Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (846)

Search Parameters:
Keywords = reactor containment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2950 KiB  
Article
Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation
by Jiantao Qin, Min Zhao, Rongjian Pan, Aitao Tang and Lu Wu
Materials 2025, 18(15), 3584; https://doi.org/10.3390/ma18153584 - 30 Jul 2025
Viewed by 184
Abstract
Accurate evaluation of the thermal conductivity of UO2 with defects is very significant for optimizing fuel performance and enhancing the safety design of reactors. We employed a method that combines the Boltzmann transport equation with DFT+U to calculate the thermal conductivity of [...] Read more.
Accurate evaluation of the thermal conductivity of UO2 with defects is very significant for optimizing fuel performance and enhancing the safety design of reactors. We employed a method that combines the Boltzmann transport equation with DFT+U to calculate the thermal conductivity of UO2 containing fission products and irradiation-induced point defects. Our investigation reveals that the thermal conductivity of UO2 is influenced by defect concentration, defect type, and temperature. Fission products and irradiation defects result in a decrease in thermal conductivity, but they have markedly different impacts on phonon scattering mechanisms. Metal cations tend to scatter low-frequency phonons (less than 5.8 THz), while the fission gas xenon scatters both low-frequency and high-frequency phonons (greater than 5.8 THz), depending on its occupancy at lattice sites. Uranium vacancies scatter low-frequency phonons, while oxygen vacancies scatter high-frequency phonons. When uranium and oxygen vacancies coexist, they scatter phonons across the entire frequency spectrum, which further results in a significant reduction in the thermal conductivity of UO2. Our calculated results align well with experimental data across a wide temperature range and provide fundamental insights into the heat transfer mechanisms in irradiated UO2. These findings are essential for establishing a thermal conductivity database for UO2 under various irradiation conditions and benefit the development of advanced high-performance UO2 fuel. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Optimising Nature-Based Treatment Systems for Management of Mine Water
by Catherine J. Gandy, Beate Christgen and Adam P. Jarvis
Minerals 2025, 15(7), 765; https://doi.org/10.3390/min15070765 - 21 Jul 2025
Viewed by 168
Abstract
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance [...] Read more.
Deployment of nature-based systems for mine water treatment is constrained by system size, and the evidence suggests decreasing hydraulic conductivity (Ksat) of organic substrates over time compromises performance. In lab-scale continuous-flow reactors, we investigated (1) the geochemical and hydraulic performance of organic substrates used in nature-based systems for metals removal (via bacterial sulfate reduction) from mine water, and then (2) the potential to operate systems modestly contaminated with Zn (0.5 mg/L) at reduced hydraulic residence times (HRTs). Bioreactors containing limestone, straw, and wood chips, with and without compost and/or sewage sludge all achieved 88%–90% Zn removal, but those without compost/sludge had higher Ksat (929–1546 m/d). Using a high Ksat substrate, decreasing the HRT from 15 to 9 h had no impact on Zn removal (92.5% to 97.5%). Although the sulfate reduction rate decreased at a shorter HRT, microbial analysis showed high relative abundance (2%–7%) of sulfate reducing bacteria, and geochemical modelling pointed to ZnS(s) precipitation as the main attenuation mechanism (mean ZnS saturation index = 3.91–4.23). High permeability organic substrate treatment systems operated at a short HRT may offer potential for wider deployment of such systems, but pilot-scale testing under ambient environmental conditions is advisable. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Graphical abstract

