Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation
Abstract
1. Introduction
2. Theory and Methods
2.1. Theory of Thermal Conductivity
2.2. Methods
3. Results and Discussions
3.1. Electronic Structure
3.2. Phonon Spectrum
3.3. Thermal Conducitivity
3.3.1. Pristine UO2
3.3.2. Solid Fission Products
3.3.3. Fission Gas Xe
3.3.4. Irradiated Point Defects
4. Conclusions
- Electronic and Phonon Properties: DFT+U calculations (U = 3.6 eV) accurately reproduced the Mott insulating nature of UO2, with a bandgap of 1.990 eV, consistent with experimental values (~2.0 eV). The phonon spectrum and Gruneisen parameter ( = 1.86) aligned well with inelastic neutron scattering data, though high-frequency optical modes exhibited slight deviations due to negligible anharmonic effects at 0 K;
- Impact of Fission Products: Metallic fission products (e.g., Mo, Ru, Ba) preferentially scattered low-frequency (less than 5.8 THz) phonons, reducing thermal conductivity by over 50% at high concentrations (76 GWd/tU). The scattering strength was governed by mass contrast and ionic radius mismatch, with the latter playing a dominant role. Fission gas Xe exhibited dual scattering mechanisms: occupying U vacancies primarily affected low-frequency phonons, while simultaneous occupation of U and O vacancies scattered both low- and high-frequency phonons, leading to more pronounced thermal conductivity degradation.
- Irradiation-Induced Defects: U vacancies strongly scattered low-frequency phonons, whereas O vacancies targeted high-frequency (greater than 5.8 THz) modes. The combined presence of both vacancy types caused broadband phonon scattering, further reducing thermal conductivity. Notably, defect clusters and extended defects (not explicitly modeled here) likely introduce additional scattering channels in real irradiated fuels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Relaxation-Time Approximation
References
- Simnad, M.T. Nuclear Reactor Materials and Fuels. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 775–815. [Google Scholar] [CrossRef]
- Bates, J.L.; Sayers, J.B.; Bergenlid, U. Thermal Conductivity of Uranium Dioxide; Number 59 in Technical Reports Series; International Atomic Energy Agency: Vienna, Austria, 1966; pp. 1–58. [Google Scholar]
- Olander, D. Point-defects in irradiated UO2. J. Nucl. Mater. 2010, 399, 236–239. [Google Scholar] [CrossRef]
- Glodeanu, F. PROCESSES of UO2 fuel cycle. Fuel 2020. preprint. [Google Scholar] [CrossRef]
- Sheykhi, S.; Payami, M. Electronic structure properties of UO2 as a Mott insulator. Phys. C Supercond. Appl. 2018, 549, 93–94. [Google Scholar] [CrossRef]
- Hurley, D.H.; El-Azab, A.; Bryan, M.S.; Cooper, M.W.D.; Dennett, C.A.; Gofryk, K.; He, L.; Khafizov, M.; Lander, G.H.; Manley, M.E.; et al. Thermal Energy Transport in Oxide Nuclear Fuel. Chem. Rev. 2021, 122, 3711–3762. [Google Scholar] [CrossRef]
- Rondinella, V.V.; Wiss, T. The high burn-up structure in nuclear fuel. Mater. Today 2010, 13, 24–32. [Google Scholar] [CrossRef]
- Martin, D. A re-appraisal of the thermal conductivity of UO2 and mixed (U,Pu) oxide fuels. J. Nucl. Mater. 1982, 110, 73–94. [Google Scholar] [CrossRef]
- Minato, K.; Shiratori, T.; Serizawa, H.; Hayashi, K.; Une, K.; Nogita, K.; Hirai, M.; Amaya, M. Thermal conductivities of irradiated UO2 and (U,Gd)O2. J. Nucl. Mater. 2001, 288, 57–65. [Google Scholar] [CrossRef]
