Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,249)

Search Parameters:
Keywords = rat plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

24 pages, 2735 KiB  
Article
Dietary Intake of a Milk Sphingolipid-Rich MFGM/EV Concentrate Ameliorates Age-Related Metabolic Dysfunction
by Richard R. Sprenger, Kat F. Kiilerich, Mikael Palner, Arsênio Rodrigues Oliveira, Mikaël Croyal, Marie S. Ostenfeld, Ann Bjørnshave, Gitte M. Knudsen and Christer S. Ejsing
Nutrients 2025, 17(15), 2529; https://doi.org/10.3390/nu17152529 - 31 Jul 2025
Viewed by 260
Abstract
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly [...] Read more.
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly persons who are unable to adhere to common therapeutic interventions. To address this, we examined the effects of supplementing aged sedentary rats with an MFGM/EV-rich concentrate. Methods/Results: In a 25-week study, 89-week-old male rats received either a milk sphingolipid-rich MFGM/EV concentrate or a control supplement. Analysis of metabolic health using a battery of tests, including MSALL lipidomics of plasma, liver, and other peripheral tissues, revealed that MFGM/EV supplementation promotes accretion of unique sphingolipid signatures, ameliorates ceramide biomarkers predictive of cardiovascular death, and has a general lipid-lowering effect. At the functional level, we find that these health-promoting effects are linked to increased lipoprotein particle turnover, showcased by reduced levels of triglyceride-rich particles, as well as a metabolically healthier liver, assessed using whole-body lipidomic flux analysis. Conclusions: Altogether, our work unveils that MFGM/EV-containing food holds a potential for ameliorating age-related metabolic dysfunction in elderly individuals. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Graphical abstract

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 - 31 Jul 2025
Viewed by 197
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

17 pages, 1315 KiB  
Review
The Shuttling of Methyl Groups Between Folate and Choline Pathways
by Jonathan Bortz and Rima Obeid
Nutrients 2025, 17(15), 2495; https://doi.org/10.3390/nu17152495 - 30 Jul 2025
Viewed by 303
Abstract
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient [...] Read more.
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient diet in rats produces a 31–40% reduction in liver folate content, 50% lower hepatic SAM levels, and a doubling of plasma homocysteine. Similarly, folate deficiency results in decreased total hepatic choline. Thus, sufficient intakes of both folate and choline (or betaine) contribute to safeguarding the methyl balance in the body. A significant amount of choline (as phosphatidylcholine) is produced in the liver via the SAM-dependent phosphatidylethanolamine methyltransferase. Experimental studies using diets deficient in several methyl donors have shown that supplemental betaine was able to rescue not only plasma betaine but also plasma folate. Fasting plasma homocysteine concentrations are mainly determined by folate intake or status, while the effect of choline or betaine on fasting plasma homocysteine is minor. This appears to contradict the finding that approximately 50% of cellular SAM is provided via the betaine-homocysteine methyltransferase (BHMT) pathway, which uses dietary choline (after oxidation to betaine) or betaine to convert homocysteine to methionine and then to SAM. However, it has been shown that the relative contribution of choline and betaine to cellular methylation is better reflected by measuring plasma homocysteine after a methionine load test. Choline or betaine supplementation significantly lowers post-methionine load homocysteine, whereas folate supplementation has a minor effect on post-methionine load homocysteine concentrations. This review highlights the interactions between folate and choline and the essentiality of choline as a key player in C1-metabolism. We further address some areas of interest for future work. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