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 787
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
Removal of Chemical Oxygen Demand (COD) from Swine Farm Wastewater by Corynebacterium xerosis H1
by Jingyi Zhang, Meng Liu, Heshi Tian, Lingcong Kong, Wenyan Yang, Lianyu Yang and Yunhang Gao
Microorganisms 2025, 13(7), 1621; https://doi.org/10.3390/microorganisms13071621 - 9 Jul 2025
Viewed by 262
Abstract
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate [...] Read more.
Swine wastewater (SW) has a high chemical oxygen demand (COD) content and is difficult to degrade; an effective strategy to address this issue is through biodegradation, which poses negligible secondary pollution risks and ensures cost-efficiency. The objectives of this study were to isolate an effective COD-degrading strain of SW, characterize (at the molecular level) its transformation of SW, and apply it to practical production. A strain of Corynebacterium xerosis H1 was isolated and had a 27.93% ± 0.68% (mean ± SD) degradation rate of COD in SW. This strain precipitated growth in liquids, which has the advantage of not needing to be immobilized, unlike other wastewater-degrading bacteria. Based on analysis by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this bacterium removed nitrogen-containing compounds in SW, with proteins and lipids decreasing from 41 to 10% and lignins increasing from 51 to 82%. Furthermore, the enhancement of the sequencing batch reactor (SBR) with strain H1 improved COD removal in effluent, with reductions in the fluorescence intensity of aromatic protein I, aromatic protein II, humic-like acids, and fulvic acid regions. In addition, based on 16S rRNA gene sequencing analysis, SBRH1 successfully colonized some H1 bacteria and had a higher abundance of functional microbiota than SBRC. This study confirms that Corynebacterium xerosis H1, as a carrier-free efficient strain, can be directly applied to swine wastewater treatment, reducing carrier costs and the risk of secondary pollution. The discovery of this strain enriches the microbial resource pool for SW COD degradation and provides a new scheme with both economic and environmental friendliness for large-scale treatment. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

26 pages, 4761 KiB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 342
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 3753 KiB  
Article
Thermal Shock and Synergistic Plasma and Heat Load Testing of Powder Injection Molding Tungsten-Based Alloys
by Mauricio Gago, Steffen Antusch, Alexander Klein, Arkadi Kreter, Christian Linsmeier, Michael Rieth, Bernhard Unterberg and Marius Wirtz
J. Nucl. Eng. 2025, 6(3), 25; https://doi.org/10.3390/jne6030025 - 7 Jul 2025
Viewed by 291
Abstract
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O [...] Read more.
Powder injection molding (PIM) has been used to produce nearly net-shaped samples of tungsten-based alloys. These alloys have been previously shown to have favorable characteristics when compared with standard ITER-grade tungsten. Six different alloys were produced with this method: W-1TiC, W-2Y2O3, W-3Re-1TiC, W-3Re-2Y2O3, W-1HfC and W-1La2O3-1TiC. These were tested alongside ITER-grade tungsten in the PSI-2 linear plasma device under ITER-relevant plasma and heat loads to assess their suitability for use in a fusion reactor. All materials showed good behavior when exposed to the lower pulse number tests (≤1000 ELM-like pulses), although standard tungsten performed slightly better, with no observable difference in surface roughness. High-power shots, namely one laser pulse of 1.6 GWm−2, revealed that samples containing yttria are more prone to melting and droplet ejection. After high pulse number tests (10,000 and 100,000 pulses), with and without plasma, the reference tungsten showed the most cracking and highest surface roughness of all materials, while the PIM samples seemed to have a higher resistance to cracking. This can be attributed to the higher ductility of these alloys, particularly those containing rhenium. This means that tungsten-based alloys, whether produced via PIM or other methods, could potentially be used in certain areas of a fusion reactor. Full article
Show Figures

Graphical abstract

26 pages, 5399 KiB  
Article
Microwave-Assisted Pyrolysis of Polyethylene and Polypropylene from End-of-Life Vehicles: Hydrogen Production and Energy Valorization
by Grigore Psenovschi, Ioan Calinescu, Alexandru Fiti, Ciprian-Gabriel Chisega-Negrila, Sorin-Lucian Ionascu and Lucica Barbes
Sustainability 2025, 17(13), 6196; https://doi.org/10.3390/su17136196 - 6 Jul 2025
Viewed by 602
Abstract
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene [...] Read more.
Plastic waste is currently a major concern in Romania due to the annual increase in quantities generated from anthropogenic and industrial activities, especially from end-of-life vehicles (ELVs), and the need to reduce environmental impact. This study investigates an alternative valorization route for polypropylene (PP) and polyethylene (PE) plastic waste through microwave-assisted pyrolysis, aiming to maximize conversion into gaseous products, particularly hydrogen-rich gas. A monomode microwave reactor was employed, using layered configurations of plastic feedstock, silicon carbide as a microwave susceptor, and activated carbon as a catalyst. The influence of catalyst loading, reactor configuration, and plastic type was assessed through systematic experiments. Results showed that technical-grade PP, under optimal conditions, yielded up to 81.4 wt.% gas with a hydrogen concentration of 45.2 vol.% and a hydrogen efficiency of 44.8 g/g. In contrast, PE and mixed PP + PE waste displayed lower hydrogen performance, particularly when containing inorganic fillers. For all types of plastics studied, the gaseous fractions obtained have a high calorific value (46,941–55,087 kJ/kg) and at the same time low specific CO2 emissions (4.4–6.1 × 10−5 kg CO2/kJ), which makes these fuels very efficient and have a low carbon footprint. Comparative tests using conventional heating revealed significantly lower hydrogen yields (4.77 vs. 19.7 mmol/g plastic). These findings highlight the potential of microwave-assisted pyrolysis as an efficient method for transforming ELV-derived plastic waste into energy carriers, offering a pathway toward low-carbon, resource-efficient waste management. Full article
(This article belongs to the Special Issue Novel and Scalable Technologies for Sustainable Waste Management)
Show Figures