- Philipponneau, Y. Thermal conductivity of (U,Pu)O2−x mixed oxide fuel. J. Nucl. Mater. 1992, 188, 194–197. [Google Scholar] [CrossRef]
- Ronchi, C.; Sheindlin, M.; Staicu, D.; Kinoshita, M. Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWdt−1. J. Nucl. Mater. 2004, 327, 58–76. [Google Scholar] [CrossRef]
- Gibby, R. The effect of plutonium content on the thermal conductivity of (U,Pu)O2 solid solutions. J. Nucl. Mater. 1971, 38, 163–177. [Google Scholar] [CrossRef]
- Amaya, M.; Hirai, M. Recovery behavior of thermal conductivity in irradiated UO2 pellets. J. Nucl. Mater. 1997, 247, 76–81. [Google Scholar] [CrossRef]
- Carbajo, J.J.; Yoder, G.L.; Popov, S.G.; Ivanov, V.K. A review of the thermophysical properties of MOX and UO2 fuels. J. Nucl. Mater. 2001, 299, 181–198. [Google Scholar] [CrossRef]
- Cozzo, C.; Staicu, D.; Somers, J.; Fernandez, A.; Konings, R. Thermal diffusivity and conductivity of thorium–plutonium mixed oxides. J. Nucl. Mater. 2011, 416, 135–141. [Google Scholar] [CrossRef]
- Wang, B.T.; Zheng, J.J.; Qu, X.; Li, W.D.; Zhang, P. Thermal conductivity of UO2 and PuO2 from first-principles. J. Alloys Compd. 2015, 628, 267–271. [Google Scholar] [CrossRef]
- Callaway, J. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113, 1046–1051. [Google Scholar] [CrossRef]
- Zhang, Y. First-principles Debye–Callaway approach to lattice thermal conductivity. J. Mater. 2016, 2, 237–247. [Google Scholar] [CrossRef]
- Higuchi, S.i. A Molecular Dynamics Study of Thermal Conductivity of UO2 with Impurities. J. Nucl. Sci. Technol. 1998, 35, 833–835. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.H.; Kaviany, M. Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics. J. Appl. Phys. 2014, 115, 123510. [Google Scholar] [CrossRef]
- Nichenko, S.; Staicu, D. Thermal conductivity of porous UO2: Molecular Dynamics study. J. Nucl. Mater. 2014, 454, 315–322. [Google Scholar] [CrossRef]
- Srivastava, G.P. Theory of Lattice Thermal Conductivity. In The Physics of Phonons; CRC Press: Boca Raton, FL, USA, 2022; pp. 115–120. [Google Scholar] [CrossRef]
- Fugallo, G.; Lazzeri, M.; Paulatto, L.; Mauri, F. Ab initio variational approach for evaluating lattice thermal conductivity. Phys. Rev. B 2013, 88, 045430. [Google Scholar] [CrossRef]
- Maradudin, A.A.; Fein, A.E. Scattering of Neutrons by an Anharmonic Crystal. Phys. Rev. 1962, 128, 2589–2608. [Google Scholar] [CrossRef]
- Tamura, S.i. Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 1983, 27, 858–866. [Google Scholar] [CrossRef]
- Abeles, B. Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures. Phys. Rev. 1963, 131, 1906–1911. [Google Scholar] [CrossRef]
- Duriez, C.; Alessandri, J.P.; Gervais, T.; Philipponneau, Y. Thermal conductivity of hypostoichiometric low Pu content (U,Pu)O2−x mixed oxide. J. Nucl. Mater. 2000, 277, 143–158. [Google Scholar] [CrossRef]
- Klemens, P.G. The Scattering of Low-Frequency Lattice Waves by Static Imperfections. Proc. Phys. Soc. Sect. A 1955, 68, 1113–1128. [Google Scholar] [CrossRef]
