The Impact of Tritium in the Environment
Abstract
1. Introduction
2. Artificial Sources
2.1. Nuclear Test
2.2. Nuclear Power Engineering
Tritium Source | PWR | BWR | HWR | GCR | ITER * |
Fission | 7.5 × 1011 | 7.5 × 1011 | 5.5 × 1011 | 7.5 × 1011 | |
Activation of: | |||||
- Deuterium | 4.0 × 107 | 4.0 × 107 | 2.0 × 1013 | ||
- Lithium | 7.0 × 108 | 2.0 × 1010 | |||
- Boron | 2.6 × 1010 | 3.0 × 1011 | |||
Totally | 8.0 × 1011 | 1.1 × 1012 | 2.0 × 1013 | 8.0 × 1011 | 2.0 × 1016 |
Emission | 2.3 × 1010 | 3.8 × 109 | 1.8 × 1012 | 7.3 × 109 | 4.0 × 1012 |
2.3. Fusion
3. Waste Management
Clay–Tritium Interactions
4. Biological Effects
- (1)
- The rather high content of tritium in the biosphere due to the combined influence of natural and anthropogenic factors.
- (2)
- The extremely high rate of 3H’s incorporation into biochemical processes.
- (3)
- The potential radiation hazard to living organisms, primarily from the standpoint of genetic effects [1].
5. Isotopic Effects of Hydrogen in Living and Inanimate Matter
The Phenomenon of Isotope Osmosis
6. Summary
- -
- An increased content of tritium in the biosphere at about 20 times that at the beginning of the nuclear era.
- -
- Insufficient study of the radiobiological impact of tritium: the impact of incorporated tritium on living organisms is estimated to be three times higher than that of 137Cs, while the local impact (for DNA molecule) may be 300 times higher.
- -
- Uncertainty of safe concentrations: world standards for the tritium content in drinking water differ by more than 700 times (from 100 to 76,100 Bq·dm−3), and scientifically based estimates differ by 600,000 times.
- -
- Extremely high migration capacity of the aqueous form of tritium: the rate constant of the isotopic exchange of protium for tritium in water is estimated at (1.5 ± 0.5) × 10−4 s−1.
- -
- The crucial role of water for living organisms: there is no indication of the biomagnification of tritium in terrestrial systems.
- -
- The large amount of contradictory data on tritium accumulation in living organisms.
- -
- The fact that there are practically no ways to clean liquid discharges and gaseous emissions of tritium from nuclear facilities; existing methods of hydrogen isotope separation require significant energy costs.
- -
- The metastability of tritium emissions from nuclear reactors, which cause a paroxysmal nature of tritium emissions and create obstacles in predicting its distribution in the environment.
Author Contributions
Funding
Conflicts of Interest
References
- Ferreira, M.F.; Turner, A.; Vernon, E.L.; Grisolia, C.; Lebaron-Jacobs, L.; Malard, V.; Jha, A.N. Tritium: Its relevance, sources and impacts on non-human biota. Sci. Total Environ. 2023, 876, 162816. [Google Scholar] [CrossRef] [PubMed]
- Oms, P.E.; Du Bois, P.B.; Dumas, F.; Lazure, P.; Morillon, M.; Voiseux, C.; Le Corre, C.; Cossonnet, C.; Solier, L.; Morin, P. Inventory and distribution of Tritium in the oceans in 2016. Sci. Total Environ. 2019, 656, 1289–1303. [Google Scholar] [CrossRef]
- Nie, B.; Fang, S.; Jiang, M.; Wang, L.; Ni, M.; Zheng, J.; Yang, Z.; Li, F. Anthropogenic Tritium: Inventory, discharge, environmental behavior and health effects. Renew. Sustain. Energy Rev. 2021, 135, 110188. [Google Scholar] [CrossRef]
- Larsen, G.; Babineau, D. An Evaluation of the Global Effects of Tritium Emissions from Nuclear Fusion Power. Fusion Eng. Des. 2020, 158, 111690. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Management of Waste Containing Tritium and Carbon-14; Technical Reports Series No. 421; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Killough, G.G.; Kocher, D.C. Global Environmental Transport Models for Tritium. Fusion Technol. 1985, 8, 2569–2574. [Google Scholar] [CrossRef]
- Murphy, C.E., Jr. The Transport; Dispersion, and Cycling of Tritium in the Environment; Westinghouse Savannah River Co.: Aiken, SC, USA, 1990. [Google Scholar] [CrossRef]
- Eyrolle, F.; Ducros, L.; Le Dizès, S.; Beaugelin-Seiller, K.; Charmasson, S.; Boyer, P.; Cossonnet, C. An updated review on Tritium in the environment. J. Environ. Radioact. 2018, 181, 128–137. [Google Scholar] [CrossRef]
- Cochran, T.B.; Arkin, W.M.; Hoenig, M.M. Nuclear Weapons Databook: Vol. II: U.S. Nuclear Warhead Production; Ballinger: Pensacola, FL, USA, 1984. [Google Scholar]
- Glasstone, S.; Dolan, P.J. The Effects of Nuclear Weapons; U.S. GPO: Washington, DC, USA, 1977.