27 pages, 5430 KiB  
Article
Gene Monitoring in Obesity-Induced Metabolic Dysfunction in Rats: Preclinical Data on Breast Neoplasia Initiation
by Francisco Claro, Joseane Morari, Camila de Angelis, Emerielle Cristine Vanzela, Wandir Antonio Schiozer, Lício Velloso and Luis Otavio Zanatta Sarian
Int. J. Mol. Sci. 2025, 26(15), 7296; https://doi.org/10.3390/ijms26157296 - 28 Jul 2025
Viewed by 302
Abstract
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to [...] Read more.
Obesity and metabolic dysfunction are established risk factors for luminal breast cancer, yet current preclinical models inadequately recapitulate the complex metabolic and immune interactions driving tumorigenesis. To develop and characterize an immunocompetent rat model of luminal breast cancer induced by chronic exposure to a cafeteria diet mimicking Western obesogenic nutrition, female rats were fed a cafeteria diet or standard chow from weaning. Metabolic parameters, plasma biomarkers (including leptin, insulin, IGF-1, adiponectin, and estrone), mammary gland histology, tumor incidence, and gene expression profiles were longitudinally evaluated. Gene expression was assessed by PCR arrays and qPCR. A subgroup underwent dietary reversal to assess the reversibility of molecular alterations. Cafeteria diet induced significant obesity (mean weight 426.76 g vs. 263.09 g controls, p < 0.001) and increased leptin levels without altering insulin, IGF-1, or inflammatory markers. Histological analysis showed increased ductal ectasia and benign lesions, with earlier fibroadenoma and luminal carcinoma development in diet-fed rats. Tumors exhibited luminal phenotype, low Ki67, and elevated PAI-1 expression. Gene expression alterations were time point specific and revealed early downregulation of ID1 and COX2, followed by upregulation of MMP2, THBS1, TWIST1, and PAI-1. Short-term dietary reversal normalized several gene expression changes. Overall tumor incidence was modest (~12%), reflecting early tumor-promoting microenvironmental changes rather than aggressive carcinogenesis. This immunocompetent cafeteria diet rat model recapitulates key metabolic, histological, and molecular features of obesity-associated luminal breast cancer and offers a valuable platform for studying early tumorigenic mechanisms and prevention strategies without carcinogen-induced confounders. Full article
(This article belongs to the Special Issue Genomic Research in Carcinogenesis, Cancer Progression and Recurrence)
Show Figures

Figure 1

22 pages, 2596 KiB  
Article
Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis
by Doha A. Mohamed, Hoda B. Mabrok, Hoda S. El-Sayed, Sherein Abdelgayed and Shaimaa E. Mohammed
Appl. Microbiol. 2025, 5(3), 72; https://doi.org/10.3390/applmicrobiol5030072 - 27 Jul 2025
Viewed by 317
Abstract
Myocardial infarction (MI) is an inflammatory disease responsible for approximately 75% of sudden cardiac deaths. In this study, we aimed to evaluate the cardio-protective influence of microencapsulated probiotic and synbiotic dietary supplements in vivo and in molecular docking studies. MI was induced in [...] Read more.
Myocardial infarction (MI) is an inflammatory disease responsible for approximately 75% of sudden cardiac deaths. In this study, we aimed to evaluate the cardio-protective influence of microencapsulated probiotic and synbiotic dietary supplements in vivo and in molecular docking studies. MI was induced in rats with the injection of isoproterenol (i.p. 67 mg/kg). Plasma lipid profiles and the levels of oxidative stress markers, inflammatory markers, and cardiac enzymes were determined. The expression levels of MMP-7 and IL-1β in the heart muscle were measured. The impact of dietary supplements on fecal bacterial counts was evaluated across all rat groups. A histopathological examination of cardiac tissue was performed. The cardio-protective potential of cyanidin 3-diglucoside 5-glucoside and arabinoxylan was studied using molecular docking. The results demonstrate that all tested dietary supplements induced an improvement in all the biochemical parameters in association with an improvement in myocardial muscle tissue. The mRNA expression levels of MMP-7 and IL-1β were significantly downregulated by all dietary supplements. All dietary supplements increased the fecal counts of probiotic strains. In the molecular docking analysis, cyanidin 3-diglucoside 5-glucoside exhibited binding affinity values of −8.8 and −10 for lactate dehydrogenase (LDH) and Paraoxonase 1 (PON1), respectively. Arabinoxylan showed similar binding affinity (−8.8) for both LDH and PON1. Conclusion: Microencapsulated probiotic and synbiotic dietary supplements demonstrated notable cardio-protective influence in vivo and in molecular docking studies. These supplements may serve as promising candidates for the prevention of myocardial infarction. Full article
Show Figures

