Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region
Abstract
:1. Introduction
2. Data and Methods
2.1. ETOPO 2022
2.2. ERA5
2.3. IMDAA
2.4. HAR-v2
2.5. TPRR
2.6. HadISD
2.7. Trend Analysis
2.8. Pettitt Test
2.9. Principal Component Analysis
2.10. Orography
Elevation Bands
2.11. Elevation-Dependent Climate Change Indices
3. Results and Discussion
3.1. Annual Temperature and Precipitation Trends
3.2. Spatial Features of Seasonal Trends
3.2.1. Temperature
3.2.2. Precipitation
3.3. Elevation-Dependent Climate Change Indices
3.4. Correlation Between Variables
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Principal Component Analysis (PCA)
References
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Byrne, M.P.; Boos, W.R.; Hu, S. Elevation-dependent warming: Observations, models, and energetic mechanisms. Weather Clim. Dyn. 2024, 5, 763–777. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Change 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Intergovernmental Panel On Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Kad, P.; Ha, K.J.; Lee, S.S.; Chu, J.E. Projected Changes in Mountain Precipitation Under CO2-Induced Warmer Climate. Earth’s Future 2023, 11, e2023EF003886. [Google Scholar] [CrossRef]
- Ferguglia, O.; Palazzi, E.; Arnone, E. Elevation dependent change in ERA5 precipitation and its extremes. Clim. Dyn. 2024, 62, 8137–8153. [Google Scholar] [CrossRef]
- Cui, T.; Li, Y.; Yang, L.; Nan, Y.; Li, K.; Tudaji, M.; Hu, H.; Long, D.; Shahid, M.; Mubeen, A.; et al. Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nat. Commun. 2023, 14, 1176. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Shen, H.; Li, S.; Xu, Y. Introduction to the Third Pole. In Grasslands on the Third Pole of the World: Structure, Function, Process, and Resilience of Social-Ecological Systems; Dong, S., Zhang, Y., Shen, H., Li, S., Xu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–30. [Google Scholar] [CrossRef]
- Yanai, M.; Wu, G.X. Effects of the Tibetan Plateau. In The Asian Monsoon; Wang, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 513–549. [Google Scholar] [CrossRef]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35, L14702. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 2006, 33, L22704. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Climatic trends over the Tibetan Plateau during 1971–2000. J. Geogr. Sci. 2007, 17, 141–151. [Google Scholar] [CrossRef]
- Zhou, P.; Tang, J.; Ma, M.; Ji, D.; Shi, J. High resolution Tibetan Plateau regional reanalysis 1961-present. Sci. Data 2024, 11, 444. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, F.; Lu, Z.; Sun, P.; Wei, R.; Zhou, L.; Ao, T. Assessments of various precipitation product performances and disaster monitoring utilities over the Tibetan Plateau. Sci. Rep. 2024, 14, 19740. [Google Scholar] [CrossRef]
- MacFerrin, M.; Amante, C.; Carignan, K.; Love, M.; Lim, E. The Earth Topography 2022 (ETOPO 2022) Global DEM dataset. Earth Syst. Sci. Data Discuss. 2024; preprint. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. ETOPO Global Relief Model—ncei.noaa.gov. Available online: https://www.ncei.noaa.gov/products/etopo-global-relief-model (accessed on 29 January 2025).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kouki, K.; Luojus, K.; Riihelä, A. Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018. Cryosphere 2023, 17, 5007–5026. [Google Scholar] [CrossRef]
- Rani, S.I.; Arulalan, T.; George, J.P.; Rajagopal, E.N.; Renshaw, R.; Maycock, A.; Barker, D.M.; Rajeevan, M. IMDAA: High Resolution Satellite-era Reanalysis for the Indian Monsoon Region. J. Clim. 2021, 34, 5109–5133. [Google Scholar] [CrossRef]
- Wang, X.; Tolksdorf, V.; Otto, M.; Scherer, D. WRF-based dynamical downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the High Asia Refined analysis. Int. J. Climatol. 2021, 41, 743–762. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, P.; Ma, M.; Ji, D.; Shi, J. High Resolution Tibetan Plateau Regional Reanalysis (1961–Present). 2023. Available online: https://data.tpdc.ac.cn/en/data/cae861c4-9361-4a4a-a61e-71c54819c018 (accessed on 29 January 2025).
- Beaudoing, H.; Rodell, M.; NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 Monthly 0.25 × 0.25 Degree, Version 2.1, p.N.y. Available online: https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary (accessed on 29 January 2025).
- Dunn, R.J.H.; Willett, K.M.; Thorne, P.W.; Woolley, E.V.; Durre, I.; Dai, A.; Parker, D.E.; Vose, R.S. HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Clim. Past 2012, 8, 1649–1679. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Willett, K.M.; Parker, D.E.; Mitchell, L. Expanding HadISD: Quality-controlled, sub-daily station data from 1931. Geosci. Instrum. Methods Data Syst. 2016, 5, 473–491. [Google Scholar] [CrossRef]
- Ahmed, R.; Shamim, T.; Bansal, J.K.; Rather, A.F.; Javaid, S.; Wani, G.F.; Malik, I.H.; Ahmed, P.; Jain, S.K.; Imdad, K.; et al. Assessing climate trends in the Northwestern Himalayas: A comprehensive analysis of high-resolution gridded and observed datasets. Geomat. Nat. Hazards Risk 2024, 15, 2401994. [Google Scholar] [CrossRef]
- Wood, R.R.; Janzing, J.; Van Hamel, A.; Götte, J.; Schumacher, D.L.; Brunner, M.I. Comparison of high-resolution climate reanalysis datasets for hydro-climatic impact studies. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps. Hydrobiologia 2006, 562, 3–16. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, J.; Cui, W.; Chen, D.; Zhang, J.; Lu, H.; Maeda, E.E.; Zeng, Z.; Beck, H.E. Elevation Regulates the Response of Climate Heterogeneity to Climate Change. Geophys. Res. Lett. 2024, 51, e2024GL109483. [Google Scholar] [CrossRef]
- Collier, E.; Ban, N.; Richter, N.; Ahrens, B.; Chen, D.; Chen, X.; Lai, H.W.; Leung, R.; Li, L.; Medvedova, A.; et al. The first ensemble of kilometer-scale simulations of a hydrological year over the third pole. Clim. Dyn. 2024, 62, 7501–7518. [Google Scholar] [CrossRef]
- News, B. Mt Everest Grows by Nearly a Metre to New Height. 2020. Available online: https://www.bbc.com/news/world-asia-55218443 (accessed on 13 February 2025).