- Oklahoma Geological Survey Observatory Catalog of Nuclear Explosions: 2006. Available online: https://digitalprairie.ok.gov/digital/collection/stgovpub/id/9093/ (accessed on 18 January 2012).
- Roser, M.; Herre, B.; Hasell, J. Nuclear Weapons. 2013. Published online at OurWorldInData.org.. Available online: https://ourworldindata.org/nuclear-weapons (accessed on 10 May 2023).
- IAEA Power Reactor Information System. Available online: https://pris.iaea.org/ (accessed on 22 November 2024).
- World Nuclear Association. Available online: https://world-nuclear.org (accessed on 22 November 2024).
- Lal, D.; Peters, B. Cosmic Ray Produced Radioactivity on the Earth. In Kosmische Strahlung II/Cosmic Rays II; Handbuch der Physik/Encyclopedia of Physics Series Volumes 9/46/2; Sitte, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1967. [Google Scholar] [CrossRef]
- Okada, S.; Momoshima, N. Overview of Tritium: Characteristics, sources, and problems. Health Phys. 1993, 65, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Egorov, Y.A. Assessment of radiation hazard of Tritium produced at NPPs. Ecol. Ind. Russ. 2003, 2, 27–30. (In Russian) [Google Scholar]
- Stephen, E. Atkins Historical Encyclopedia of Atomic Energy; Bloomsbury Academic: London, UK, 2000; 491p. [Google Scholar]
- Serot, O.; Wagemans, C.; Heyse, J. New Results on Helium and Tritium Gas Production From Ternary Fission. AIP Conf. Proc. 2005, 769, 857–860. [Google Scholar] [CrossRef]
- Peterson, H.T.; Baker, D.A. Tritium Production, Releases and Population Doses at Nuclear Power Reactors. Fusion Technol. 1985, 8, 2544–2550. [Google Scholar] [CrossRef]
- Weaver, C.L.; Harward, E.D.; Peterson, H.T., Jr. Tritium in the environment from nuclear powerplants. Public Health Rep. 1969, 84, 363–371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Investigation of the Environmental Fate of Tritium in the Atmosphere; Report CC172-51/2009E-PDF Minister of Public Works and Government Services; Canadian Nuclear Safety Commission: Ottawa, ON, Canada, 2009; 110p.
- Kalinowski, M.B. Uncertainty and range of alternatives in estimating Tritium emissions from proposed fusion power reactors and their radiological impact. J. Fusion Energ. 1993, 12, 157–161. [Google Scholar] [CrossRef]
- Dolin, V.V.; Zabulonov, Y.L.; Kopylenko, O.L.; Shramenko, I.F. Global Tendencies in Nuclear Power Engineering. Geochem. Technog. 2023, 36, 5–13. [Google Scholar] [CrossRef]
- Frano, R.L.; Dolin, V.; Cancemi, S.A. The influence of Tritium behaviour on spent fuel pool concrete. Prog. Nucl. Energy 2024, 169, 105053. [Google Scholar] [CrossRef]
- Jacobs, D.G. Sources of Tritium and Its Behavior upon Release to the Environment; AEC Critical Review Series; USAEC Division of Technical Information Exension: Oak Ridge, TN, USA, 1968. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050; Reference Data Series No. 1; IAEA: Vienna, Austria, 2023. [Google Scholar]
- European Parliamentary Research Service. Briefing. Nuclear Energy in the European Union. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/751456/EPRS_BRI(2023)751456_EN.pdf (accessed on 22 November 2024).