Graphical abstract

36 pages, 3579 KiB  
Article
RNA Sequencing Reveals Inflammatory and Metabolic Changes in the Lung and Brain After Carbon Black and Naphthalene Whole Body Inhalation Exposure in a Rodent Model of Military Burn Pit Exposures
by Allison M. Haaning, Brian J. Sandri, Henry L. Wyneken, William T. Goldsmith, Joshua P. Nixon, Timothy R. Nurkiewicz, Chris H. Wendt, Paul Barach, Janeen H. Trembley and Tammy A. Butterick
Int. J. Mol. Sci. 2025, 26(15), 7238; https://doi.org/10.3390/ijms26157238 - 26 Jul 2025
Viewed by 544
Abstract
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. [...] Read more.
Military personnel deployed to Iraq and Afghanistan were exposed to emissions from open-air burn pits, where plastics, metals, and medical waste were incinerated. These exposures have been linked to deployment-related respiratory diseases (DRRD) and may also impact neurological health via the lung–brain axis. To investigate molecular mechanisms, adult male rats were exposed to filtered air, naphthalene (a representative volatile organic compound), or a combination of naphthalene and carbon black (surrogate for particulate matter; CBN) via whole-body inhalation (six hours/day, three consecutive days). Lung, brain, and plasma samples were collected 24 h after the final exposure. Pro-inflammatory biomarkers were assessed using multiplex electrochemiluminescence and western blot. Differentially expressed genes (DEGs) were identified by RNA sequencing, and elastic net modeling was used to define exposure-predictive gene signatures. CBN exposure altered inflammatory biomarkers across tissues, with activation of nuclear factor kappa B (NF-κB) signaling. In the lung, gene set enrichment revealed activated pathways related to proliferation and inflammation, while epithelial–mesenchymal transition (EMT) and oxidative phosphorylation were suppressed. In the brain, EMT, inflammation, and senescence pathways were activated, while ribosomal function and oxidative metabolism were downregulated. Elastic net modeling identified a lung gene signature predictive of CBN exposure, including Kcnq3, Tgfbr1, and Tm4sf19. These findings demonstrate that inhalation of a surrogate burn pit mixture induces inflammatory and metabolic gene expression changes in both lung and brain tissues, supporting the utility of this animal model for understanding systemic effects of airborne military toxicants and for identifying potential biomarkers relevant to DRRD and Veteran health. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 85025 KiB  
Article
Atorvastatin Confers Renoprotection and Modulates Inflammation in Diabetic Rats on a High-Fat Diet
by Minela Aida Maranduca, Andreea Clim, Daniela Maria Tanase, Cristian Tudor Cozma, Mariana Floria, Ioana Adelina Clim, Dragomir Nicolae Serban and Ionela Lacramioara Serban
Life 2025, 15(8), 1184; https://doi.org/10.3390/life15081184 - 25 Jul 2025
Viewed by 342
Abstract
Objective: Uncovering the renoprotective and anti-inflammatory effects of atorvastatin treatment in diabetic-and-obese rats by employing traditional renal function indicators (urea and creatinine) and four prototypical cytokines (IL-1β, il-6, IL-17α, TNFα). Method: Twenty-eight male Wistar rats, aged 6 months, 350–400 g, were randomized into [...] Read more.
Objective: Uncovering the renoprotective and anti-inflammatory effects of atorvastatin treatment in diabetic-and-obese rats by employing traditional renal function indicators (urea and creatinine) and four prototypical cytokines (IL-1β, il-6, IL-17α, TNFα). Method: Twenty-eight male Wistar rats, aged 6 months, 350–400 g, were randomized into four groups. The first group, G-I, the denominated control, were fed standard chow over the whole course of the experiments. The rodents in G-II were exposed to a High-Fat Diet. The last two groups were exposed to Streptozotocin peritoneal injection (35 mg/kg of body weight). A short biochemical assessment was performed before diabetes model induction to ensure appropriate glucose metabolism before experiments. Following model induction, only rodents in group G-IV were gradually introduced to the same High-Fat Diet as received by G-II. Model confirmation 10 days after injections marked the start of statin treatment in group G-IV, by daily gavage of atorvastatin 20 mg/kg of body weight/day for 21 days. At the end of the experiments, the biochemical profile of interest comprised typical renal retention byproducts (urea and creatinine) and the inflammatory profile described using plasma levels of TNFα, IL-17α, IL-6, and IL-1β. Results: Treatment with Atorvastatin was associated with a statistically significant improvement in renal function in G-IV compared to untreated diabetic rodents in G-III. Changes in inflammatory activity showed partial association with statin therapy, TNFα and IL-17α mirroring the trend in urea and creatinine values. Conclusions: Our results indicate that atorvastatin treatment yields a myriad of pleiotropic activities, among which renal protection was clearly demonstrated in this model of diabetic-and-obese rodents. The statin impact on inflammation regulation may not be as clear-cut, but the potential synergy of renal function preservation and partial tapering of inflammatory activity requires further research in severely metabolically challenged models. Full article
Show Figures

