The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Theil–Sen Slope for Trend Detection
2.4. Calculation of Drought Indices
2.5. Drought Feature Identification
2.6. Drought Propagation Analysis
3. Results
3.1. The Spatiotemporal Evolution of Typical Climatic Elements and Soil Moisture
3.1.1. Analysis of the Spatiotemporal Evolution of Water Balance
3.1.2. Analysis of the Spatiotemporal Evolution of Soil Moisture
3.2. Analysis of the Spatiotemporal Evolution of Drought Based on Drought Characteristics
3.2.1. Spatial Differences in Drought Characteristics
3.2.2. Analysis of the Synchronicity Between Meteorological Drought and Agricultural Drought
3.3. Drought Propagation Time from Meteorological Drought to Agricultural Drought
3.3.1. Spatial Distribution Characteristics of Drought Propagation Time
3.3.2. Temporal Distribution Characteristics of Drought Propagation Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qu, Y.; Lv, J.; Su, Z.; Sun, H.; Ma, M. Research Review and Perspective of Drought Mitigation. J. Hydraul. Eng. 2018, 49, 115–125. [Google Scholar] [CrossRef]
- Dai, A. Drought Under Global Warming: A Review. WIREs Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Xue, L.; Yuan, S.; Wang, J. Progress and Prospects of Research on Causes of Meteorological Drought in Different Regions in China. J. Arid Meteorol. 2023, 41, 1–13. [Google Scholar]
- Chen, Z. Empirical Diagnostic Analysis on Spatial and Temporal Variations of Droughts in the Pearl River Basin. Acta Sci. Nat. Univ. Sunyatseni 2020, 59, 33–42. [Google Scholar]
- Huang, Q.; Chen, Z.; Tang, C.; Li, S. Monitoring the Spatio-Temporal Process of Severe Droughts in the Pearl River Basin. Adv. Earth Sci. 2019, 34, 1050–1059. [Google Scholar] [CrossRef]
- Jing, J.; Xu, Y.; Wang, Y.; Dou, S.; Yin, M. Characteristics of Multi-Scale Drought and Flood in the Pearl River Basin from 1960 to 2019. Res. Agric. Mod. 2021, 42, 557–569. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, F.; Tian, Y.; Jiang, Y.; Weng, P.; Li, J. Copula-Based Comprehensive Drought Identification and Evaluation over the Xijiang River Basin in South China. Ecol. Indic. 2023, 154, 110503. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.; Pan, S.; Gu, X.; Xu, M.; You, M.; Pi, G. Spatial and Temporal Evolution Characteristics of Karst Agricultural Drought Based on Different Time Scales and Driving Detection—A Case Study of Guizhou Province. J. Soil Water Conserv. 2023, 37, 136–148. [Google Scholar] [CrossRef]
- Wang, B. Speeding up Construction of a Defense Line for Flood and Drought Disasters to Increase the Capability of Water Security Guarantee in the Pearl River Basin. China Water Resour. 2022, 8, 15–17. [Google Scholar]
- Yang, G.; Huang, H. Practice and Exploration on Water Supply Security in the Pearl River Basin Arid Region. China Water Resour. 2022, 945, 17–20. [Google Scholar]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On Downward Shortwave and Longwave Radiations over High Altitude Regions: Observation and Modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, pp. 26–40. [Google Scholar]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of Vegetation to Drought Time-Scales Across Global Land Biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Li, X.; Jiang, T.; Wu, P.; Wang, Y.; Su, B. Relationship between actual evapotranspiration and potential evapotranspiration in the Pearl River basin. Trans. Atmos. Sci. 2016, 39, 692–701. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Zha, X.; Xiong, L.; Liu, C.; Shu, P.; Xiong, B. Identification and Evaluation of Soil Moisture Flash Drought by a Nonstationary Framework Considering Climate and Land Cover Changes. Sci. Total Environ. 2023, 856, 158953. [Google Scholar] [CrossRef]
- Zhang, R.; Li, L.; Zhang, Y.; Huang, F.; Li, J.; Liu, W.; Mao, T.; Xiong, Z.; Shangguan, W. Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China. Agriculture 2021, 11, 411. [Google Scholar] [CrossRef]
- Shangguan, W.; Zhang, R.; Li, L.; Zhang, S.; Zhang, Y.; Huang, F.; Li, J.; Liu, W. Assessment of Agricultural Drought Based on Reanalysis Soil Moisture in Southern China. Land 2022, 11, 502. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 Satellite- and Model-Based Soil Moisture Products Using In Situ Measurements from 826 Sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A Parametric Multi-Index Model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Hao, Z.; Singh, V.P.; Hao, F. Characterization of Agricultural Drought Propagation over China Based on Bivariate Probabilistic Quantification. J. Hydrol. 2021, 598, 126194. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought Propagation under Global Warming: Characteristics, Approaches, Processes, and Controlling Factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Herbst, P.H.; Bredenkamp, D.B.; Barker, H.M.G. A Technique for the Evaluation of Drought from Rainfall Data. J. Hydrol. 1966, 4, 264–272. [Google Scholar] [CrossRef]
- Ding, Y.; Gong, X.; Xing, Z.; Cai, H.; Zhou, Z.; Zhang, D.; Sun, P.; Shi, H. Attribution of Meteorological, Hydrological and Agricultural Drought Propagation in Different Climatic Regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wang, X.; Hao, Z.; Singh, V.P.; Hao, F. Propagation from Meteorological Drought to Hydrological Drought Under the Impact of Human Activities: A Case Study in Northern China. J. Hydrol. 2019, 579, 124147. [Google Scholar] [CrossRef]
- Gao, G.; Xu, C. Characteristics of water surplus and deficit change in 10 major river basins in China during 1961–2010. Acta Geogr. Sin. 2015, 70, 380–391. [Google Scholar] [CrossRef]
- Han, Z. Study on the Evolution Characteristics and Propagation Process of Multi-Type Drought in China. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2022. [Google Scholar]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root Distribution by Depth for Temperate Agricultural Crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef]
- Yang, Y.; Donohue, R.J.; McVicar, T.R. Global Estimation of Effective Plant Rooting Depth: Implications for Hydrological Modeling. Water Resour. Res. 2016, 52, 8260–8276. [Google Scholar] [CrossRef]
Soil Depth (cm) | Vegetation | Crops |
---|---|---|
VSW1 (0–7 cm) | Herbs and succulents | Vegetables |
VSW2 (7–28 cm) | Flowering plants and lawns | Peanuts, tea, etc. |
VSW3 (28–100 cm) | Small trees, vine plants, and shrubs | Soybeans, rice, wheat, sugarcane, cassava, watermelon, etc. |
VSW4 (100–289 cm) | Medium and tall trees | Corn, sorghum, sweet potatoes, cotton, etc. |
Soil depth (cm) | Vegetation | Crops |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, J.; Jia, W.; Zhang, F.; Zhang, H.; Wang, S. The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin. Water 2025, 17, 1116. https://doi.org/10.3390/w17081116
Zhou Y, Li J, Jia W, Zhang F, Zhang H, Wang S. The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin. Water. 2025; 17(8):1116. https://doi.org/10.3390/w17081116
Chicago/Turabian StyleZhou, Yaoqiang, Jiayu Li, Wenhao Jia, Fei Zhang, Hongjie Zhang, and Sen Wang. 2025. "The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin" Water 17, no. 8: 1116. https://doi.org/10.3390/w17081116
APA StyleZhou, Y., Li, J., Jia, W., Zhang, F., Zhang, H., & Wang, S. (2025). The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin. Water, 17(8), 1116. https://doi.org/10.3390/w17081116