- UNFCCC. Outcome of the First Global Stocktake. Draft Decision. FCCC/PA/CMA/2023/L.17. Available online: https://unfccc.int/sites/default/files/resource/cma2023_L17E.pdf (accessed on 22 November 2024).
- Daya, C.; Battes, K.; Butler, B.; Davies, S.; Farina, L.; Frattolillo, A.; George, R.; Giegerich, T.; Hanke, S.; Härtl, T.; et al. The pre-concept design of the DEMO Tritium, matter injection and vacuum systems. Fusion Eng. Des. 2022, 179, 113139. [Google Scholar] [CrossRef]
- Fomin, G.V. Problem of the Tritium for the International Fusion Reactor (IFR). At. Ehnergiya 1995, 78, 290–293. [Google Scholar]
- Humrickhouse, P.W.; Merrill, B.J. Tritium aspects of the fusion nuclear science facility. Fusion Eng. Des. 2018, 135, 302–313. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. IAEA Safety Glossary, 2018 ed.; Non-serial Publications; IAEA: Vienna, Austria, 2019. [Google Scholar]
- Kobisk, E.H.; Ramey, D.W.; Aaron, W.S.; Tompkins, J.A.; Haff, K.W.; Devore, J.R.; Adair, H.L. Tritium-Processing Operations at the Oak Ridge National Laboratory with Emphasis on Safe-Handling Practices; The Netherlands, 1989. Available online: https://www.osti.gov/etdeweb/biblio/5368299#fullrecord (accessed on 22 November 2024).
- Centre de Stockage de la Manche: Rapport Annuel 2008, ANDRA, 2009. Available online: https://manche.andra.fr/sites/manche/files/2018-04/ra-csm-2008.pdf (accessed on 22 November 2024).
- U.S. DOE. Tritium Handling and Safe Storage. DOE-STD-1129-2015, September 2015. Available online: https://www.standards.doe.gov/standards-documents/1100/1129-AStd-2015/@@images/file (accessed on 22 November 2024).
- Alba, R.; Iglesias, R.; Cerdeira, M.Á. Materials to Be Used in Future Magnetic Confinement Fusion Reactors: A Review. Materials 2022, 15, 6591. [Google Scholar] [CrossRef]
- Perevezentsev, A.N.; Bell, A.C.; Rivkis, L.A.; Filin, V.M.; Gushin, V.V.; Belyakov, M.I.; Bulkin, V.I.; Prykina, I.G.; Kravchenko, I.M.; Semenov, A.A.; et al. Experimental trials of methods for metal detritiation for JET. Fusion Sci. Technol. 2007, 52, 84–99. [Google Scholar] [CrossRef]
- Lassoued, A.; Chêne, J.; Brass, A.M.; Gastaldi, O.; Trabuc, P.; Marbach, G. Influence of heat treatments on residual Tritium amount in tritiated stainless steel waste. Fusion Eng. Des. 2005, 75–79, 731–735. [Google Scholar] [CrossRef]
- ICRP; Eckerman, K.; Harrison, J.; Menzel, H.-G.; Clement, C.H. ICRP Publication 119: Compendium of Dose Coefficients based on ICRP Publication 60. Ann. ICRP 2012, 41 (Suppl. 1), 1–130. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Predisposal Management of Radioactive Waste from Nuclear Power Plants and Research Reactors; IAEA Safety Standards Series No. SSG-40; IAEA: Vienna, Austria, 2016. [Google Scholar]
- European Atomic Energy Community; Food and Agriculture Organization of the United Nations; International Atomic Energy Agency; International Labour Organization; International Maritime Organization; OECD Nuclear Energy Agency; Pan American Health Organization; United Nations Environment Programme; World Health Organization. Fundamental Safety Principles; IAEA Safety Standards Series No. SF-1; IAEA: Vienna, Austria, 2006. [Google Scholar] [CrossRef]
- Vladimirovich, A.; Nikolaevna, S.V.; Nikolay, G.A.; Kazakovsky, T.; Korotkova, G.P.; Erokhin, A.V. Production Method of Metal Tritium Target. Russian Patent no. RU2529399C1, 27 September 2013. Available online: https://patents.google.com/patent/RU2529399C1/en (accessed on 22 November 2024).