- Gurunathan, R.; Hanus, R.; Dylla, M.; Katre, A.; Snyder, G.J. Analytical Models of Phonon–Point-Defect Scattering. Phys. Rev. Appl. 2020, 13, 034011. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Pegg, J.T.; Aparicio-Anglès, X.; Storr, M.; de Leeuw, N.H. DFT+U study of the structures and properties of the actinide dioxides. J. Nucl. Mater. 2017, 492, 269–278. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Liu, P.; Andersson, D.A.; Stanek, C.R.; Ozaki, T.; Franchini, C. Parametrization of LSDA+U for noncollinear magnetic configurations: Multipolar magnetism in UO2. Phys. Rev. Mater. 2019, 3, 083802. [Google Scholar] [CrossRef]
- Dorado, B.; Amadon, B.; Freyss, M.; Bertolus, M. DFT+U calculations of the ground state and metastable states of uranium dioxide. Phys. Rev. B 2009, 79, 235125. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Togo, A.; Chaput, L.; Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 2015, 91, 094306. [Google Scholar] [CrossRef]
- Gonze, X. Perturbation expansion of variational principles at arbitrary order. Phys. Rev. A 1995, 52, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Gonze, X.; Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 1997, 55, 10355–10368. [Google Scholar] [CrossRef]
- Iwasawa, M.; Chen, Y.; Kaneta, Y.; Ohnuma, T.; Geng, H.Y.; Kinoshita, M. First-Principles Calculation of Point Defects in Uranium Dioxide. Mater. Trans. 2006, 47, 2651–2657. [Google Scholar] [CrossRef]
- Dolling, G.; Cowley, R.A.; Woods, A.D.B. The Crystal Dynamics of Uranium Dioxide. Can. J. Phys. 1965, 43, 1397–1413. [Google Scholar] [CrossRef]
- Pang, J.W.L.; Buyers, W.J.L.; Chernatynskiy, A.; Lumsden, M.D.; Larson, B.C.; Phillpot, S.R. Phonon Lifetime Investigation of Anharmonicity and Thermal Conductivity of UO2 by Neutron Scattering and Theory. Phys. Rev. Lett. 2013, 110, 157401. [Google Scholar] [CrossRef]
- Yun, Y.; Legut, D.; Oppeneer, P.M. Phonon spectrum, thermal expansion and heat capacity of UO2 from first-principles. J. Nucl. Mater. 2012, 426, 109–114. [Google Scholar] [CrossRef]
- Sanati, M.; Albers, R.C.; Lookman, T.; Saxena, A. Elastic constants, phonon density of states, and thermal properties of UO2. Phys. Rev. B 2011, 84, 014116. [Google Scholar] [CrossRef]
- Torres, E.; CheikNjifon, I.; Kaloni, T.; Pencer, J. A comparative analysis of the phonon properties in UO2 using the Boltzmann transport equation coupled with DFT+U and empirical potentials. Comput. Mater. Sci. 2020, 177, 109594. [Google Scholar] [CrossRef]
- Wang, B.T.; Zhang, P.; Lizárraga, R.; Di Marco, I.; Eriksson, O. Phonon spectrum, thermodynamic properties, and pressure-temperature phase diagram of uranium dioxide. Phys. Rev. B 2013, 88, 104107. [Google Scholar] [CrossRef]
- Ronchi, C.; Sheindlin, M.; Musella, M.; Hyland, G.J. Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity. J. Appl. Phys. 1999, 85, 776–789. [Google Scholar] [CrossRef]
- Fink, J.; Chasanov, M.; Leibowitz, L. Thermophysical properties of uranium dioxide. J. Nucl. Mater. 1981, 102, 17–25. [Google Scholar] [CrossRef]
- Islam, M. DFT and DFT+U Insights into the Physical Properties of UO2. J. Sci. Res. 2023, 15, 739–757. [Google Scholar] [CrossRef]
- Zhou, S.; Xiao, E.; Ma, H.; Gofryk, K.; Jiang, C.; Manley, M.E.; Hurley, D.H.; Marianetti, C.A. Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory. Phys. Rev. Lett. 2024, 132, 106502. [Google Scholar] [CrossRef]
- Mei, Z.G.; Stan, M.; Yang, J. First-principles study of thermophysical properties of uranium dioxide. J. Alloys Compd. 2014, 603, 282–286. [Google Scholar] [CrossRef]
- Perriot, R.; Liu, X.Y.; Stanek, C.; Andersson, D. Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO2. J. Nucl. Mater. 2015, 459, 90–96. [Google Scholar] [CrossRef]
- Geiger, E.; Bès, R.; Martin, P.; Pontillon, Y.; Solari, P.L.; Salome, M. Fission products behaviour in UO2 submitted to nuclear severe accident conditions. J. Phys. Conf. Ser. 2016, 712, 012098. [Google Scholar] [CrossRef]
- Murabayashi, M. Thermal Conductivity of Ceramic Solid Solutions. J. Nucl. Sci. Technol. 1970, 7, 559–563. [Google Scholar] [CrossRef]
- Oettingen, M.; Cetnar, J. Comparative analysis between measured and calculated concentrations of major actinides using destructive assay data from Ohi-2 PWR. Nukleonika 2015, 60, 571–580. [Google Scholar] [CrossRef]
- Ishimoto, S.; Hirai, M.; Ito, K.; Korei, Y. Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets. J. Nucl. Sci. Technol. 1994, 31, 796–802. [Google Scholar] [CrossRef]
- Chen, W.; Bai, X.M. Unified Effect of Dispersed Xe on the Thermal Conductivity of UO2 Predicted by Three Interatomic Potentials. JOM 2020, 72, 1710–1718. [Google Scholar] [CrossRef]
- Yun, Y.; Oppeneer, P.M. First-principles design of next-generation nuclear fuels. MRS Bull. 2011, 36, 178–184. [Google Scholar] [CrossRef]
- Dorado, B.; Freyss, M.; Amadon, B.; Bertolus, M.; Jomard, G.; Garcia, P. Advances in first-principles modelling of point defects in UO2: f electron correlations and the issue of local energy minima. J. Phys. Condens. Matter 2013, 25, 333201. [Google Scholar] [CrossRef] [PubMed]
- Kaloni, T.; Onder, N.; Pencer, J.; Torres, E. DFT+U approach on the electronic and thermal properties of hypostoichiometric UO2. Ann. Nucl. Energy 2020, 144, 107511. [Google Scholar] [CrossRef]
Fission Element | Ba | Ce | Cs | La | Mo | Sr | Y | Zr | Rh | Pd | Ru | Nd |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (at%) | 0.26 | 0.61 | 0.35 | 0.20 | 0.61 | 0.13 | 0.06 | 0.60 | 0.03 | 0.42 | 0.64 | 0.91 |
Oxidation State | 2+ | 4+ | 1+ | 3+ | 4+ | 2+ | 3+ | 4+ | 0 | 0 | 0 | 3+ |
Ionic Radius (Å) | 1.42 | 0.97 | 1.69 | 1.16 | 0.65 | 1.26 | 1.02 | 0.84 | 1.42 | 1.39 | 1.46 | 1.12 |
Element | Concentrations (at%) | ||
---|---|---|---|
Sample1 | Sample2 | Sample3 | |
Sr | 0.232 | 0.362 | 0.466 |
Y | 0.118 | 0.186 | 0.242 |
Zr | 0.873 | 1.536 | 2.150 |
La | 0.193 | 0.367 | 0.536 |
Ce | 0.631 | 1.151 | 1.656 |
Nd | 0.630 | 1.270 | 1.903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Zhao, M.; Pan, R.; Tang, A.; Wu, L. Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation. Materials 2025, 18, 3584. https://doi.org/10.3390/ma18153584
Qin J, Zhao M, Pan R, Tang A, Wu L. Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation. Materials. 2025; 18(15):3584. https://doi.org/10.3390/ma18153584
Chicago/Turabian StyleQin, Jiantao, Min Zhao, Rongjian Pan, Aitao Tang, and Lu Wu. 2025. "Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation" Materials 18, no. 15: 3584. https://doi.org/10.3390/ma18153584
APA StyleQin, J., Zhao, M., Pan, R., Tang, A., & Wu, L. (2025). Thermal Conductivity of UO2 with Defects via DFT+U Calculation and Boltzmann Transport Equation. Materials, 18(15), 3584. https://doi.org/10.3390/ma18153584