Figure 1

14 pages, 2141 KiB  
Article
The Pharmacokinetic and Pharmacodynamic Relationship of Clinically Used Antiseizure Medications in the Maximal Electroshock Seizure Model in Rodents
by Luis Bettio, Girish Bankar, Celine M. Dubé, Karen Nelkenbrecher, Maja Filipovic, Sarbjot Singh, Gina DeBoer, Stephanie Lee, Andrea Lindgren, Luis Sojo, Richard Dean, James P. Johnson and Nina Weishaupt
Int. J. Mol. Sci. 2025, 26(15), 7029; https://doi.org/10.3390/ijms26157029 - 22 Jul 2025
Viewed by 311
Abstract
The assessment of the efficacy of antiseizure medications (ASMs) in animal models of acute seizures has played a critical role in these drugs’ success in clinical trials for human epilepsy. One of the most widely used animal models for this purpose is the [...] Read more.
The assessment of the efficacy of antiseizure medications (ASMs) in animal models of acute seizures has played a critical role in these drugs’ success in clinical trials for human epilepsy. One of the most widely used animal models for this purpose is the maximal electroshock seizure (MES) model. While there are numerous published reports on the efficacy of conventional ASMs in MES models, there is a need to expand the understanding on the brain concentrations that are needed to achieve optimal levels of efficacy in this model. We assessed the pharmacokinetic/pharmacodynamic (PK/PD) profiles of six ASMs, namely carbamazepine (CBZ), phenytoin (PHT), valproic acid (VPA), lacosamide (LSM), cenobamate (CNB), and retigabine (RTG), using MES models in mice and rats. EC50 values for plasma and the brain were generally higher in mice than rats, with fold differences ranging from 1.3- to 8.6-fold for plasma and from 1.2- to 11.5-fold for brain. Phenytoin showed the largest interspecies divergence. These results suggest that rats may exhibit greater sensitivity to seizure protection in the MES model, likely reflecting species differences in metabolism and brain penetration. These findings highlight the value of considering concentration–response variations and species-specific differences when assessing the efficacy of both conventional ASMs and novel compounds exhibiting anticonvulsant activity. Full article
(This article belongs to the Special Issue Epilepsy Research and Antiepileptic Drugs, 2nd Edition)
Show Figures

Figure 1

24 pages, 1438 KiB  
Article
Neonatal Handling Positively Modulates Anxiety, Sensorimotor Gating, Working Memory, and Cortico-Hippocampal Neuroplastic Adaptations in Two Genetically Selected Rat Strains Differing in Emotional and Cognitive Traits
by Cristóbal Río-Álamos, Maria P. Serra, Francesco Sanna, Maria A. Piludu, Marianna Boi, Toni Cañete, Daniel Sampedro-Viana, Ignasi Oliveras, Adolf Tobeña, Maria G. Corda, Osvaldo Giorgi, Alberto Fernández-Teruel and Marina Quartu
Brain Sci. 2025, 15(8), 776; https://doi.org/10.3390/brainsci15080776 - 22 Jul 2025
Viewed by 365
Abstract
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene [...] Read more.
Background/Objectives: The bidirectional selection of the Roman low- (RLA) and Roman high-avoidance (RHA) rat strains for extremely slow vs. very rapid acquisition of the two-way (shuttle-box) avoidance response has generated two divergent phenotypic profiles: RHA rats exhibit a behavioural pattern and gene expression profile in the frontal cortex and hippocampus (HPC) that are relevant to social and attentional/cognitive schizophrenia-linked symptoms; on the other hand, RLA rats display phenotypic traits linked to increased anxiety and sensitivity to stress-induced depression-like behaviours. The present studies aimed to evaluate the enduring and potentially positive effects of neonatal handling-stimulation (NH) on the traits differentiating these two strains of rats. Methods: We evaluated the effects of NH on anxious behaviour, prepulse inhibition of startle (PPI), spatial working memory, and hormone responses to stress in adult rats of both strains. Furthermore, given the proposed involvement of neuronal/synaptic plasticity and neurotrophic factors in the development of anxiety, stress, depression, and schizophrenia-related symptoms, using Western blot (WB) we assessed the effects of NH on the content of brain-derived neurotrophic factor (BDNF), its trkB receptor and Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the prefrontal cortex (PFC), anterior cingulate cortex (ACg), ventral (vHPC), and dorsal (dHPC) hippocampus of adult rats from both strains. Results: NH increased novelty-induced exploration and reduced anxiety, particularly in RLA rats, attenuated the stress-induced increment in corticosterone and prolactin plasma levels, and improved PPI and spatial working memory in RHA rats. These effects correlated to long-lasting increases of BDNF and PSA-NCAM content in PFC, ACg, and vHPC. Conclusions: Collectively, these findings show enduring and distinct NH effects on neuroendocrine and behavioural and cognitive processes in both rat strains, which may be linked to neuroplastic and synaptic changes in the frontal cortex and/or hippocampus. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