- Chen, P.; Kang, S.; Li, C.; Zhang, Q.; Guo, J.; Tripathee, L.; Zhang, Y.; Li, G.; Gul, C.; Cong, Z.; et al. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ. Pollut. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Huai, B.; Wang, Y.; Ji, K.; Yang, X.; Du, W.; Qin, X.; Wang, L. Comparison and evaluation of the performance of reanalysis datasets for compound extreme temperature and precipitation events in the Qilian Mountains. Atmos. Res. 2024, 304, 107375. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.; Zhou, B.; et al. TPHiPr: A long-term (1979–2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Von Lerber, A.; Mech, M.; Rinke, A.; Zhang, D.; Lauer, M.; Radovan, A.; Gorodetskaya, I.; Crewell, S. Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic. Atmos. Chem. Phys. 2022, 22, 7287–7317. [Google Scholar] [CrossRef]
- Palazzi, E.; Filippi, L.; Von Hardenberg, J. Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations. Clim. Dyn. 2017, 48, 3991–4008. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Pepin, N.; Chen, D.; Ahrens, B.; Jiang, Z.; Wu, F.; Kang, S.; Zhang, R.; Wu, T.; et al. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Rebetez, M. Seasonal relationship between temperature, precipitation and snow cover in a mountainous region. Theor. Appl. Climatol. 1996, 54, 99–106. [Google Scholar] [CrossRef]
- Li, C.; Su, F.; Yang, D.; Tong, K.; Meng, F.; Kan, B. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int. J. Climatol. 2017, 38, 708–728. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Ren, G.; Fraedrich, K.; Pepin, N.; Yan, Y.; Ma, L. Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Clim. Res. 2011, 46, 171–183. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Boehrer, B. Variability in observed snow depth over China from 1960 to 2014. Int. J. Climatol. 2021, 41, 374–392. [Google Scholar] [CrossRef]
- Dyrrdal, A.V.; Saloranta, T.; Skaugen, T.; Stranden, H.B. Changes in snow depth in Norway during the period 1961–2010. Hydrol. Res. 2013, 44, 169–179. [Google Scholar] [CrossRef]
- Orsolini, Y.; Wegmann, M.; Dutra, E.; Liu, B.; Balsamo, G.; Yang, K.; De Rosnay, P.; Zhu, C.; Wang, W.; Senan, R.; et al. Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations. Cryosphere 2019, 13, 2221–2239. [Google Scholar] [CrossRef]
- Marshall, S.J.; Miller, K. Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains. Cryosphere 2020, 14, 3249–3267. [Google Scholar] [CrossRef]
ERA5 | IMDAA | HAR-v2 | TPRR | |
---|---|---|---|---|
Temporal Resolution | Hourly | Hourly | Hourly | Hourly |
Spatial Resolution | 31 km | 12 km | 10 km | 9 km |
Time Coverage | 1940–Present | 1979–Present | 1980–2023 | 1961–Present |
Spatial Coverage | Global | Indian Monsoon Region | HMA | Tibetan Plateau |
Model | IFS 41r2 | UM v10.2 | WRF v4.0.3 | WRF v4.2 |
Boundary Condition | - | ERA-I | ERA5 | ERA5 |
Bands | Elevation (m) | Area (%) | |||
---|---|---|---|---|---|
ERA5 | IMDAA | HAR-v2 | TPRR | ||
1 | 2000 ≤ x 1 < 2500 | 2.4 | 2.3 | 2.7 | 2.1 |
2 | 2500 ≤ x < 3000 | 4.6 | 4.7 | 5.2 | 4.7 |
3 | 3000 ≤ x < 3500 | 5.6 | 5.6 | 6.0 | 5.0 |
4 | 3500 ≤ x < 4000 | 7.3 | 7.3 | 9.0 | 7.3 |
5 | 4000 ≤ x < 4500 | 18.8 | 18.3 | 17.4 | 17.0 |
6 | 4500 ≤ x < 5000 | 35.0 | 36.2 | 33.8 | 36.4 |
7 | 5000 ≤ x < 5500 | 25.3 | 24.8 | 22.9 | 24.6 |
8 | 5500 ≤ x | 0.9 | 0.7 | 2.9 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rameshan, A.; Singh, P.; Ahrens, B. Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region. Atmosphere 2025, 16, 327. https://doi.org/10.3390/atmos16030327
Rameshan A, Singh P, Ahrens B. Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region. Atmosphere. 2025; 16(3):327. https://doi.org/10.3390/atmos16030327
Chicago/Turabian StyleRameshan, Arathi, Prashant Singh, and Bodo Ahrens. 2025. "Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region" Atmosphere 16, no. 3: 327. https://doi.org/10.3390/atmos16030327
APA StyleRameshan, A., Singh, P., & Ahrens, B. (2025). Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region. Atmosphere, 16(3), 327. https://doi.org/10.3390/atmos16030327