Figure 1

12 pages, 1686 KiB  
Article
Research on the Chlorine Removal and Upgrading of Waste Plastic Pyrolysis Oil Using Iron-Based Adsorbents
by Hyo Sik Kim, Hyun-Ji Kim, Jihyeon Kim, Jin-Ho Kim, Tae-Jin Kang, Suk-Hwan Kang, Yeji Lee, Soo Chool Lee, Chi-Seong Chang and Jong Wook Bae
Energies 2025, 18(13), 3434; https://doi.org/10.3390/en18133434 - 30 Jun 2025
Viewed by 252
Abstract
The emergence of plastics as an essential item in modern society has led to the problem of accumulating plastic waste. Accordingly, research is being conducted around the world to reduce the production of new plastics and develop technologies to recycle waste plastics. Among [...] Read more.
The emergence of plastics as an essential item in modern society has led to the problem of accumulating plastic waste. Accordingly, research is being conducted around the world to reduce the production of new plastics and develop technologies to recycle waste plastics. Among the existing waste plastic recycling technologies, oil production is possible through pyrolysis, but the pyrolysis oil produced in this way has a wide carbon range (more than C5–C25), and a very high olefin content (the presence of aromatic compounds), and the resulting high calorific value of pyrolysis oil is limited in its application range. In the case of oil obtained by pyrolyzing waste plastic containing Cl, there is a concern about corrosion in the reactor. Accordingly, it is possible to diversify the range of use of pyrolysis oil produced by suppressing corrosion through Cl removal as well as oil upgrading through cracking. Therefore, this study used red mud mixed with a series of adsorbents for Cl removal and pyrolysis oil upgrade. The adsorbent was physically mixed with a binder (kaolin or methylcellulose) and activated carbon, and the results before and after the reaction were confirmed through basic characteristic analysis. Full article
(This article belongs to the Special Issue Pyrolysis and Gasification of Biomass and Waste, 3rd Edition)
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 391
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

21 pages, 1675 KiB  
Article
H Preview Tracking Control of Time-Delay Discrete Systems and Its Application in Nuclear Reactor Problems
by Fucheng Liao, Hao Xie, Xianchun Meng, Jiang Wu, Yucheng Wei and Jiamei Deng
Axioms 2025, 14(7), 505; https://doi.org/10.3390/axioms14070505 - 27 Jun 2025
Viewed by 221
Abstract
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For [...] Read more.
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For the simplified control system model of the pressurizer, we first study its general structure, which can be characterized as a discrete-time system with state delay. Unlike conventional control systems, the system considered in this study features control inputs that are represented as cumulative sums of historical inputs. In order to design a preview tracking controller for such systems, we adopt the difference method and state augmentation technique and introduce an equality containing the reference signal and a discrete integrator to construct an augmented error system. Simultaneously, a performance signal is defined to evaluate the impact of external disturbances on system performance. Thus, the preview tracking control problem of the original system is reformulated as an H control problem for the augmented error system. Subsequently, a memory-based state feedback controller is designed for the augmented error system. Then, by employing the Lyapunov function and linear matrix inequality (LMI), the H preview tracking controller for the original system is derived. Finally, the proposed control strategy is applied to a pressurizer control system model, and numerical simulations are conducted to validate the effectiveness of the proposed controller by using MATLAB (R2023a, MathWorks, Natick, MA, USA). Full article
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 436
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