18 pages, 2355 KiB  
Article
Preventive Gastroprotective Effect of a Functional Food Based on Quinoa (Chenopodium quinoa Willd.) and Quercetin in a Murine Model of Ibuprofen-Induced Gastric Damage
by Maribel Valenzuela-González, José Luis Cárdenas-López, Armando Burgos-Hernández, Norma Julieta Salazar-López, Manuel Viuda-Martos, Mónica A. Villegas-Ochoa, Gustavo Martínez-Coronilla, J. Abraham Domínguez-Avila, Shela Gorinstein, Gustavo A. González-Aguilar and Rosario Maribel Robles-Sánchez
Antioxidants 2025, 14(7), 893; https://doi.org/10.3390/antiox14070893 - 21 Jul 2025
Viewed by 423
Abstract
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, [...] Read more.
Nonsteroidal anti-inflammatory drug-based therapies are the cause of 20–30% cases of gastric lesions in chronic users worldwide. Co-medication with omeprazole (OMP) is the most commonly used option to prevent these lesions, although this carries risks of its own; thus, alternatives are being explored, such as dietary antioxidant therapies. The objective of this study was to evaluate the gastroprotective activity of quinoa (Chenopodium quinoa Willd.) on ibuprofen (IBP)-induced gastric ulcers in a rat model. Quinoa cookies were formulated with heat-treated quinoa using microwave radiation. The intestinal bioaccessibility of phenols and flavonoids, and the antioxidant activity of microwaved quinoa cookies (MQCs) were notably higher than quinoa cookies without thermal treatment (RQCs): 132% TPC, 52% TFC, 1564% TEAC vs. 67% TPC, 24% TFC, and 958% TEAC, respectively. Basal diets were supplemented with MQCs (20%) and quercetin (Q, 0.20%) as a reference flavonoid and administered for 30 days. Gastric lesions were induced by intragastric IBP doses, with OMP treatment as a positive control. Gastric damage index (macroscopic study), histological score (microscopic study), and plasma antioxidant enzyme activity (SOD and CAT) were evaluated. Macroscopic results showed that the addition of MQCs, Q, and OMP decreased the gastric damage index (GDI) by 50%, 40%, and 3%, respectively, as compared to IBP (GDI 100%). Histological analyses showed neutrophil infiltration and congested blood vessels in IBP-treated tissues; in contrast, the experimental diet groups showed lower infiltration for MQC > OMP > Q, respectively. A significant increase in SOD and CAT enzyme activity was observed in the MQC and Q groups as compared to the IBP group. We conclude that a reduction in the GDI and histological score was observed in IBP-induced murine models fed diets containing 20% MQC and 0.20% Q, demonstrating a preventive gastroprotective effect. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

21 pages, 3324 KiB  
Article
Curcumin and Papain-Loaded Liposomal Natural Latex Dressings with Phototherapy: A Synergistic Approach to Diabetic Wound Healing
by Franciéle M. Silva, Jaqueline R. Silva, Wellington Rodrigues, Breno A. S. M. Sousa, Thamis F. S. Gomes, Mario F. F. Rosa, Suélia S. R. F. Rosa and Marcella L. B. Carneiro
Pharmaceuticals 2025, 18(7), 1067; https://doi.org/10.3390/ph18071067 - 20 Jul 2025
Viewed by 515
Abstract
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated [...] Read more.
Background: Wound healing in diabetic individuals is a prolonged process, often complicated by infections and impaired tissue regeneration. Innovative strategies combining natural bioactive compounds are needed to enhance repair. Methods: This study reports the development and characterization of natural latex-based biomembranes (NLBs) incorporated with liposome-encapsulated curcumin and papain. The therapeutic efficacy of these composite dressings, in combination with red light-emitting diode (LED) phototherapy, was evaluated in a diabetic rat model. NLBs were produced by blending natural latex with multilamellar liposomes containing either curcumin, papain, or both. In vivo wound healing was assessed by applying the biomembranes to the dorsal lesions and administering red LED irradiation (650 ± 20 nm, 10 min every 48 h) over 11 days. Results: Fourier transform infrared spectroscopy (FTIR) confirmed that the integration of liposomes did not induce significant chemical alterations to the latex matrix. The treated diabetic rats exhibited enhanced wound contraction, with the curcumin and papain groups demonstrating up to 99% and 95% healing, respectively. Plasma fructosamine levels were significantly reduced (p < 0.05), indicating improved glycemic control. Conclusions: Combining NLBs with bioactive-loaded liposomes and phototherapy accelerated wound healing in diabetic rats. This multifunctional platform shows promise for the treatment of chronic wounds in diabetic patients. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

