Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = rat brain microvascular endothelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4640 KiB  
Article
A Cost-Effective and Easy to Assemble 3D Human Microchannel Blood–Brain Barrier Model and Its Application in Tumor Cell Adhesion Under Flow
by Yunfei Li and Bingmei M. Fu
Cells 2025, 14(6), 456; https://doi.org/10.3390/cells14060456 - 19 Mar 2025
Viewed by 987
Abstract
By utilizing polydimethylsiloxane (PDMS), collagen hydrogel, and a cell line for human cerebral microvascular endothelial cells, we produced a 3D microchannel blood–brain barrier (BBB) model under physiological flow. This 3D BBB has a circular-shaped cross-section and a diameter of ~100 μm, which can [...] Read more.
By utilizing polydimethylsiloxane (PDMS), collagen hydrogel, and a cell line for human cerebral microvascular endothelial cells, we produced a 3D microchannel blood–brain barrier (BBB) model under physiological flow. This 3D BBB has a circular-shaped cross-section and a diameter of ~100 μm, which can properly mimic the cerebral microvessel responsible for material exchange between the circulating blood and brain tissue. The permeability of the 3D microchannel BBB to a small molecule (sodium fluorescein with a molecular weight of 376) and that to a large molecule (Dex-70k) are the same as those of rat cerebral microvessels. This 3D BBB model can replicate the effects of a plasma protein, orosomucoid, a cytokine, vascular endothelial growth factor (VEGF), and an enzyme, heparinase III, on either rat cerebral or mesenteric microvessesels in terms of permeability and the modulation of glycocalyx (heparan sulfate). It can also replicate the adhesion of a breast cancer cell, MDA-MB-231, in rat mesenteric microvessels under no treatment or treatments with VEGF, orosomucoid, and heparinase III. Because of difficulties in accessing human cerebral microvessels, this inexpensive and easy to assemble 3D human BBB model can be applied to investigate BBB-modulating mechanisms in health and in disease and to develop therapeutic interventions targeting tumor metastasis to the brain. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Vascular-Related Diseases)
Show Figures

Figure 1

18 pages, 1159 KiB  
Article
Parenteral Nanoemulsion for Optimized Delivery of GL-II-73 to the Brain—Comparative In Vitro Blood–Brain Barrier and In Vivo Neuropharmacokinetic Evaluation
by Kristina Jezdić, Jelena Đoković, Ivan Jančić, Tanja Ilić, Biljana Bufan, Bojan Marković, Jana Ivanović, Tijana Stanković, Nebojša D. Cekić, Vassiliki Papadimitriou, Dishary Sharmin, Prithu Mondal, James M. Cook, Snežana D. Savić and Miroslav M. Savić
Pharmaceutics 2025, 17(3), 354; https://doi.org/10.3390/pharmaceutics17030354 - 10 Mar 2025
Cited by 1 | Viewed by 1183
Abstract
Background/Objectives: GL-II-73 is a positive allosteric modulator that is selective for α5GABAA receptors and has physicochemical properties that favor nanocarrier formulations when parenteral delivery to the central nervous system is desired. Our aim was to develop an optimized nanoemulsion containing GL-II-73 [...] Read more.
Background/Objectives: GL-II-73 is a positive allosteric modulator that is selective for α5GABAA receptors and has physicochemical properties that favor nanocarrier formulations when parenteral delivery to the central nervous system is desired. Our aim was to develop an optimized nanoemulsion containing GL-II-73 and subsequently test whether this would improve permeation across the blood–brain barrier (BBB) and availability in the brain. Methods: The nanoemulsions were formulated and subjected to detailed physiochemical characterization. The optimized formulation was tested in comparison to a solution of GL-II-73 in the appropriate solvent in an in vitro model of the blood–brain barrier based on human induced pluripotent stem cell-derived microvascular endothelial cells, astrocytes, and pericytes. Plasma and brain exposure to GL-II-73 and its metabolite MP-III-022 was investigated in an in vivo neuropharmacokinetic study in rats exposed to the selected nanoemulsion and the conventional solution formulation. Results: The selected biocompatible nanoemulsion exhibited satisfactory physicochemical properties for parenteral administration, with a Z-ave of 122.0 ± 1.5, PDI of 0.123 ± 0.009 and zeta potential of −40.7 ± 1.5, pH of 5.16 ± 0.04, and adequate stability after one year of storage, and allowed the localization of GL-II-73 in the stabilization layer. The permeability of GL-II-73 through the BBB was twice as high with the selected nanoemulsion as with the solution. The availability of GL-II-73 and MP-III-022 (also a positive allosteric modulator selective for α5GABAA receptors) in the brain was 24% and 61% higher, respectively, after intraperitoneal administration of the nanoemulsion compared to the solution; the former increase was statistically significant. Conclusions: The increased permeability in vitro proved to be a good predictor for the improved availability of GL-II-73 in brain tissue in vivo from the formulation obtained by encapsulation in a nanoemulsion. The putative additive effect of the parent molecule and its metabolite MP-III-022 could lead to enhanced and/or prolonged modulation of α5GABAA receptors in the brain. Full article
Show Figures

Graphical abstract

21 pages, 7735 KiB  
Article
MicroRNAs Associated with Parenchymal Hematoma After Endovascular Mechanical Reperfusion for Acute Ischemic Stroke in Rats
by Jin-Kun Zhuang, Zhong-Run Huang, Wang Qin, Chang-Luo Li, Qi Li, Chun Xiang, Yong-Hua Tuo, Zhong Liu, Qian-Yu Chen and Zhong-Song Shi
Biomedicines 2025, 13(2), 449; https://doi.org/10.3390/biomedicines13020449 - 12 Feb 2025
Viewed by 1023
Abstract
Background/Objectives: Hemorrhagic transformation after endovascular thrombectomy predicts poor outcomes in acute ischemic stroke with large-vessel occlusion. The roles of microRNAs (miRNAs) in the pathogenesis of parenchymal hematoma (PH) after endovascular thrombectomy still remain unclear. This study aimed to investigate the miRNA and mRNA [...] Read more.
Background/Objectives: Hemorrhagic transformation after endovascular thrombectomy predicts poor outcomes in acute ischemic stroke with large-vessel occlusion. The roles of microRNAs (miRNAs) in the pathogenesis of parenchymal hematoma (PH) after endovascular thrombectomy still remain unclear. This study aimed to investigate the miRNA and mRNA regulatory network associated with PH after mechanical reperfusion in an animal stroke model and an oxygen–glucose deprivation/reoxygenation (OGD/R) model. Methods: Twenty-five miRNAs were assessed in a mechanical reperfusion-induced hemorrhage transformation model in rats under hyperglycemic conditions receiving 5 h middle cerebral artery occlusion. The differentially expressed miRNAs associated with PH were assessed in a neuron, astrocyte, microglia, brain microvascular endothelial cell (BMEC), and pericyte model of OGD/R. The predicted target genes of the differentially expressed miRNAs were further assessed in the animal model. The miRNA-mRNA regulatory network of PH was established. Results: Thirteen down-regulated miRNAs (miRNA-29a-5p, miRNA-29c-3p, miRNA-126a-5p, miRNA-132-3p, miRNA-136-3p, miRNA-142-3p, miRNA-153-5p, miRNA-218a-5p, miRNA-219a-2-3p, miRNA-369-5p, miRNA-376a-5p, miRNA-376b-5p, and miRNA-383-5p) and one up-regulated miRNA (miRNA-195-3p) were found in the rat peri-infarct with PH after mechanical reperfusion. Of these 14 PH-related miRNAs, 10 were significantly differentially expressed in at least two of the five neuron, astrocyte, microglia, BMEC, and pericyte models after OGD/R, consistent with the animal stroke model results. Thirty-one predicted hub target genes were significantly differentially expressed in the rat peri-infarct with PH after mechanical reperfusion. Forty-nine miRNA-mRNA regulatory axes of PH were revealed, and they were related to the mechanisms of inflammation, immunity, oxidative stress, and apoptosis. Conclusions: Fourteen miRNAs were associated with PH after mechanical reperfusion in the rat stroke and the OGD/R models. Simultaneously differentially expressed miRNAs and related genes in several cells of the neurovascular unit may serve as valuable targets for PH after endovascular thrombectomy in acute ischemic stroke. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine (2nd Edition))
Show Figures