29 pages, 3150 KiB  
Review
The Impact of Tritium in the Environment
by Viktor Dolin, Yevgenii Yakovlev, Salvatore Angelo Cancemi and Rosa Lo Frano
Appl. Sci. 2025, 15(12), 6664; https://doi.org/10.3390/app15126664 - 13 Jun 2025
Viewed by 685
Abstract
Tritium is a radioisotope that is extremely mobile in the biosphere and that can be transferred to the environment and to humans mainly via tritium oxide or tritiated water. Moreover, as is widely known, it is extremely difficult to detect in the environment. [...] Read more.
Tritium is a radioisotope that is extremely mobile in the biosphere and that can be transferred to the environment and to humans mainly via tritium oxide or tritiated water. Moreover, as is widely known, it is extremely difficult to detect in the environment. In the last decade, many studies and research activities have been performed to fill the knowledge gap on this radionuclide, the amount of which is expected to be increasingly released into the environment from nuclear installations in the near future. Considering this and the fact that the biological and environmental effects produced by tritium have been examined mainly from a medical and detection monitoring point of view, it is considered important to propose in this study a review of the critical aspects of tritium from the environmental, engineering, and waste management points of view. Identifying sources and effects of tritium, tritium materials and wastes containing tritium in the environment is also fundamental for planning the specific and necessary actions required for an effective waste management approach under, e.g., disposal conditions. The critical analysis of the published recent studies has allowed to evaluate, for example, that the expected rate of tritium generation in a fusion reactor is four orders of magnitude higher than that of LWRs, and the environmental release from a fusion reactor is 1.4–2.2‱, which is twice as much as from a heavy water reactor and more than two orders of magnitude higher than from a LWRs. Furthermore, with reference to the waste management strategy, it is emphasized, e.g., that the condensation of moisture inside vaults and the interaction of H2O with the disposal body determine the formation of tritiated water, which is filtered through the concrete and eventually released into the environment. Consequently, in the selection of engineered barrier materials for repositories/disposal facilities, the use of a mixture of a framework and layered silicates is proposed to improve its absorption and filtering properties. Full article
(This article belongs to the Special Issue Radioactive Waste Treatment and Environment Recovery)
Show Figures

Figure 1

13 pages, 3783 KiB  
Article
Harvesting Reactor Pressure Vessel Beltline Material from the Decommissioned Zion Nuclear Power Plant Unit 1
by Thomas M. Rosseel, Mikhail A. Sokolov, Xiang (Frank) Chen and Randy K. Nanstad
Metals 2025, 15(6), 634; https://doi.org/10.3390/met15060634 - 5 Jun 2025
Viewed by 417
Abstract
The decommissioning of the Zion Nuclear Power Plant (NPP) provided a unique opportunity to harvest and study service-aged reactor pressure vessel (RPV) beltline materials. This work, conducted through the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, aims to improve the [...] Read more.
The decommissioning of the Zion Nuclear Power Plant (NPP) provided a unique opportunity to harvest and study service-aged reactor pressure vessel (RPV) beltline materials. This work, conducted through the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, aims to improve the understanding of radiation-induced embrittlement to support extended nuclear plant operations. Material segments containing the Linde 80 flux, wire heat 72105 (WF-70) beltline weld and the A533B Heat B7835-1 base metal, obtained from the intermediate shell region with a peak fluence of 0.7 × 1019 n/cm2 (E > 1.0 MeV), were extracted, cut into blocks, and machined into test specimens for mechanical and microstructural characterization. The segmentation process involved oxy-propane torch-cutting, followed by precision machining using wire saws and electrical discharge machining (EDM). A chemical composition analysis confirmed the expected variations in alloying elements, with copper levels being notably higher in the weld metal. The harvested specimens enable a detailed evaluation of through-wall embrittlement gradients, a comparison with the existing surveillance data, and the validation of predictive embrittlement models. This study provides critical data for assessing long-term reactor vessel integrity, informing aging-management strategies, and supporting regulatory decisions to extend the life of nuclear plants. This article is a revised and expanded version of a paper entitled, “Current Status of the Characterization of RPV Materials Harvested from the Decommissioned Zion Unit 1 Nuclear Power Plant”, PVP2017-65090, which was accepted and presented at the ASME 2017 Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017. Full article
Show Figures