- Mandoki, R.; Wasselin, V.; Maillard, J.L. Tritiated Radwaste Management in France: Status and Perspectives. In Proceedings of the Tritium School Book of Abstracts, Marseille, France, 18–22 March 2024. [Google Scholar]
- Maiti, G.C.; Freund, F. Dehydration-related proton conductivity in kaolinite. Clay Miner. 1981, 16, 395–413. [Google Scholar] [CrossRef]
- Dolin, V.; Pushkarev, O.V.; Shramenko, I.F.; Bobkov, V.M. Tritium in the Biosphere; Sobotovych, E., Dolin, V., Eds.; Naukova Dumka: Kiev, Ukraine, 2012. [Google Scholar] [CrossRef]
- Dolin, V.; Yakovlev, Y.; Shcherbak, O.; Kutska, Y. Evolution of profile of radiohydrogeochemical anomaly of Tritium contamination within affected zone of surface radioactive waste repository. In Proceedings of the Geoinformatics 2015 XIVth International Conference—Geoinformatics: Theoretical and Applied Aspects, Kiev, Ukraine, 11–14 May 2015. [Google Scholar] [CrossRef]
- Pushkarov, O.; Sevruk, I.; Dolin, V. Influence of the structure of a mineral adsorbent on the detritization of aqueous solutions. In Visnyk of V.N. Karazin Kharkiv National University, Series «Geology. Geography. Ecology»; Katazin University: Kharkiv, Ukraine, 2021; No. 55. [Google Scholar] [CrossRef]
- Pushkariov, O.V.; Pryimachenko, V.M.; Zolkin, I.O. Bentonite-Ceolite Composites’ properties with respect to Tritium extraction from Tritium water. Geochem. Technog. 2012, 20, 98–108. Available online: https://journals.igns.kyiv.ua/index.php/geotech/article/view/250 (accessed on 22 November 2024).
- Pamela, J.; Bottereau, J.M.; Canas, D.; Decanis, C.; Liger, K.; Gaune, F. ITER tritiated waste management by the Host state and first lessons learned for fusion development. Fusion Eng. Des. 2014, 89, 2001–2007. [Google Scholar] [CrossRef]
- Decanis, C.; Kresina, M.; Canas, D. Methodology to identify appropriate options to manage tritiated waste. Fusion Eng. Des. 2018, 136, 276–281. [Google Scholar] [CrossRef]
- Mathur-De Vré, R.; Binet, J. Molecular aspects of tritiated water and natural water in radiation biology. Prog. Biophys. Mol. Biol. 1984, 43, 161–193. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency. Biological Implications of Radionuclides Released from Nuclear Industries; Vienna, 26–30 March 1979, Proceedings Series; IAEA: Vienna, Austria, 1980. [Google Scholar]
- Martin, J.E. Physics for Radiation Protection; Wiley: Hoboken, NJ, USA, 2013; ISBN 9783527667062. [Google Scholar] [CrossRef]
- DOE-HDBK-1079-94; Primer on Tritium Safe Handling Practices. Department of Energy: Washington, DC, USA, 1995. Available online: https://www.standards.doe.gov/standards-documents/1000/1079-bhdbk-1994 (accessed on 11 February 2025).
- Environmental Health Criteria 25: Selected Radionuclides; WHO: Geneva, Switzerland, 1983; Available online: https://iris.who.int/bitstream/handle/10665/37191/9241540850-eng.pdf?sequence=1 (accessed on 11 February 2025).
- European Union. COUNCIL DIRECTIVE 2013/51/EURATOM of 22 October 2013 Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption. Off. J. Eur. Union 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0051 (accessed on 11 February 2025).
- ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides—Part 1. Ann. ICRP 1990, 20, 56. [Google Scholar]
- EPA 402-R-99-001 Federal Guidance Report No. 13. 1999. Cancer Risk Coefficients for Environmental Exposure to Radionuclides. Available online: https://www.epa.gov/system/files/documents/2025-03/402-r-99-001_508-d_2.pdf (accessed on 27 March 2025).
- Balonov, M.I.; Bruk, Y.G.; Zhesko, T.V. Dosimetry and Standardization of Tritium in Russia. Fusion Technol. 1995, 28, 809–813. [Google Scholar] [CrossRef]
- Balonov, M.I.; Muksinova, K.N.; Mushkacheva, G.S. Tritium radiobiological effects in mammals: Review of experiments of the last decade in Russia. Health Phys. 1993, 65, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Straume, T.; Carsten, A.L. Tritium radiobiology and relative biological effectiveness. Health Phys. 1993, 65, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Bannister, L.; Serran, M.; Bertrand, L.; Klokov, D.; Wyatt, H.; Blimkie, M.; Gueguen, Y.; Priest, N.; Jourdain, J.-R.; Sykes, P. Environmentally Relevant Chronic Low-Dose Tritium and Gamma Exposures do not Increase Somatic Intrachromosomal Recombination in pKZ1 Mouse Spleen. Radiat. Res. 2016, 186, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Advisory Committee on Environmental Standards; Comite Consultatif sur les Normes Environmentales. A Standard for Tritium: A Recommendation to the Minister of the Environment and Energy; Queen’s Printer for Ontario: Toronto, ON, Canada, 1994; Available online: https://archive.org/details/standardfortriti00adviuoft (accessed on 27 March 2025).
- Cancer Risk Coefficients Environmental Exposure to Radionuclides; Report No. 13 [A-98-11-V-B-1]; USEPA: Washington, DC, USA, 15 September 2021.
- Water Quality Standards Regulatory Revisions To Protect Tribal Reserved Rights. US EPA, 05/02/2024. Available online: https://www.federalregister.gov/documents/2024/05/02/2024-09427/water-quality-standards-regulatory-revisions-to-protect-tribal-reserved-rights (accessed on 27 March 2025).
- Introduction to Risk Assessment—European Commission. Available online: https://ec.europa.eu/health/ph_projects/2003/action3/docs/2003_3_09_a23_en.pdf (accessed on 7 February 2025).
- Carsten, A.L.; Benz, R.D.; Hughes, W.P.; Ichimasa, Y.; Ikushima, T.; Tezuka, H. Summary Update of the Brookhaven Tritium Toxicity Program with Emphasis on Recent Cytogenetic and Life-Shortening Studies; Upton: New York, NY, USA, 1988; Available online: https://digital.library.unt.edu/ark:/67531/metadc1188844/ (accessed on 7 February 2025).
- Wang, B.; Takeda, H.; Gao, W.M.; Zhou, X.Y.; Odaka, T.; Ohyama, H.; Yamada, T.; Hayata, I. Induction of Apoptosis By Beta Radiation From Tritium Compounds In Mouse Embryonic Brain Cells. Health Phys. 1999, 77, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Toeroek, P.; Schmahl, W.; Meyer, I.; Kistner, G. Effects of a Single Injection of Tritiated Water During Organogeny on the Prenatal and Postnatal Development of Mice; IAEA: Vienna, Austria, 1979; Volume 1, pp. 241–252. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 27 March 2025).
- National Health and Medical Research Council. Australian Drinking Water Guidelines. Version 3.8 Updated September 2022; National Health and Medical Research Council: Canberra, Australia, 2011. [Google Scholar]
- Schweizerische Eidgenossenschaft.Verordnung des EDI über Trinkwasser sowie Wasser in öffentlich zugänglichen Bädern und Duschanlagen (TBDV). AS 2017 1023, 21. März 2017. Available online: https://www.fedlex.admin.ch/eli/oc/2017/153/de (accessed on 27 March 2025).
- Departement Helse- og Omsorgsdepartementet (Norge). Forskrift om Endring i Forskrift om visse Forurensende Stoffer i Næringsmidler, 2016. Available online: https://lovdata.no/dokument/LTI/forskrift/2016-12-22-1869 (accessed on 7 February 2025).