12 pages, 805 KiB  
Communication
Longitudinal Dysregulation of Adiponectin and Leptin Following Blast-Induced Polytrauma in a Rat Model
by Rex Jeya Rajkumar Samdavid Thanapaul, Manoj Govindarajulu, Chetan Pundkar, Gaurav Phuyal, Ondine Eken, Joseph B Long and Peethambaran Arun
Int. J. Mol. Sci. 2025, 26(14), 6860; https://doi.org/10.3390/ijms26146860 - 17 Jul 2025
Viewed by 235
Abstract
Blast-induced polytrauma (BIPT) is a common injury among military personnel exposed to explosive blasts. It is increasingly recognized as a complex, multisystem disorder that extends beyond neurological damage to include systemic metabolic and inflammatory dysfunction. Adipokines, particularly leptin and adiponectin, are hormones secreted [...] Read more.
Blast-induced polytrauma (BIPT) is a common injury among military personnel exposed to explosive blasts. It is increasingly recognized as a complex, multisystem disorder that extends beyond neurological damage to include systemic metabolic and inflammatory dysfunction. Adipokines, particularly leptin and adiponectin, are hormones secreted by adipose tissue and are emerging as key mediators in the pathophysiology of traumatic brain injuries. Yet, their long-term dynamics following blast exposure remain unclear. This study investigated the temporal profiles of plasma leptin and adiponectin in a longitudinal rat model of BIPT. Adult male Sprague Dawley rats were subjected to either a single (B) or repeated (BB) blast exposure (20 psi) or served as sham controls. Plasma samples were collected at 24 h, 1 month, 6 months, and 12 months post-exposure, and adipokine levels were measured using Enzyme-linked Immunosorbent Assay. Adiponectin levels exhibited a biphasic response: both B and BB groups showed significant early decrease at 24 h and 1 month compared to sham animals, followed by robust elevation at 6 and 12 months, particularly in the repeated blast group. In contrast, leptin levels remained unchanged acutely but rose significantly at 6 and 12 months post-blast, with the BB group again showing the highest levels. These patterns indicate sustained, exposure-dependent dysregulation of adipokine signaling after blast trauma. The study provides the first longitudinal profile of systemic adipokine responses to BIPT, revealing their potential as accessible biomarkers and therapeutic targets. These findings support a model of chronic metabolic and inflammatory imbalance in BIPT and warrant further investigation in human cohorts and mechanistic studies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

26 pages, 6652 KiB  
Article
Platelet-Rich Plasma (PRP) Mitigates Silver Nanoparticle (AgNP)-Induced Pulmonary Fibrosis via iNOS/CD68/CASP3/TWIST1 Regulation: An Experimental Study and Bioinformatics Analysis
by Shaimaa R. Abdelmohsen, Ranya M. Abdelgalil, Asmaa M. Elmaghraby, Amira M. Negm, Reham Hammad, Eleni K. Efthimiadou, Sara Seriah, Hekmat M. El Magdoub, Hemat Elariny, Islam Farrag, Nahla El Shenawy, Doaa Abdelrahaman, Hussain Almalki, Ahmed A. Askar, Marwa M. El-Mosely, Fatma El Zahraa Abd El Hakam and Nadia M. Hamdy
Int. J. Mol. Sci. 2025, 26(14), 6782; https://doi.org/10.3390/ijms26146782 - 15 Jul 2025
Viewed by 408
Abstract
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has [...] Read more.
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has demonstrated effectiveness in numerous disease areas, its impact on pulmonary fibrosis (PF) caused by silver nanoparticles (AgNPs) via its antiapoptotic effects remains to be explored. AgNPs were synthesized biologically by Bacillus megaterium ATCC 55000. AgNP characterization was carried out via UV–Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) imaging to reveal monodispersed spheres with a mean diameter of 45.17 nm. A total of 48 male Wistar rats divided into six groups, with 8 rats per group, were used in the current study on the basis of sample size and power. The groups used were the PRP donor, control, AgNP, AgNP + PRP, AgNP + dexamethasone (Dexa) rat groups, and a recovery group. Body weights, hydroxyproline (HP) levels, and CASP3 and TWIST1 gene expression levels were assessed. H&E and Sirius Red staining were performed. Immunohistochemical studies for inducible nitric oxide synthase (iNOS) and cluster of differentiation 68 (CD68) with histomorphometry were conducted. A significant reduction in body weight (BWt) was noted in the AgNP group compared with the AgNP + PRP group (p < 0.001). HP, CASP3, and TWIST1 expression levels were significantly increased by AgNPs but decreased upon PRP (p < 0.001) treatment. Compared with those in the control group, the adverse effects of AgNPs included PF, lung alveolar collapse, thickening of the interalveolar septa, widespread lymphocytic infiltration, increased alveolar macrophage CD68 expression, and iNOS positivity in the cells lining the alveoli. This work revealed that PRP treatment markedly improved the histopathological and immunohistochemical findings observed in the AgNP group in a manner comparable to that of the Dexa. In conclusion, these results demonstrated the therapeutic potential of PRP in a PF rat model induced via AgNPs. This study revealed that PRP treatment significantly improved the histopathological and immunohistochemical alterations observed in the AgNP-induced group, with effects comparable to those of the Dexa. In conclusion, these findings highlight the therapeutic potential of PRP in a rat model of AgNP-induced PF. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

