufficient observation data for reanalysis data calibration was also indicated. Comparing the two datasets, AgERA5 outperforms MERRA-2, especially in precipitation and reference evapotranspiration. MERRA-2 shows comparable potential in irrigation planning, as it occasionally matches or exceeds AgERA5’s performance. The study findings underscore the importance of evaluating metanalysis datasets in the application area before their use for precision agriculture, particularly in regions with complex topography. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

24 pages, 9886 KiB  
Article
Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria
by Rayane Bounab, Hamouda Boutaghane, Tayeb Boulmaiz and Yves Tramblay
Atmosphere 2025, 16(2), 213; https://doi.org/10.3390/atmos16020213 - 13 Feb 2025
Cited by 1 | Viewed by 990
Abstract
Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall [...] Read more.
Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from space. In Algeria, to identify a relevant modeling approach using this new source of rainfall information, the present research aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which combination of models and precipitation data provides the optimal performance for river discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall products are as efficient as observed precipitation in this data-scarce context. Consequently, this work is the first step towards the implementation of these tools for the operational monitoring of surface water resources in Algeria. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop