Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = reactive stroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2046 KB  
Review
Neutrophil Spatiotemporal Regulatory Networks: Dual Roles in Tumor Growth Regulation and Metastasis
by Pengcheng Li, Feimu Fan, Bixiang Zhang, Chaoyi Yuan and Huifang Liang
Biomedicines 2025, 13(6), 1473; https://doi.org/10.3390/biomedicines13061473 - 14 Jun 2025
Cited by 5 | Viewed by 2442 | Correction
Abstract
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote [...] Read more.
Neutrophils, accounting for 50–70% of circulating leukocytes, exhibit remarkable plasticity in tumor biology. Depending on tumor type and microenvironmental cues, they can exert either anti-tumor or pro-tumor effects. During tumor initiation, neutrophils exposed to chronic inflammation secrete cytokines and oncogenic microRNAs that promote genomic instability and malignant transformation. In tumor progression, neutrophils adopt context-dependent phenotypes and execute diverse functions, including polarization into anti-tumor (N1) or pro-tumor (N2) subsets; secretion of inflammatory and angiogenic mediators; formation of neutrophil extracellular traps (NETs); production of reactive oxygen and nitrogen species (e.g., H2O2 and nitric oxide); and modulation of immune cell infiltration and function within the tumor microenvironment. During metastasis, neutrophils facilitate cancer dissemination through three principal mechanisms: (1) promoting epithelial–mesenchymal transition (EMT) via inflammatory signaling, adhesion molecule interactions, and lipid metabolic support; (2) establishing pre-metastatic niches by remodeling distant organ stroma through NETs and matrix metalloproteinases; and (3) reactivating dormant tumor cells in response to chronic inflammation, viral infection, or stress hormones. Collectively, neutrophils function as central regulators across all stages of tumor evolution, influencing cancer growth, immune evasion, and metastatic progression. This review aims to provide a comprehensive synthesis of neutrophil-mediated mechanisms in the tumor microenvironment and highlight emerging strategies for neutrophil-targeted cancer therapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

46 pages, 1134 KB  
Review
Endometriosis: An Immunologist’s Perspective
by Jenny Valentina Garmendia, Claudia Valentina De Sanctis, Marian Hajdúch and Juan Bautista De Sanctis
Int. J. Mol. Sci. 2025, 26(11), 5193; https://doi.org/10.3390/ijms26115193 - 28 May 2025
Cited by 8 | Viewed by 8836
Abstract
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10–15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general [...] Read more.
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10–15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients. Full article
Show Figures

Figure 1

15 pages, 2899 KB  
Article
ECM Stiffness-Induced Redox Signaling Enhances Stearoyl Gemcitabine Efficacy in Pancreatic Cancer
by Shuqing Zhao, Edward Agyare, Xueyou Zhu, Jose Trevino, Sherise Rogers, Enrique Velazquez-Villarreal, Jason Brant, Payam Eliahoo, Jonathan Barajas, Ba Xuan Hoang and Bo Han
Cancers 2025, 17(5), 870; https://doi.org/10.3390/cancers17050870 - 3 Mar 2025
Cited by 2 | Viewed by 2296
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, largely due to its dense fibrotic stroma that promotes drug resistance and tumor progression. While patient-derived organoids (PDOs) have emerged as promising tools for modeling PDAC and evaluating therapeutic responses, the [...] Read more.
Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, largely due to its dense fibrotic stroma that promotes drug resistance and tumor progression. While patient-derived organoids (PDOs) have emerged as promising tools for modeling PDAC and evaluating therapeutic responses, the current PDO models grown in soft matrices fail to replicate the tumor’s stiff extracellular matrix (ECM), limiting their predictive value for advanced disease. Methods: We developed a biomimetic model using gelatin-based matrices of varying stiffness, achieved through modulated transglutaminase crosslinking rates, to better simulate the desmoplastic PDAC microenvironment. Using this platform, we investigated organoid morphology, proliferation, and chemoresistance to gemcitabine (Gem) and its lipophilic derivative, 4-N-stearoyl gemcitabine (Gem-S). Mechanistic studies focused on the interplay between ECM stiffness, hypoxia-inducible factor (HIF) expression, and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in drug resistance. Results: PDAC organoids in stiffer matrices demonstrated enhanced stemness features, including rounded morphology and elevated cancer stem cell (CSC) marker expression. Matrix stiffness-induced gemcitabine resistance correlated with the upregulation of ABC transporters and oxidative stress adaptive responses. While gemcitabine activated Nrf2 expression, promoting oxidative stress mitigation, Gem-S suppressed Nrf2 levels and induced oxidative stress, leading to increased reactive oxygen species (ROS) and enhanced cell death. Both compounds reduced HIF expression, with gemcitabine showing greater efficacy. Conclusions: Our study reveals ECM stiffness as a critical mediator of PDAC chemoresistance through the promotion of stemness and modulation of Nrf2 and HIF pathways. Gem-S demonstrates promise in overcoming gemcitabine resistance by disrupting Nrf2-mediated adaptive responses and inducing oxidative stress. These findings underscore the importance of biomechanically accurate tumor models and suggest that dual targeting of mechanical and oxidative stress pathways may improve PDAC treatment outcomes. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