- U.S. EPA. National Primary Drinking Water Regulation (NPDWRs). Available online: https://www.gvsu.edu/cms4/asset/E1327343-09F0-03FF-AA9032F47AD1EB9C/standards.pdf (accessed on 7 February 2025).
- Canadian Nuclear Safety Commission. Standards and Guidelines for Tritium in Drinking. INFO-0766. January 2008. Available online: https://www.nrc.gov/docs/ml1029/ml102990104.pdf (accessed on 7 February 2025).
- Canadian Nuclear Safety Commission. Radiation Protection. REGDOC-2.7.1. July 2021. Available online: https://api.cnsc-ccsn.gc.ca/dms/digital-medias/REGDOC-2_7_1__Radiation_Protection_2021.pdf/object (accessed on 7 February 2025).
- NRB-99/2009; Sanitary and Epidemiological Rules and Regulations. Federal Center of Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009; ISBN 978-5-7508-0805-2.
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; Available online: https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf?sequence=1 (accessed on 7 February 2025).
- STUK. Radiation and Nuclear Safety Authority. Available online: https://stuk.fi/en/radiation-safety-of-nuclear-facilities (accessed on 7 February 2025).
- Norms of Radiation Safety of Ukraine. Supplement: Radiation Protection from the Sources of Potential Exposure (NRBU-97/D-2000); State Hygienic Standards (DGN 6.6.1.–6.5.061-2000). Available online: https://zakon.rada.gov.ua/rada/show/v0062282-97#Text (accessed on 22 November 2024).
- Nuclear Regulation Authority (NRA) Japan. Available online: https://www.nra.go.jp/english/ (accessed on 22 November 2024).
- Hashimoto, S.; Komatsu, M.; Miura, S. Radiation Protection and Criteria. In Forest Radioecology in Fukushima; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Tokyo Electric Power Company Holdings, Inc. (TEPCO). Available online: https://www.tepco.co.jp/en/decommission/progress/watertreatment/faq/index-e.html (accessed on 7 February 2025).
- Straume, T. Tritium risk assessment. Health Phys. 1993, 65, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kase, Y.; Yamashita, W.; Matsufuji, N.; Takada, K.; Sakae, T.; Furusawa, Y.; Yamashita, H.; Murayama, S. Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams. J. Radiat. Res. 2013, 54, 485–493, Erratum in J. Radiat. Res. 2013, 54, 971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balakrishnan, S.; Rao, B.S. Cytogenetic Effects of Tritiated Water (HTO) in Human Peripheral Blood Lymphocytes in vitro. Int. J. Hum. Genet. 2004, 4, 237–242. [Google Scholar] [CrossRef]
- Available online: https://www.andra.fr/les-dechets-radioactifs/les-solutions-de-gestion (accessed on 22 November 2024).
- Pivetz, B.E. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites, EPA/540/S-01/500 February 2001. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa_540_s01_500.pdf (accessed on 22 November 2024).
- International Atomic Energy Agency. Tritium in Some Typical Ecosystems; Technical Reports Series No. 207; IAEA: Vienna, Austria, 1981. [Google Scholar]
- Alpen, E.L. Radiation Biophysics, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998; ISBN 978-0-12-053085-4. [Google Scholar] [CrossRef]
- Review of Risks of Tritium: UK. Health Protection Agency, November 2007. Available online: https://www.gov.uk/government/publications/tritium-review-of-risks (accessed on 27 March 2025).
- Hunter, N.; Muirhead, C.R. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations. J. Radiol. Prot. 2009, 29, 5. [Google Scholar] [CrossRef]
- Howard, M.; Beltran, C.; Sarkaria, J.; Herman, M.G. Characterization of relative biological effectiveness for conventional radiation therapy: A comparison of clinical 6 MV X-rays and 137Cs. J. Radiat. Res. 2017, 58, 608–613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harrison, J.D.; Khursheed, A.; Lambert, B.E. Uncertainties in Dose Coefficients for Intakes of Tritiated Water and Organically Bound Forms of Tritium by Members of the Public. Radiat. Prot. Dosim. 2002, 98, 299–311. [Google Scholar] [CrossRef]
- Dobson, R.L.; Kwan, T.C. The tritium RBE at low-level exposure—Variation with dose, dose rate, and exposure duration. Curr. Top. Radiat. Res. Q. 1978, 12, 44–62. [Google Scholar] [PubMed]
- Snigireva, G.P.; Khaimovich, T.I.; Nagiba, V.I. Estimation of relative biological effectiveness of tritium according to chromosome aberration frequency in human blood lymphocytes. Biophysics 2011, 56, 364–370. [Google Scholar] [CrossRef]
- Authors on behalf of ICRP; Higley, K.; Real, A.; Chambers, D. Annals of the ICRP Publication 148: Radiation Weighting for Reference Animals and Plants; SAGE: Thousand Oaks, CA, USA, 2021; Volume 50, Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_50_2 (accessed on 27 March 2025).