Figure 1

14 pages, 1115 KiB  
Article
Development of an Innovative and Sustainable Technological Process for Biogas Purification Through the Reuse of Autoclaved Aerated Concrete Waste
by Eric Dumont, Noé Kautzmann and Annabelle Couvert
Processes 2025, 13(6), 1767; https://doi.org/10.3390/pr13061767 - 3 Jun 2025
Viewed by 498
Abstract
This study demonstrated the effectiveness of using autoclaved aerated concrete AAC waste as a low-cost filtering material for removing hydrogen sulfide (H2S) from gas streams. A long-term experiment (89 days) was conducted in a packed bed reactor to purify synthetic biogas [...] Read more.
This study demonstrated the effectiveness of using autoclaved aerated concrete AAC waste as a low-cost filtering material for removing hydrogen sulfide (H2S) from gas streams. A long-term experiment (89 days) was conducted in a packed bed reactor to purify synthetic biogas composed of N2, CO2, H2S, and O2. Optimal H2S removal efficiencies, reaching up to 100%, were achieved under highly acidic conditions (pH ≈ 1–3) and low oxygen concentrations (<1%). In the presence of oxygen, calcium oxides in the AAC waste react with H2S to form gypsum (CaSO4 2H2O). The simultaneous removal of both oxygen and H2S by AAC waste, following an approximate 2:1 molar ratio, may be particularly beneficial for biogas streams containing unwanted traces of oxygen. The transformation and lifespan of AAC waste were monitored through sulfur accumulation in the material and pressure drop measurements, which indicated structural changes in the AAC waste. At the end of its lifespan, the AAC waste exhibited an H2S removal capacity of 185 gH2S kgAAC−1. This innovative and sustainable process not only provides a cost-effective and environmentally sound solution for the simultaneous removal of H2S and O2 from biogas, but also promotes waste valorization and aligns with circular economy principles. Full article
Show Figures

Graphical abstract

19 pages, 3792 KiB  
Article
Experiment and Simulation of the Non-Catalytic Reforming of Biomass Gasification Producer Gas for Syngas Production
by Yongbin Wang, Guoqiang Cao, Zhongren Ba, Hao Cheng, Donghai Hu, Jonas Baltrusaitis, Chunyu Li, Jiantao Zhao and Yitian Fang
Energies 2025, 18(11), 2945; https://doi.org/10.3390/en18112945 - 3 Jun 2025
Viewed by 458
Abstract
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene [...] Read more.
Among biomass gasification syngas cleaning methods, non-catalytic reforming emerges as a sustainable and high-efficiency alternative. This study employed integrated experimental analysis and kinetic modeling to examine non-catalytic reforming processes of biomass-derived producer gas utilizing a synthetic tar mixture containing representative model compounds: naphthalene (C10H8), toluene (C7H8), benzene (C6H6), and phenol (C6H5OH). The experiments were conducted using a high-temperature fixed-bed reactor under varying temperatures (1100–1500 °C) and equivalence ratios (ERs, 0.10–0.30). The results obtained from the experiment, namely the measured mole concentration of H2, CO, CH4, CO2, H2O, soot, and tar suggested that both reactor temperature and O2 content had an important effect. Increasing the temperature significantly promotes the formation of H2 and CO. At 1500 °C and a residence time of 0.01 s, the product gas achieved CO and H2 concentrations of 28.02% and 34.35%, respectively, while CH4, tar, and soot were almost entirely converted. Conversely, the addition of O2 reduces the concentrations of H2 and CO. Increasing ER from 0.10 to 0.20 could reduce CO from 22.25% to 16.11%, and H2 from 13.81% to 10.54%, respectively. Experimental results were used to derive a kinetic model to accurately describe the non-catalytic reforming of producer gas. Furthermore, the maximum of the Root Mean Square Error (RMSE) and the Relative Root Mean Square Error (RRMSE) between the model predictions and experimental data are 2.42% and 11.01%, respectively. In particular, according to the kinetic model, the temperature increases predominantly accelerated endothermic reactions, including the Boudouard reaction, water gas reaction, and CH4 steam reforming, thereby significantly enhancing CO and H2 production. Simultaneously, O2 content primarily influenced carbon monoxide oxidation, hydrogen oxidation, and partial carbon oxidation. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

Back to TopTop