18 pages, 3287 KB  
Article
The C-X-C Motif Chemokine Ligand 5, Which Exerts an Antioxidant Role by Inducing HO-1 Expression, Is C-X-C Motif Chemokine Receptor 2-Dependent in Human Prostate Stroma and Cancer Cells
by Kang-Shuo Chang, Syue-Ting Chen, Shu-Yuan Hsu, Hsin-Ching Sung, Wei-Yin Lin, Ke-Hung Tsui, Yu-Hsiang Lin, Chen-Pang Hou and Horng-Heng Juang
Antioxidants 2024, 13(12), 1489; https://doi.org/10.3390/antiox13121489 - 5 Dec 2024
Cited by 3 | Viewed by 2099
Abstract
While the C-X-C motif chemokine ligand 5 (CXCL5) is recognized as an inflammatory mediator and a potent attractant for immune cells, its functions within the human prostate remain unclear. This study explored the expression, functions, and regulatory mechanisms of CXCL5 in prostate stroma [...] Read more.
While the C-X-C motif chemokine ligand 5 (CXCL5) is recognized as an inflammatory mediator and a potent attractant for immune cells, its functions within the human prostate remain unclear. This study explored the expression, functions, and regulatory mechanisms of CXCL5 in prostate stroma and cancer cells. CXCL5 secreted from prostate cancer cells enhanced neutrophil migration. CXCL5 induced cell proliferation and invasion of prostate cancer cells in vitro and tumorigenesis in a xenograft animal model. C-X-C motif chemokine receptor 2 (CXCR2) has been identified on the surface of prostate fibroblasts and cancer cells. The supernatant of LNCaP cells or CXCL5 overexpression enhanced the migration and contraction of prostate myofibroblast WPMY-1 cells; however, pretreatment with SB225002, a CXCR2 inhibitor, can reverse these effects. CXCL5 evinces antioxidant properties by upregulating heme oxygenase-1 (HO-1) to counteract H2O2-induced reactive oxygen species (ROS) in a CXCR2-dependent manner in WPMY-1 and prostate cancer cells. Our findings illustrate that CXCL5, through HO-1, plays a role in antioxidation, and determine that the CXCL5/CXCR2/HO-1 pathway facilitates antioxidative communication between fibroblasts and cancer cells in the prostate. Therefore, targeting the CXCL5/CXCR2 signaling pathway could provide a new strategy for managing oxidative stress within the prostate. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Cancer Biology)
Show Figures

Graphical abstract

62 pages, 4356 KB  
Review
Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
by Nada Oršolić and Maja Jazvinšćak Jembrek
Nutrients 2024, 16(21), 3741; https://doi.org/10.3390/nu16213741 - 31 Oct 2024
Cited by 27 | Viewed by 6961
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced [...] Read more.
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial–mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients’ quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Human Health)
Show Figures

Figure 1

7 pages, 3355 KB  
Case Report
Undifferentiated Pleomorphic Sarcoma with Reactive Eccrine Syringofibroadenoma: A Case Report
by Navinda Donsakul, Suthep Jerasutus, Ittipon Tubtieng, Ravion Assavanatenapa and Voraphol Vejjabhinanta
Dermatopathology 2024, 11(4), 286-292; https://doi.org/10.3390/dermatopathology11040030 - 20 Oct 2024
Viewed by 2112
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is an aggressive soft tissue sarcoma with a poor prognosis. The patients are usually found to have metastasis when the primary tumor is diagnosed. Eccrine syringofibroadenoma (ESFA) is a rare cutaneous adnexal lesion of eccrine duct origin. There are [...] Read more.
Undifferentiated pleomorphic sarcoma (UPS) is an aggressive soft tissue sarcoma with a poor prognosis. The patients are usually found to have metastasis when the primary tumor is diagnosed. Eccrine syringofibroadenoma (ESFA) is a rare cutaneous adnexal lesion of eccrine duct origin. There are five subtypes, one of which is reactive ESFA, known to occur in reaction to an inflammatory or neoplastic process. In this article, we report a case of the co-existence of both UPS and ESFA in a 70-year-old male patient, presenting with a painless, erythematous, irregular surface nodule with a peripherally extended brownish hyperkeratotic plaque on the right palm. The histologic findings revealed an ill-defined dermal tumor of atypical epithelioid and spindle-shaped cells with large pleomorphic hyperchromatic nuclei and abundant eosinophilic cytoplasm. Some of those cells were multinucleated giant cells in the stroma with vascular proliferation and mixed inflammatory cell infiltrate. The tumor cells, which were only positive for vimentin, supported the diagnosis of undifferentiated pleomorphic sarcoma (UPS). Meanwhile, the overlying epidermis demonstrated hyperkeratosis, papillated epidermal hyperplasia, and proliferation of anastomosing slender cords and strands of cuboid cells within loose fibrovascular stroma. These findings are the characteristics of eccrine syringofibroadenoma (ESFA). We describe here a patient in whom reactive ESFA occurred on and surrounded the UPS tumor. Full article
(This article belongs to the Section Clinico-Pathological Correlation in Dermatopathology)
Show Figures

Figure 1

27 pages, 2839 KB  
Review
Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis
by Davide Vecchiotti, Letizia Clementi, Emanuele Cornacchia, Mauro Di Vito Nolfi, Daniela Verzella, Daria Capece, Francesca Zazzeroni and Adriano Angelucci
Cancers 2024, 16(18), 3215; https://doi.org/10.3390/cancers16183215 - 21 Sep 2024
Cited by 5 | Viewed by 3490
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate [...] Read more.
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism. Full article
(This article belongs to the Special Issue Biomarkers in Prostate Cancers)
Show Figures

Figure 1

10 pages, 812 KB  
Review
p16 Expression in Multinucleated Stromal Cells of Fibroepithelial Polyps of the Anus (FEPA): A Comprehensive Review and Our Experience
by Milena Gulinac, Tsvetelina Velikova, Latchezar Tomov and Dorian Dikov
Gastroenterol. Insights 2024, 15(2), 409-418; https://doi.org/10.3390/gastroent15020029 - 17 May 2024
Viewed by 2527
Abstract
Fibroepithelial polyps of the anus (FEPA) are a common benign polypoid proliferation of the stroma covered by squamous epithelium. They are also an often-overlooked part of pathological practice. Currently, immunohistochemistry (IHC) for p16 is the only recommended test for anal intraepithelial neoplasia, but [...] Read more.
Fibroepithelial polyps of the anus (FEPA) are a common benign polypoid proliferation of the stroma covered by squamous epithelium. They are also an often-overlooked part of pathological practice. Currently, immunohistochemistry (IHC) for p16 is the only recommended test for anal intraepithelial neoplasia, but the expression of p16 in stromal multinucleated atypical cells in FEPA has not been described. We aimed to evaluate the expression of p16 in stromal multinucleated atypical cells in FEPA and its role as a diagnostic biomarker to determine the origin of the atypical multinucleated cells in the stroma of FEPA and to rule out the possibility of a neoplastic process. Therefore, we researched a series of 15 FEPA in middle-aged patients histologically and by IHC. Examination of the subepithelial connective tissue from the FEPA showed bizarre, multinucleated cells, while their causal relationship with human papillomavirus (HPV) infection was rejected. In all cases, these cells showed mild to moderate atypical nuclear features and positive expression for p16, while the overlying squamous epithelium was negative. We concluded that FEPA are benign lesions in the stroma where mononuclear and multinucleated (sometimes atypical) cells showing fibroblastic and myofibroblastic differentiation can be found. Nevertheless, we believe that these cells have a practical diagnostic significance, although sometimes the presence of giant cells is difficult to establish, especially in the inflammatory context. The histological similarity between FEPA and normal anal mucosa supports the hypothesis that FEPA may represent the reactive hyperplasia of subepithelial fibrous connective tissue of the anal mucosa. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

12 pages, 7308 KB  
Article
Normal Ovarian Function in Subfertile Mouse with Amhr2-Cre-Driven Ablation of Insr and Igf1r
by Jenna C. Douglas, Nikola Sekulovski, Madison R. Arreola, Yeongseok Oh, Kanako Hayashi and James A. MacLean
Genes 2024, 15(5), 616; https://doi.org/10.3390/genes15050616 - 12 May 2024
Cited by 3 | Viewed by 2718
Abstract
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized [...] Read more.
Insulin receptor signaling promotes cell differentiation, proliferation, and growth which are essential for oocyte maturation, embryo implantation, endometrial decidualization, and placentation. The dysregulation of insulin signaling in women with metabolic syndromes including diabetes exhibits poor pregnancy outcomes that are poorly understood. We utilized the Cre/LoxP system to target the tissue-specific conditional ablation of insulin receptor (Insr) and insulin-like growth factor-1 receptor (Igf1r) using an anti-Mullerian hormone receptor 2 (Amhr2) Cre-driver which is active in ovarian granulosa and uterine stromal cells. Our long-term goal is to examine insulin-dependent molecular mechanisms that underlie diabetic pregnancy complications, and our conditional knockout models allow for such investigation without confounding effects of ligand identity, source and cross-reactivity, or global metabolic status within dams. Puberty occurred with normal timing in all conditional knockout models. Estrous cycles progressed normally in Insrd/d females but were briefly stalled in diestrus in Igf1rd/d and double receptor (DKO) mice. The expression of vital ovulatory genes (Lhcgr, Pgr, Ptgs2) was not significantly different in 12 h post-hCG superovulated ovaries in knockout mice. Antral follicles exhibited an elevated apoptosis of granulosa cells in Igf1rd/d and DKO mice. However, the distribution of ovarian follicle subtypes and subsequent ovulations was normal in all insulin receptor mutants compared to littermate controls. While ovulation was normal, all knockout lines were subfertile suggesting that the loss of insulin receptor signaling in the uterine stroma elicits implantation and decidualization defects responsible for subfertility in Amhr2-Cre-derived insulin receptor mutants. Full article
(This article belongs to the Special Issue Genetics and Genomics of Female Reproduction)
Show Figures

Figure 1

15 pages, 1242 KB  
Opinion
The MET Oncogene: Thirty Years of Insights into Molecular Mechanisms Driving Malignancy
by Tiziana Crepaldi, Simona Gallo and Paolo Maria Comoglio
Pharmaceuticals 2024, 17(4), 448; https://doi.org/10.3390/ph17040448 - 30 Mar 2024
Cited by 6 | Viewed by 3866
Abstract
The discovery and subsequent research on the MET oncogene’s role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the [...] Read more.
The discovery and subsequent research on the MET oncogene’s role in cancer onset and progression have illuminated crucial insights into the molecular mechanisms driving malignancy. The identification of MET as the hepatocyte growth factor (HGF) receptor has paved the path for characterizing the MET tyrosine kinase activation mechanism and its downstream signaling cascade. Over the past thirty years, research has established the importance of HGF/MET signaling in normal cellular processes, such as cell dissociation, migration, proliferation, and cell survival. Notably, genetic alterations that lead to the continuous activation of MET, known as constitutive activation, have been identified as oncogenic drivers in various cancers. The genetic lesions affecting MET, such as exon skipping, gene amplification, and gene rearrangements, provide valuable targets for therapeutic intervention. Moreover, the implications of MET as a resistance mechanism to targeted therapies emphasize the need for combination treatments that include MET inhibitors. The intriguing “flare effect” phenomenon, wherein MET inhibition can lead to post-treatment increases in cancer cell proliferation, underscores the dynamic nature of cancer therapeutics. In human tumors, increased protein expression often occurs without gene amplification. Various mechanisms may cause an overexpression: transcriptional upregulation induced by other oncogenes; environmental factors (such as hypoxia or radiation); or substances produced by the reactive stroma, such as inflammatory cytokines, pro-angiogenic factors, and even HGF itself. In conclusion, the journey to understanding MET’s involvement in cancer onset and progression over the past three decades has not only deepened our knowledge, but has also paved the way for innovative therapeutic strategies. Selective pharmacological inactivation of MET stands as a promising avenue for achieving cancer remission, particularly in cases where MET alterations are the primary drivers of malignancy. Full article
(This article belongs to the Special Issue 20th Anniversary of Pharmaceuticals—Met Receptor)
Show Figures

Figure 1

19 pages, 779 KB  
Review
Ultraviolet Radiation Biological and Medical Implications
by Tarek Al-Sadek and Nabiha Yusuf
Curr. Issues Mol. Biol. 2024, 46(3), 1924-1942; https://doi.org/10.3390/cimb46030126 - 29 Feb 2024
Cited by 51 | Viewed by 10649
Abstract
Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation [...] Read more.
Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation can cause direct DNA damage in the forms of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). In addition, UV radiation can also cause DNA damage indirectly through photosensitization reactions caused by reactive oxygen species (ROS), which manifest as 8-hydroxy-2′-deoxyguanine (8-OHdG). Both direct and indirect DNA damage can lead to mutations in genes that promote the development of skin cancers. The development of melanoma is largely influenced by the signaling of the melanocortin one receptor (MC1R), which plays an essential role in the synthesis of melanin in the skin. UV-induced mutations in the BRAF and NRAS genes are also significant risk factors in melanoma development. UV radiation plays a significant role in basal cell carcinoma (BCC) development by causing mutations in the Hedgehog (Hh) pathway, which dysregulates cell proliferation and survival. UV radiation can also induce the development of squamous cell carcinoma via mutations in the TP53 gene and upregulation of MMPs in the stroma layer of the skin. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

51 pages, 5674 KB  
Review
Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer
by Kangkan Sarma, Md Habban Akther, Irfan Ahmad, Obaid Afzal, Abdulmalik S. A. Altamimi, Manal A. Alossaimi, Mariusz Jaremko, Abdul-Hamid Emwas and Preety Gautam
Molecules 2024, 29(5), 1076; https://doi.org/10.3390/molecules29051076 - 29 Feb 2024
Cited by 31 | Viewed by 6463
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized [...] Read more.
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile’s effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy. Full article
Show Figures

Graphical abstract

15 pages, 721 KB  
Article
Thylakoid Rhodanese-like Protein–Ferredoxin:NADP+ Oxidoreductase Interaction Is Integrated into Plant Redox Homeostasis System
by Lea Vojta, Anja Rac-Justament, Bernd Zechmann and Hrvoje Fulgosi
Antioxidants 2023, 12(10), 1838; https://doi.org/10.3390/antiox12101838 - 10 Oct 2023
Cited by 2 | Viewed by 2194
Abstract
In vascular plants, the final photosynthetic electron transfer from ferredoxin (Fd) to NADP+ is catalyzed by the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). FNR is recruited to thylakoid membranes via an integral membrane protein TROL (thylakoid rhodanese-like protein) and the membrane associated protein [...] Read more.
In vascular plants, the final photosynthetic electron transfer from ferredoxin (Fd) to NADP+ is catalyzed by the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR). FNR is recruited to thylakoid membranes via an integral membrane protein TROL (thylakoid rhodanese-like protein) and the membrane associated protein Tic62. We have previously demonstrated that the absence of TROL triggers a very efficient superoxide (O2•−) removal mechanism. The dynamic TROL–FNR interaction has been shown to be an apparently overlooked mechanism that maintains linear electron flow before alternative pathway(s) is(are) activated. In this work, we aimed to further test our hypothesis that the FNR–TROL pair could be the source element that triggers various downstream networks of chloroplast ROS scavenging. Tandem affinity purification followed by the MS analysis confirmed the TROL–FNR interaction and revealed possible interaction of TROL with the thylakoid form of the enzyme ascorbate peroxidase (tAPX), which catalyzes the H2O2-dependent oxidation of ascorbate and is, therefore, the crucial component of the redox homeostasis system in plants. Further, EPR analyses using superoxide spin trap DMPO showed that, in comparison with the wild type, plants overexpressing TROL (TROL OX) propagate more O2•− when exposed to high light stress. This indicates an increased sensitivity to oxidative stress in conditions when there is an excess of membrane-bound FNR and less free FNR is found in the stroma. Finally, immunohistochemical analyses of glutathione in different Arabidopsis leaf cell compartments showed highly elevated glutathione levels in TROL OX, indicating an increased demand for this ROS scavenger in these plants, likely needed to prevent the damage of important cellular components caused by reactive oxygen species. Full article
(This article belongs to the Special Issue Redox Regulation in Photosynthesis)
Show Figures

