Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Animals’ Diet
2.4. Extraction of Anthocyanin-Rich Extract from Red Cabbage
Total Phenolic, Total Flavonoid, and Total Anthocyanin Content Determination in Anthocyanin-Rich Extract
2.5. Bacterial Strains
2.6. Preparation of Different Probiotic and Synbiotic Dietary Supplements as Encapsulated Powders
2.6.1. The Encapsulated Synbiotic Containing Anthocyanin-Rich Extract of Red Cabbage (Synbiotic I) Dietary Supplement
2.6.2. The Encapsulated Synbiotic Containing Psyllium Husk (Synbiotic II) Dietary Supplement
2.6.3. The Encapsulated Probiotic Dietary Supplement
2.6.4. Studying the Cardio-Protective Influence of Encapsulated Probiotic and Synbiotic Dietary Supplements in Rat Model of Myocardial Infarction
2.6.5. Evaluation of MMP-7 and IL-1β Gene Expression in Normal and Myocardial Rats
2.7. The Microbiological Load in Fecal Samples of Different Groups
2.8. Molecular Docking Study of Cyanidin 3-Diglucoside 5-Glucoside and Arabinoxylan with Lactate Dehydrogenase (LDH) and Paraoxonase 1 (PON1)
2.9. Statistical Analysis
3. Results
3.1. Total Phenolic, Total Flavonoid, and Total Anthocyanin Content in Anthocyanin-Rich Extract
3.2. Biochemical Analyses
3.3. Impact of MI and Different Dietary Supplements on Nutritional Parameters
3.4. Impact of MI and Different Treatments on the Gene Expression of MMP-7 and IL-1β Gene in Heart Tissues
3.5. The Microbiological Counts in Fecal Samples of Different Experimental Groups
3.6. Histopathological Studies of Cardiac Tissue
3.7. Molecular Docking Study of Arbinoxylane and Cyanidin 3-Diglucoside 5-Glucoside with Lactate Dehydrogenase (LDH) and Paraoxonase 1 (PON1)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Cardiovascular Diseases (CVDs). 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 June 2021).
- Bonab, S.F.; Tahmasebi, S.; Ghafouri-Fard, S.; Eslami, S. Preventive impact of probiotic supplements on heart injury and inflammatory indices in a rat model of myocardial infarction: Histopathological and gene expression evaluation. APMIS 2025, 133, e13479. [Google Scholar] [CrossRef]
- Shi, H.-T.; Huang, Z.-H.; Xu, T.-Z.; Sun, A.-J.; Ge, J.-B. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 2022, 78, 103968. [Google Scholar] [CrossRef]
- Mu, F.; Zhao, J.; Zhao, M.; Lin, R.; Liu, K.; Zhao, S.; Tao, X.; Li, W.; Dai, Q.; Xi, M.; et al. Styrax (Liquidambar orientalis Mill.) promotes mitochondrial function and reduces cardiac damage following myocardial ischemic injury: The role of the AMPK-PGC1α signaling pathway. Pharm. Pharmacol. 2023, 75, 1496–1508. [Google Scholar] [CrossRef]
- Xu, H.; Yang, F.; Bao, Z. Gut microbiota and myocardial fibrosis. Eur. J. Pharmacol. 2023, 940, 175355. [Google Scholar] [CrossRef]
- Pereira, B.L.B.; Rodrigue, A.; Arruda, F.C.d.O.; Bachiega, T.F.; Lourenço, M.A.M.; Correa, C.R.; Azevedo, P.S.; Polegato, B.F.; Okoshi, K.; Fernandes, A.A.H.; et al. Spondias mombin L. attenuates ventricular remodelling after myocardial infarction associated with oxidative stress and inflammatory modulation. J. Cell. Mol. Med. 2020, 24, 7862–7872. [Google Scholar] [CrossRef]
- Pavithra, K.; Uddandrao, V.V.S.; Chandrasekaran, P.; Brahmanaidu, P.; Sengottuvelu, S.; Vadivukkarasi, S.; Saravanan, G. Phenolic fraction extracted from Kedrostis foetidissima leaves ameliorated isoproterenol-induced cardiotoxicity in rats through restoration of cardiac antioxidant status. J. Food Biochem. 2020, 44, e13450. [Google Scholar] [CrossRef]
- Palhares, R.M.; Drummond, M.G.; Brasil, B.; Cosenza, G.P.; Brandão, M.D.G.L.; Oliveira, G. Medicinal plants recommended by the world health organization: DNA barcode identification associated with chemical analyses guarantees their quality. PLoS ONE 2015, 10, e0127866. [Google Scholar] [CrossRef]