- Melintescu, A.; Galeriu, D.; Takeda, H. Reassessment of tritium dose coefficients for the general public. Radiat. Prot. Dosim. 2007, 127, 153–157. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides—Part 2 Ingestion Dose Coefficients. Ann. ICRP 1993, 23, 67. [Google Scholar]
- Kirchmann, R.; Bittel, R.; Fagniart, E.; van Gelder-Bonnijns, G.; Koch, G. Transfer of Tritium from Radioactive Waste to Aquatic Organisms, Under Natural Conditions; Working Group on Environmental Pollution, ESNA Meeting; IAEA: Leuven, Belgium, 1973; p. 31. [Google Scholar]
- Bennett, B.G. Radiation Dose Due to Acute Intake of Tritium by Man; Health and Safety Laboratory, U.S. Atomic Energy Comission: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
- Schiegl, W.E.; Vogel, J.C. Deuterium content of organic matter. Earth Planet. Sci. Lett. 1970, 7, 307–313. [Google Scholar] [CrossRef]
- Smith, B.N.; Epstein, S. Biogeochemistry of the Stable Isotopes of Hydrogen and Carbon in Salt Marsh Biota. Plant Physiol. 1970, 46, 738–742. [Google Scholar] [CrossRef]
- Slini, G.; Metalli, P.; Vulpis, G. Radiotoxicity of Tritium in Mammals Critical Analysis of the Extrapolation to Man of the Results of Tritium Incorporation into Animal Tissues; EURATOM; Commission of the European Communities: Luxembourg, 1973. [Google Scholar]
- Evans, A. New dose estimates from chronic Tritium exposures. Health Phys. 1970, 16, 57–63. [Google Scholar] [CrossRef]
- Hill, R.L.; Johnson, J.R. Metabolism and dosimetry of tritium. Health Phys. 1993, 65, 628–647. [Google Scholar] [CrossRef]
- Dolin, V.V.; Bobkov, V.M.; Pushkarev, O.V.; Koshliakova, T.O. Isotopic Effects of Tritium during the Growth of White Willow. Univers. J. Geosci. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Etnier, E.L.; Travis, C.C.; Hetrick, D.M. Metabolism of Organically Bound Tritium in Man. Radiat. Res. 1984, 100, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, V.V.; Burdeinaya, T.N.; Romanyukina, I.Y.; Skil’skaya, M.D.; Demchenko, V.Y.; Kavitskaya, A.A. Isotope osmosis—Osmotic transfer of water isotopologues through the polymer membrane in the course of direct osmosis. J. Water Chem. Technol. 2014, 36, 103–109. [Google Scholar] [CrossRef]
- Pushkarov, O.V.; Zubko, O.V.; Sevruk, I.M.; Dolin, V.V. Membrane Properties of Montmorillonite, Saponite and Clinoptilolite During Electroosmotic Fractionation of Hydrogen Isotopes. Mineral. J. 2020, 42, 23–32. [Google Scholar] [CrossRef]
- Andreev, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.; Tenyaev, B.N.; Vedeneev, A.I.; Golubkov, A.N. Hydrogen Isotope Separation Installation for Tritium Facility. Fusion Sci. Technol. 1995, 28, 505–510. [Google Scholar] [CrossRef]
- Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V. A New Concept of ISS for Fusion Reactor. Fusion Technol. 1995, 28, 511–514. [Google Scholar] [CrossRef]