Figure 1

27 pages, 17233 KB  
Article
Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism
by Nourhane Ammar, Maya Hildebrandt, Claudia Geismann, Christian Röder, Timo Gemoll, Susanne Sebens, Ania Trauzold and Heiner Schäfer
Antioxidants 2023, 12(10), 1818; https://doi.org/10.3390/antiox12101818 - 30 Sep 2023
Cited by 11 | Viewed by 4630
Abstract
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype [...] Read more.
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype of PDAC cells compensated for the shortage of glutamine as an essential metabolite for redox homeostasis. Thus, oxidative stress caused by glutamine depletion led to an Nrf2-dependent induction of MCT1 expression in pancreatic T3M4 and A818-6 cells. Moreover, greater MCT1 expression was detected in glutamine-scarce regions within tumor tissues from PDAC patients. MCT1-driven lactate uptake supported the neutralization of reactive oxygen species excessively produced under glutamine shortage and the resulting drop in glutathione levels that were restored by the imported lactate. Consequently, PDAC cells showed greater survival and growth under glutamine depletion when utilizing lactate through MCT1. Likewise, the glutamine uptake inhibitor V9302 and glutaminase-1 inhibitor CB839 induced oxidative stress in PDAC cells, along with cell death and cell cycle arrest that were again compensated by MCT1 upregulation and forced lactate uptake. Our findings show a novel mechanism by which PDAC cells adapt their metabolism to glutamine scarcity and by which they develop resistance against anticancer treatments based on glutamine uptake/metabolism inhibition. Full article
(This article belongs to the Special Issue Redox Homeostasis in Cancers)
Show Figures

Figure 1

22 pages, 4421 KB  
Article
Induction of Reactive Bone Stromal Fibroblasts in 3D Models of Prostate Cancer Bone Metastases
by Louisa C. E. Windus, Nicholas Matigian and Vicky M. Avery
Biology 2023, 12(6), 861; https://doi.org/10.3390/biology12060861 - 15 Jun 2023
Cited by 1 | Viewed by 2634
Abstract
A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. [...] Read more.
A dynamic interplay between prostate cancer (PCa) cells and reactive bone stroma modulates the growth of metastases within the bone microenvironment. Of the stromal cells, metastasis-associated fibroblasts (MAFs) are known to contribute but are the least studied cell type in PCa tumour progression. It is the aim of the current study to establish a biologically relevant 3D in vitro model that mimics the cellular and molecular profiles of MAFs found in vivo. Using 3D in vitro cell culture models, the bone-derived fibroblast cell line, HS-5, was treated with conditioned media from metastatic-derived PCa cell lines, PC3 and MDA-PCa 2b, or mouse-derived fibroblasts 3T3. Two corresponding reactive cell lines were propagated: HS5-PC3 and HS5-MDA, and evaluated for alterations in morphology, phenotype, cellular behaviour, plus protein and genomic profiles. HS5-PC3 and HS5-MDA displayed distinct alterations in expression levels of N-Cadherin, non-functional E-Cadherin, alpha-smooth muscle actin (α-SMA), Tenascin C, and vimentin, along with transforming growth factor receptor expression (TGF β R1 and R2), consistent with subpopulations of MAFs reported in vivo. Transcriptomic analysis revealed a reversion of HS5-PC3 towards a metastatic phenotype with an upregulation in pathways known to regulate cancer invasion, proliferation, and angiogenesis. The exploitation of these engineered 3D models could help further unravel the novel biology regulating metastatic growth and the role fibroblasts play in the colonisation process. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

Back to TopTop