- Doha, M.; Hoda, M.; Sherein, A.; Hagar, E. Cardio-protective potency of anthocyanin-rich extract of red cabbage against isoproterenol-induced myocardial infarction in experimental animals. J. Appl. Pharm. Sci. 2021, 11, 22–30. [Google Scholar] [CrossRef]
- Jana, S.; Patel, D.; Patel, S.; Upadhyay, K.; Thadani, J.; Mandal, R.; Das, S.; Devkar, R.; Yenugu, S. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. PLoS ONE 2017, 12, e0182137. [Google Scholar] [CrossRef]
- Xu, S.; Cai, Y.; Hu, H.; Zhai, C. Correlation of visceral adiposity index and dietary profile with cardiovascular disease based on decision tree modeling: A cross-sectional study of NHANES. Eur. J. Med. Res. 2025, 30, 123. [Google Scholar] [CrossRef]
- Shivakoti, R.; Biggs, M.L.; Djoussé, L.; Durda, P.J.; Kizer, J.R.; Psaty, B.; Reiner, A.P.; Tracy, R.P.; Siscovick, D.; Mukamal, K.J. Intake and sources of dietary fiber, inflammation, and cardiovascular disease in older US adults. JAMA Netw. Open 2022, 5, e225012. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Z. Association of Dietary Fiber Intake with Myocardial Infarction and Stroke Events in US Adults: A Cross-Sectional Study of NHANES 2011–2018. Front. Nutr. 2022, 9, 936926. [Google Scholar] [CrossRef]
- Bakr, A.F.; Farag, M.A. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS Omega 2023, 8, 24680–24694. [Google Scholar] [CrossRef]
- Waleed, M.; Saeed, F.; Afzaal, M.; Niaz, B.; Raza, M.A.; Hussain, M.; Tufail, T.; Rasheed, A.; Ateeq, H.; Al Jbawi, E. Structural and nutritional properties of psyllium husk arabinoxylans with special reference to their antioxidant potential. Int. J. Food Prop. 2022, 25, 2505–2513. [Google Scholar] [CrossRef]
- Tong, T.Y.N.; Appleby, P.N.; Key, T.J.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; Katzke, V.; Kühn, T.; Boeing, H.; et al. The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: A prospective study of 418,329 participants in the epic cohort across nine European Countries. Eur. Heart J. 2020, 41, 2632–2640. [Google Scholar] [CrossRef]
- Das, S.; Khanna, C.; Singh, S.; Nandi, S.; Verma, R. Impact of human microbiome on health. In Microbial Diversity, Interventions and Scope; Springer: Singapore, 2020; pp. 349–373. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.-W.; et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 2020, 69, 283–294. [Google Scholar] [CrossRef]
- Ma, J.; Hong, Y.; Zheng, N.; Xie, G.; Lyu, Y.; Gu, Y.; Xi, C.; Chen, L.; Wu, G.; Li, Y.; et al. Gut microbiota remodeling reverses aging-associated inflammation and dysregulation of systemic bile acid homeostasis in mice sex-specifically. Gut Microbes 2020, 11, 1450–1474. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Li, B.; Luo, Y.; Gong, Y.; Jin, X.; Zhang, J.; Zhou, Y.; Zhuo, X.; Wang, Z.; et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc. Res. 2022, 118, 785–797. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary fiber modulates the gut microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Lai, H.; Li, Y.; He, Y.; Chen, F.; Mi, B.; Li, J.; Xie, J.; Ma, G.; Yang, J.; Xu, K.; et al. Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: A double-blinded randomized placebo trial. Gut Microbes 2023, 15, 2197837. [Google Scholar] [CrossRef]
- El-Sayed, A.; Aleya, L.; Kamel, M. Microbiota’s role in health and diseases. Environ. Sci. Pollut. Res. 2021, 28, 36967–36983. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, W.; Lu, H.; Shan, A.; Zhang, Q.; Sun, X.; Kang, L.; Xie, J.; Xu, B. High fiber diet attenuate the inflammation and adverse remodeling of myocardial infarction via modulation of gut microbiota and metabolites. Front. Microbiol. 2022, 21, 1046912. [Google Scholar] [CrossRef]
- Gan, X.T.; Ettinger, G.; Huang, C.X.; Burton, J.P.; Haist, J.V.; Rajapurohitam, V.; Sidaway, J.E.; Martin, G.; Gloor, G.B.; Swann, J.R.; et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ. Heart Fail. 2014, 7, 491–499. [Google Scholar] [CrossRef]
- Mansuri, N.M.; Mann, N.K.; Rizwan, S.; E Mohamed, A.; E Elshafey, A.; Khadka, A.; Mosuka, E.M.; Thilakarathne, K.N.; Mohammed, L. Role of Gut Microbiome in Cardiovascular Events: A Systematic Review. Cureus 2022, 14, e32465. [Google Scholar] [CrossRef]
- Shen, R.; Chen, S.; Lei, W.; Shen, J.; Lv, L.; Wei, T. Nonfood Probiotic, Prebiotic, and Synbiotic Use Reduces All-Cause and Cardiovascular Mortality Risk in Older Adults: A Population-Based Cohort Study. J. Nutr. Health Aging 2023, 27, 391–397. [Google Scholar] [CrossRef]
- Zheng, D.; Li, R.; An, J.; Xie, T.; Han, Z.; Xu, R.; Fang, Y.; Zhang, X. Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer. Adv. Mater. 2020, 32, e2004529. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Sun, H.; He, S.; Liu, S.; Zhang, T.; Wang, L.; Ma, G. Research progress of anthocyanin prebiotic activity: A review. Phytomedicine 2022, 102, 154145. [Google Scholar] [CrossRef]
- Gu, Q.; Yin, Y.; Yan, X.; Liu, X.; Liu, F.; McClements, D.J. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv. Colloid Interface Sci. 2022, 309, 102781. [Google Scholar] [CrossRef]
- Abdallah, A.A.M.; El-Deen, N.A.M.N.; Neamat-Allah, A.N.F.; El-Aziz, H.I.A. Evaluation of the hematoprotective and hepato-renal protective effects of Thymus vulgaris aqueous extract on thermally oxidized oil-induced hematotoxicity and hepato-renal toxicity. Comp. Clin. Pathol. 2020, 29, 451–461. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American institute of nutrition Ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Mahmud, S.; Khan, S.; Khan, M.R.; Islam, J.; Sarker, U.K.; Hasan, G.M.M.A.; Ahmed, M. Viability and stability of microencapsulated probiotic bacteria by freeze-drying under in vitro gastrointestinal conditions. J. Food Process. Preserv. 2022, 46, e17123. [Google Scholar] [CrossRef]
- Garson, C.; Kelly-Laubscher, R.; Blackhurst, D.; Gwanyanya, A. Lack of cardioprotection by single-dose magnesium prophylaxis on isoprenaline-induced myocardial infarction in adult Wistar rats. Cardiovasc. J. Afr. 2015, 26, 242–249. [Google Scholar] [CrossRef]
- Bais, R.; Philcox, M. Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (l-Lactate: NAD+Oxidoreductase, EC 1.1.1.27). International Federation of Clinical Chemistry (IFCC) . Eur. J. Clin. Chem. Clin. Biochem. 1994, 32, 639–655. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Fiolet, J.; Willebrands, A.; Lie, K.; Ter Welle, H. Determination of creatine kinase isoenzyme MB (CK-MB): Comparison of methods and clinical evaluation. Clin. Chim. Acta 1977, 80, 23–35. [Google Scholar] [CrossRef]
- Bartles, H.; Bohmer, M.; Heierli, C. Serum creatinine determination without protein precipitation. Clin. Chim. Acta 1972, 37, 193–197. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Suvarna, K.; Layton, C. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Elsevier: London, UK, 2012; ISBN 978-0-7020-5032-9. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Deschner, J.; Rath-Deschner, B.; Agarwal, S. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthr. Cartil. 2006, 14, 264–272. [Google Scholar] [CrossRef]
- Khan, H.; Abdelhalim, M.; Alhomida, A.; Al Ayed, M. Transient increase in IL-1β, IL-6 and TNF-α gene expression in rat liver exposed to gold nanoparticles. Genet. Mol. Res. 2013, 12, 5851–5857. [Google Scholar] [CrossRef]
- IDF Standard No. 149A; Dairy Starter Cultures of Lactic Acid Bacteria (LAB) Standard of Identity. International Dairy Federation (IDF): Brussels, Belgium, 1997.
- American Public Health Association (APHA). Standard Methods for Examination of Dairy Products, 16th ed.; American Public Health Association: Washington, DC, USA, 1994. [Google Scholar]
- Food and Drug Administration (FDA). Bacteriological Analytical Manual, 9th ed.; AOAC International: Arlington, VA, USA, 2002.
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio. Client, version 20.1; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2020. [Google Scholar]
- Gan, Z.H.; Cheong, H.C.; Tu, Y.-K.; Kuo, P.-H. Association between Plant-Based Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 3952. [Google Scholar] [CrossRef]
- Nestel, P.J.; Mori, T.A. Dietary patterns, dietary nutrients and cardiovascular disease. Rev. Cardiovasc. Med. 2022, 23, 17. [Google Scholar] [CrossRef]
- Honerlaw, J.P.; Ho, Y.-L.; Nguyen, X.-M.T.; Cho, K.; Vassy, J.L.; Gagnon, D.R.; O’DOnnell, C.J.; Gaziano, J.M.; Wilson, P.W.; Djousse, L. Fried food consumption and risk of coronary artery disease: The Million Veteran Program. Clin. Nutr. 2020, 39, 1203–1208. [Google Scholar] [CrossRef]
- Dianita, R.; Jantan, I.; Amran, A.Z.; Jalil, J. Protective Effects of Labisiapumila var. Alata on Biochemical and Histopathological Alterations of Cardiac Muscle Cells in Isoproterenol-Induced Myocardial Infarction Rats. Molecules 2015, 20, 4746–4763. [Google Scholar] [CrossRef]
- Iftikhar, F.; Tauqeer, S.; Farhat, S.; Orakzai, M.; Naz, R.; Rehman, A. Common Risk Factors Involved in the Development of Myocardial Infarction in Adults Younger Than 45 Years of Age. J. Ayub Med Coll. Abbottabad 2022, 34, S995–S999. [Google Scholar] [CrossRef]
- Nowowiejska-Wiewióra, A.; Wita, K.; Mędrala, Z.; Tomkiewicz-Pająk, L.; Bujak, K.; Mizia-Stec, K.; Brzychczy, P.; Gąsior, M.; Gąsior, Z.; Kulbat, A.; et al. Dyslipidemia treatment and attainment of LDL-cholesterol treatment goals in patients participating in the Managed Care for Acute Myocardial Infarction Survivors program. Kardiol. Pol. 2023, 81, 359–365. [Google Scholar] [CrossRef]
- Duchowicz, P.R.; Szewczuk, N.A.; Pomilio, A.B. QSAR studies of the antioxidant activity of anthocyanins. J. Food Sci. Technol. 2019, 56, 5518–5530. [Google Scholar] [CrossRef]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Mohamed, R.S.; Fouda, K. Anti-inflammatory potential of chia seeds oil and mucilage against adjuvant induced arthritis in obese and non-obese rats. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190236. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Mohammed, S.E.; Hamed, I.M. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. J. Herbmed Pharmacol. 2022, 11, 83–90. [Google Scholar] [CrossRef]
- Derbali, A.; Mnafgui, K.; Affes, M.; Derbali, F.; Hajji, R.; Gharsallah, N.; Allouche, N.; El Feki, A. Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: A biochemical and electrocardiographic study. J. Physiol. Biochem. 2015, 71, 281–288. [Google Scholar] [CrossRef]
- Shikalgar, T.S.; Naikwade, N.S. Evaluation of cardioprotective activity of fulvic acid against isoproterenol induced oxidative damage in rat cardium. Int. Res. J. Pharm. 2018, 9, 71–80. [Google Scholar] [CrossRef]
- Rebello, C.J.; O’Neil, C.E.; Greenway, F.L. Dietary fiber and satiety: The effects of oats on satiety. Nutr. Rev. 2016, 74, 131–147. [Google Scholar] [CrossRef]
- Lindner, D.; Zietsch, C.; Becher, P.M.; Schulze, K.; Schultheiss, H.-P.; Tschöpe, C.; Westermann, D. Differential Expression of Matrix Metalloproteases in Human Fibroblasts with Different Origins. Biochem. Res. Int. 2012, 2012, 875742. [Google Scholar] [CrossRef]
- Tanase, D.M.; Valasciuc, E.; Anton, I.-B.; Gosav, E.M.; Dima, N.; Cucu, A.I.; Costea, C.F.; Floria, D.E.; Hurjui, L.L.; Tarniceriu, C.C.; et al. Matrix Metalloproteinases: Pathophysiologic Implications and Potential Therapeutic Targets in Cardiovascular Disease. Biomolecules 2025, 15, 598. [Google Scholar] [CrossRef]
- DeLeon-Pennell, K.Y.; Meschiari, C.A.; Jung, M.; Lindsey, M.L. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog. Mol. Biol. Transl. Sci. 2017, 147, 75–100. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- El-Sayed, H.S.; El-Sayed, S.M.; Youssef, A.M. Designated functional microcapsules loaded with green synthesis selenium nanorods and probiotics for enhancing stirred yogurt. Sci. Rep. 2022, 12, 14751. [Google Scholar] [CrossRef]
- El Sayed, H.S.; Mabrouk, A.M. Encapsulation of probiotics using mixed sodium alginate and rice flour to enhance their survivability in simulated gastric conditions and in UF-Kariesh cheese. Biocatal. Agric. Biotechnol. 2023, 50, 102738. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S.; Youssef, A.M. Recent developments in encapsulation techniques for innovative and high-quality dairy products: Demands and challenges. Bioact. Carbohydr. Diet. Fibre 2024, 31, 100406. [Google Scholar] [CrossRef]
- Pan, P.; Lam, V.; Salzman, N.; Huang, Y.-W.; Yu, J.; Zhang, J.; Wang, L.-S. Black raspberries and their anthocyanin and fiber fractions alter the composition and diversity of gut microbiota in F-344 rats. Nutr. Cancer 2017, 69, 943–951. [Google Scholar] [CrossRef]
- Jalanka, J.; Major, G.; Murray, K.; Singh, G.; Nowak, A.; Kurtz, C.; Silos-Santiago, I.; Johnston, J.M.; de Vos, W.M.; Spiller, R. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int. J. Mol. Sci. 2019, 20, 433. [Google Scholar] [CrossRef]
- Aravind, S.M.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Martellet, M.C.; Majolo, F.; Ducati, R.G.; de Souza, C.F.V.; Goettert, M.I. Probiotic applications associated with Psyllium fiber as prebiotics geared to a healthy intestinal microbiota: A review. Nutrition 2022, 103, 111772. [Google Scholar] [CrossRef]
- Seke, F.; Manhivi, V.E.; Slabbert, R.M.; Sultanbawa, Y.; Sivakumar, D. In Vitro Release of Anthocyanins from Microencapsulated Natal Plum (Carissa macrocarpa) Phenolic Extract in Alginate/Psyllium Mucilage Beads. Foods 2022, 11, 2550. [Google Scholar] [CrossRef]
- Wu, H.; Chiou, J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 2021, 13, 2878. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymańska, J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef]
- Ren, Z.; Hong, Y.; Huo, Y.; Peng, L.; Lv, H.; Chen, J.; Wu, Z.; Wan, C. Prospects of Probiotic Adjuvant Drugs in Clinical Treatment. Nutrients 2022, 14, 4723. [Google Scholar] [CrossRef]
- DiRienzo, D.B. Effect of probiotics on biomarkers of cardiovascular disease: Implications for heart-healthy diets. Nutr. Rev. 2014, 72, 18–29. [Google Scholar] [CrossRef]
- Tunapong, W.; Apaijai, N.; Yasom, S.; Tanajak, P.; Wanchai, K.; Chunchai, T.; Kerdphoo, S.; Eaimworawuthikul, S.; Thiennimitr, P.; Pongchaidecha, A.; et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur. J. Nutr. 2018, 57, 2091–2104. [Google Scholar] [CrossRef]
- Hesari, Z.; Kafshdoozan, K.; Barati, M.; Kokhaei, P.; Andalib, S.; Kiassari, F.T.; Darban, M.; Abdolshahi, A.; Bagheri, B. Lactobacillus paracasei impact on myocardial hypertrophy in rats with heart failure. J. Chem. Health Risks 2020, 10, 67–74. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Bindels, L.B.; Neyrinck, A.M.; Walter, J. The gut microbiome and dietary fibres: Implications in obesity, cardiometabolic diseases and cancer. Nat. Rev. Microbiol. 2025, 23, 225–238. [Google Scholar] [CrossRef]
- Sror, H.A.M.; Rizk, E.; Azouz, A.; Hareedy, L.A.M. Evaluation of red cabbage anthocyanin pigments and its potential uses as antioxidant and natural food colorants. Arab. Univ. J. Agric. Sci. 2009, 17, 361–372. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Kleine, C.-E.; Hsiung, J.-T.; Park, C.; Rhee, C.M.; Moradi, H.; Hanna, R.; Kalantar-Zadeh, K.; Streja, E. Association of lactate dehydrogenase with mortality in incident hemodialysis patients. Nephrol. Dial. Transplant. 2021, 36, 704–712. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, E.J.; Park, W.; Ha, K.T.; Chung, H.S. Natural compounds as lactate dehydrogenase inhibitors: Potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front. Pharmacol. 2023, 14, 1275000. [Google Scholar] [CrossRef]
- Djekic, S.; Vekic, J.; Zeljkovic, A.; Kotur-Stevuljevic, J.; Kafedzic, S.; Zdravkovic, M.; Ilic, I.; Hinic, S.; Cerovic, M.; Stefanovic, M.; et al. HDL Subclasses and the Distribution of Paraoxonase-1 Activity in Patients with ST-Segment Elevation Acute Myocardial Infarction. Int. J. Mol. Sci. 2023, 24, 9384. [Google Scholar] [CrossRef]
- Leocádio, P.C.L.; Goulart, A.C.; Santos, I.S.; Lotufo, P.A.; Bensenor, I.M.; Alvarez-Leite, J.I. Lower paraoxonase 1 paraoxonase activity is associated witha worse prognosis in patients with non-ST-segment elevation myocardial infarction in long-term follow-up. Coron. Artery Dis. 2022, 33, 515–522. [Google Scholar] [CrossRef]