Material | Е (β) 5.7 keV (Average) | Е (β) 18.6 keV (Maximum) |
---|---|---|
T2, gas, 0 °C, 101, 325 Pa | 2.4 × 10−3 | 3.2 × 10−2 |
Air, 0 °C, 101, 325 Pa | 3.6 × 10−4 | 4.5 × 10−3 |
Water, soft tissues, oils | 4.2 × 10−7 | 5.2 × 10−6 |
Exposure Route | Tritium Species | Dose Factor [Sv·Bq−1] | |
---|---|---|---|
Adults 1 | Children (≤1 y) | ||
Inhalation | Tritiated water HTO (from air) | 1.8 × 10−11 | 1.1 × 10−10 |
Tritiated gas (hydrogen) НТ | 1.8 × 10−15 | 4.8 × 10−15 | |
Tritiated methane СН3Т | 1.8 × 10−13 | 4.8 × 10−13 | |
Organically bonded tritium (OBT) | 4.1 × 10−11 | 4.8 × 10−11 | |
Oral ingestion | Tritiated water HTO (aqueous specie) | 1.8 × 10−11 | 4.8 × 10−11 |
Organically bonded tritium (OBT) | 4.2 × 10−11 | 1.2 × 10−10 |
Country | Source | TRL [Bq·dm−3] | CRC [10−6 Morbidity/Mortality] | Equivalent Dose/IDC [μSv∙y−1] |
---|---|---|---|---|
Recommended for EU countries | [57] | 100 | 5/7 | 1.31/100 |
Switzerland | [73] | 100 | 5/7 | 1.31/100 |
Norway | [74] | 100 | 5/7 | 1.31/100 |
USA | [75] | 740 | 36/52 | 9.72/40 |
Canada | [76,77] | 7000 | 338/490 | 92/50 |
Russia | [78] | 7600 | 367/523 | 100/1000 |
Recommended by the WHO | [78] | 10,000 | 482/700 | 131/100 |
Finland | [79,80] | 30,000 | 1447/2100 | 394/100 |
Ukraine | [81] | 30,000 | 1447/2100 | 394/1000 |
Japan | [82,83] | 60,000 1 | 2894/4200 | 788.4/1000 |
Australia | [72] | 76,103 | 3671/5228 | 1000/1000 |
Category of Object | Tritium Species | Confidence Interval | ||
---|---|---|---|---|
5% | Average/Recommended | 95% | ||
RBE | ||||
Adult body [95] | НТО | 1.2 | 2.3 | 3.8 |
OBT | 2.3 | 5.0 | 11.6 | |
Fetus (if orally ingested during pregnancy) [95] | НТО | 2.1 | 4.4 | 8.1 |
OBT | 4.0 | 9.8 | 23.1 | |
Blood lymphocytes [96] | OBT | 1.13 | 2.5 | 3.1 |
Recommended by the ICRP [97] | HTO | 1 | 1 | 2.5 |
OBT | 1 | 1 | 2.5 | |
Ingestion Dose Coefficients for Adults, Sv∙Bq−1∙1011 | ||||
Adult whole body [98] | HTO | 2.1 | 3.9 | 6.6 |
OBT | 3.9 | 8.7 | 20 | |
Recommended by the ICRP [99] | HTO | 1.8 | ||
OBT | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolin, V.; Yakovlev, Y.; Cancemi, S.A.; Lo Frano, R. The Impact of Tritium in the Environment. Appl. Sci. 2025, 15, 6664. https://doi.org/10.3390/app15126664
Dolin V, Yakovlev Y, Cancemi SA, Lo Frano R. The Impact of Tritium in the Environment. Applied Sciences. 2025; 15(12):6664. https://doi.org/10.3390/app15126664
Chicago/Turabian StyleDolin, Viktor, Yevgenii Yakovlev, Salvatore Angelo Cancemi, and Rosa Lo Frano. 2025. "The Impact of Tritium in the Environment" Applied Sciences 15, no. 12: 6664. https://doi.org/10.3390/app15126664
APA StyleDolin, V., Yakovlev, Y., Cancemi, S. A., & Lo Frano, R. (2025). The Impact of Tritium in the Environment. Applied Sciences, 15(12), 6664. https://doi.org/10.3390/app15126664