19 pages, 2622 KiB  
Article
Three-Compartment Pharmacokinetics of Inhaled and Injected Sinapine Thiocyanate Manifest Prolonged Retention and Its Therapeutics in Acute Lung Injury
by Zixin Li, Caifen Wang, Huipeng Xu, Qian Wu, Ningning Peng, Lu Zhang, Hui Wang, Li Wu, Zegeng Li, Qinjun Yang and Jiwen Zhang
Pharmaceutics 2025, 17(7), 909; https://doi.org/10.3390/pharmaceutics17070909 - 14 Jul 2025
Viewed by 411
Abstract
Background: Acute lung injury (ALI) is driven by inflammatory cascades and reactive oxygen species (ROS) generation, with the progression to severe cases markedly increasing mortality. Sinapine thiocyanate (ST), a bioactive natural compound isolated from Sinapis Semen Albae (SSA), demonstrates both anti-inflammatory and [...] Read more.
Background: Acute lung injury (ALI) is driven by inflammatory cascades and reactive oxygen species (ROS) generation, with the progression to severe cases markedly increasing mortality. Sinapine thiocyanate (ST), a bioactive natural compound isolated from Sinapis Semen Albae (SSA), demonstrates both anti-inflammatory and antioxidant pharmacological activities. However, no monotherapeutic formulation of ST has been developed to date. A dry powder inhaler (DPI) enables targeted pulmonary drug delivery with excellent stability profiles and high inhalation efficiency. Methods: ST was purified and prepared as inhalable dry powder particles via an antisolvent crystallization technique. The therapeutic mechanisms of ST against ALI were elucidated by network pharmacology and pharmacokinetic analyses, with the therapeutic efficacy of the ST DPI in ALI mitigation being validated using LPS-induced rat models. Results: The ST DPI showed ideal aerodynamic characteristics. Notably, ST exhibited a three-compartment (triexponential) pharmacokinetic profile following both intravenous tail vein injection and inhalation administration. Furthermore, the inhaled formulation displayed a prolonged systemic residence time, which confers therapeutic advantages for pulmonary disease management. Furthermore, the inhalation administration of ST demonstrated a 2.7-fold increase in AUC compared with oral gavage, with a corresponding enhancement in systemic exposure. The ST DPI formulation demonstrated significant therapeutic efficacy against ALI in rats by downregulating inflammatory cytokines and modulating oxidative stress levels, mechanistically achieved through the MAPK-mediated regulation of cellular apoptosis via a positive feedback loop. Conclusions: The unique triexponential plasma level profiles of an ST DPI provide a promising pharmacokinetics-based therapeutic strategy for ALI, leveraging its marked efficacy in attenuating inflammation, oxidative stress, and pulmonary injury. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

Back to TopTop