Target Genes | Sequences | Ref. |
---|---|---|
MMP-7 | FW (5′-TCG GCG GAG ATG CTC ACT-3′) RW (5′-TGG CAA CAA ACA GGA AGT TCA C-3′) | [43] |
IL-1β | FW (5′-TGA TGG ATG CTT CCA AAC TG-3′) RW (5′-GAG CAT TGG AAG TTG GGG TA-3′) | [44] |
GAPDH | FW (5′-GTATTGGGCGCCTGGTCACC -3′) RW (5′-CGCTCCTGGAAGATGGTGATGG -3′) | [44] |
Parameters | Normal Control | MI Control | Encapsulated Synbiotic I | Encapsulated Synbiotic II | Encapsulated Probiotic |
---|---|---|---|---|---|
TC (mg/dL) | 82.7 a ± 0.78 | 155.9 b ± 3.38 | 89.3 a ± 2.98 | 85.8 a ± 3.62 | 82.8 a ± 4.38 |
TG (mg/dL) | 79.1 a ± 1.19 | 151.4 b ± 2.98 | 88.15 a ± 2.64 | 83.5 a ± 2.61 | 82.64 a ± 2.76 |
HDL-Ch (mg/dL) | 48.1 a ± 0.74 | 34.7 b ± 0.70 | 45.6 a ± 1.55 | 46.92 a ± 0.89 | 47.66 a ± 0.33 |
LDL-Ch (mg/dL) | 18.8 a ± 1.31 | 90.96 b ± 2.91 | 26.1 a ± 3.99 | 22.8 a ± 2.84 | 17.3 a ± 4.38 |
VLDL-Ch (mg/dL) | 15.8 a ± 0.24 | 30.3 b ± 0.59 | 17.6 a ± 0.53 | 16.0 a ± 0.78 | 16.5 a ± 0.55 |
T-Ch/HDL-Ch | 1.72 a ± 0.03 | 4.50 b ± 0.08 | 1.98 a ± 0.12 | 1.83 a ± 0.07 | 1.74 a ± 0.10 |
Ox-LDL (pg/mL) | 90.6 a ± 2.89 | 165.4 b ± 6.29 | 94.8 a ± 3.98 | 92.3 a ± 2.35 | 93.1 a ± 2.82 |
PON1 (pg/mL) | 1126.7 a ± 11.95 | 888.7 b ± 14.41 | 1120.1 a ± 17.16 | 1053.9 c ± 13.45 | 1083.9 ac ± 13.91 |
Paraoxonase 1/HDL ratio | 23.5 a ± 0.44 | 25.7 b ± 0.82 | 23.9 a ± 0.54 | 23.3 c ± 1.01 | 22.8 ac ± 0.28 |
Groups | CK-MB (U/L) | LDH (U/L) | AST (IU/L) | ALT (IU/L) | Urea (mg/dL) | Creatinine (mg/dL) |
---|---|---|---|---|---|---|
Normal control | 132.7 a ± 6.59 | 169.1 a ± 7.12 | 34.7 a ± 2.01 | 15.2 a ± 1.54 | 32.8 a ± 0.89 | 0.71 a ± 0.03 |
MI control | 276.8 b ± 7.09 | 263.48 b ± 7.42 | 71.7 b ± 2.97 | 22.3 b ± 1.33 | 47.32 b ± 1.11 | 1.18 b ± 0.08 |
Encapsulated synbiotic I | 186.3 c ± 4.01 | 192.2 a ± 4.51 | 36.2 a ± 1.64 | 17.5 ab ± 1.36 | 36.52 a ± 1.71 | 0.80 a ± 0.02 |
Encapsulated synbiotic II | 172.3 c ± 5.43 | 194.9 a ± 7.02 | 36.7 a ± 1.49 | 18.2 ab ± 1.79 | 36.98 a ± 1.59 | 0.77 a ± 0.04 |
Encapsulated probiotic | 163.0 c ± 8.93 | 179.2 a ± 7.73 | 38.2 a ± 1.60 | 17.5 ab ± 1.36 | 34.95 a ± 1.14 | 0.75 a ± 0.01 |
Groups | SOD (U/mL) | TNF-α (pg/mL) | CRP (ng/mL) |
---|---|---|---|
Normal control | 12.38 b ± 0.26 | 18.8 a ± 0.60 | 2.78 a ± 0.09 |
MI control | 2.12 a ± 0.10 | 32.8 b ± 0.70 | 9.07 b ± 0.25 |
Encapsulated synbiotic I | 8.82 c ± 0.25 | 22.83 c ± 0.48 | 5.83 c ± 0.21 |
Encapsulated synbiotic II | 8.40 c ± 0.22 | 22.33 c ± 0.76 | 5.73 c ± 0.18 |
Encapsulated probiotic | 8.08 c ± 0.36 | 20.92 ac ± 0.52 | 5.15 c ± 0.16 |
Groups | Initial Body Weight (g) | Final Body Weight (g) | Body Weight Gain (g) | Relative Heart Weight (%) |
---|---|---|---|---|
Normal control | 231.2 a ± 8.87 | 290.3 a ± 8.68 | 59.2 ad ± 2.15 | 0.35 a ± 0.01 |
MI control | 231.3 a ± 8.58 | 281.3 a ± 6.74 | 50.0 ac ± 3.20 | 0.43 b ± 0.01 |
Encapsulated synbiotic I | 231.2 a ± 5.36 | 285.8 a ± 7.57 | 54.7 ad ± 5.14 | 0.37 a ± 0.01 |
Encapsulated synbiotic II | 231.3 a ± 2.19 | 275.5 a ± 3.62 | 44.2 bcd ± 4.21 | 0.37 a ± 0.02 |
Encapsulated probiotic | 231.2 a ± 2.46 | 287.2 a ± 1.85 | 56.0 ad ± 1.86 | 0.35 a ± 0.01 |
Groups | Probiotic Counts | Coliforms Count | Total Bacterial Counts | Staphylococci Count | Listeria Counts |
---|---|---|---|---|---|
Normal control | 6.46 c ± 0.28 | 5.93 b ± 0.22 | 7.37 a ± 0.33 | 6.11 a ± 0.19 | 5.25 b ± 0.21 |
MI control | 4.67 d ± 0.11 | 6.97 a ± 0.19 | 7.78 a ± 0.28 | 6.77 a ± 0.20 | 7.16 a ± 0.27 |
Encapsulated synbiotic I | 8.53 a ± 0.30 | 4.91 c ± 0.25 | 5.90 c ± 0.20 | 4.85 c ± 0.19 | 4.59 c ± 0.19 |
Encapsulated synbiotic II | 8.70 a ± 0.28 | 4.77 c ± 0.17 | 5.96 c ± 0.18 | 5.53 b ± 0.25 | 4.58 c ± 0.29 |
Encapsulated probiotic | 7.45 b ± 0.18 | 4.95 c ± 0.22 | 6.88 b ± 0.25 | 5.30 b ± 0.17 | 4.72 c ± 0.18 |
Compound | Binding Affinity (∆G (kcal/mol)) | 3D | 2D |
---|---|---|---|
Arabinoxylan | −8.8 | ||
The amino acids involved in the interaction of arabinoxylan with LDH were GLY97, ASN113, HIS193, THR95, ASN138, ALA98, GLY29, THR248, and GLY246. | |||
Cyanidin 3-diglucoside 5-glucoside | −8.9 | ||
The amino acids involved in the interaction of cyanidin 3-diglucoside 5-glucoside with LDH were ALA238, GLN100, TYR239, ILE242, ASN138, ALA98, THR248, and ILE242. |
Compound | Binding Affinity (∆G (kcal/mol)) | 3D | 2D |
---|---|---|---|
Arabinoxylan | −8.8 | ||
The amino acids involved in the interaction of arabinoxylan with PON1 were ASP54, ILE170, ILE226, GLU56, LEU230, ILE271, and LEU230. | |||
Cyanidin 3-diglucoside 5-glucoside | −10 | ||
The amino acids involved in the interaction of cyanidin 3-diglucoside 5-glucoside with PON1 were ASP54, GLU56, LEU230, ILE271, THR119, ILE170, ASP169, ILE57, GLY232, SER272, PRO59, PRO275, and VAL273. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, D.A.; Mabrok, H.B.; El-Sayed, H.S.; Abdelgayed, S.; Mohammed, S.E. Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis. Appl. Microbiol. 2025, 5, 72. https://doi.org/10.3390/applmicrobiol5030072
Mohamed DA, Mabrok HB, El-Sayed HS, Abdelgayed S, Mohammed SE. Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis. Applied Microbiology. 2025; 5(3):72. https://doi.org/10.3390/applmicrobiol5030072
Chicago/Turabian StyleMohamed, Doha A., Hoda B. Mabrok, Hoda S. El-Sayed, Sherein Abdelgayed, and Shaimaa E. Mohammed. 2025. "Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis" Applied Microbiology 5, no. 3: 72. https://doi.org/10.3390/applmicrobiol5030072
APA StyleMohamed, D. A., Mabrok, H. B., El-Sayed, H. S., Abdelgayed, S., & Mohammed, S. E. (2025). Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis. Applied Microbiology, 5(3), 72. https://doi.org/10.3390/applmicrobiol5030072