Figure 1

26 pages, 3377 KiB  
Article
Intravenous Nanoemulsions Loaded with Phospholipid Complex of a Novel Pyrazoloquinolinone Ligand for Enhanced Brain Delivery
by Tijana Stanković, Tanja Ilić, Branka Divović Matović, Milos Petkovic, Vladimir Dobričić, Ivan Jančić, Biljana Bufan, Kristina Jezdić, Jelena Đoković, Ivana Pantelić, Danijela Randjelović, Dishary Sharmin, James M. Cook, Miroslav M. Savić and Snežana Savić
Pharmaceutics 2025, 17(2), 232; https://doi.org/10.3390/pharmaceutics17020232 - 11 Feb 2025
Cited by 1 | Viewed by 1306
Abstract
Background/Objectives: The novel pyrazoloquinolinone ligand CW-02-79 shows a unique profile of selective binding to σ2 receptors, but its poor solubility in both water and lipids makes its research and development a burdensome task. We aimed to develop a phospholipid-complex-based nanoemulsion formulation containing [...] Read more.
Background/Objectives: The novel pyrazoloquinolinone ligand CW-02-79 shows a unique profile of selective binding to σ2 receptors, but its poor solubility in both water and lipids makes its research and development a burdensome task. We aimed to develop a phospholipid-complex-based nanoemulsion formulation containing CW-02-79 suitable for intravenous administration in preclinical research. Methods: The decorated and undecorated nanoemulsions were formulated and subjected to detailed physiochemical characterization. The delivery and exposure to CW-02-79 from selected nanoemulsions were examined in the in vitro blood–brain barrier model based on human-induced pluripotent stem-cell-derived microvascular endothelial cells, astrocytes, and pericytes, and in vivo neuropharmacokinetic study in rats, respectively. Results: The developed biocompatible nanoemulsions loaded with a CW-02-79—phospholipid complex at a mass ratio of 1:10 exhibited a small droplet size and narrow size distribution, with satisfactory physicochemical stability during steam sterilization and short-term storage at 25 °C. The analysis of protein binding interactions revealed that the PEGylated nanoemulsions had fewer observable interactions compared to the undecorated nanoemulsions, especially when 0.2% DSPE-PEG2000 and 0.1% DSPE-PEG2000-mannose were combined. An in vitro BBB study demonstrated that a substantial part of CW-02-79 present in the applied nanoemulsion is able to permeate the barrier. The quantification of CW-02-79 in plasma/brain homogenate and calculated pharmacokinetic parameters confirmed good systemic and brain availability after intravenous administration. There were subtle differences in the pharmacokinetic parameters in favor of a dual surface-functionalized nanoemulson containing the glucose transporter-1-targeting ligand (mannose). Conclusions: The developed and characterized nanoemulsions enable substantial brain exposure to CW-02-79 as a prerequisite for a pharmacologically and clinically relevant selective modulation of σ2 receptors. Full article
Show Figures

Graphical abstract

22 pages, 4005 KiB  
Article
Transcriptional Responses of In Vitro Blood–Brain Barrier Models to Shear Stress
by Koji L. Foreman, Benjamin D. Gastfriend, Moriah E. Katt, Sean P. Palecek and Eric V. Shusta
Biomolecules 2025, 15(2), 193; https://doi.org/10.3390/biom15020193 - 29 Jan 2025
Viewed by 1374
Abstract
Endothelial cells throughout the body sense blood flow, eliciting transcriptional and phenotypic responses. The brain endothelium, known as the blood–brain barrier (BBB), possesses unique barrier and transport properties, which are in part regulated by blood flow. We utilized RNA sequencing to analyze the [...] Read more.
Endothelial cells throughout the body sense blood flow, eliciting transcriptional and phenotypic responses. The brain endothelium, known as the blood–brain barrier (BBB), possesses unique barrier and transport properties, which are in part regulated by blood flow. We utilized RNA sequencing to analyze the transcriptome of primary cultured rat brain microvascular endothelial cells (BMECs), as well as three human induced pluripotent stem cell-derived models. We compared the transcriptional responses of these cells to either low (0.5 dyne/cm2) or high (12 dyne/cm2) shear stresses, and subsequent analyses identified genes and pathways that were influenced by shear including key BBB-associated genes (SLC2A1, LSR, PLVAP) and canonical endothelial shear-stress-response transcription factors (KLF2, KLF4). In addition, our analysis suggests that shear alone is insufficient to rescue the de-differentiation caused by in vitro primary BMEC culture. Overall, these datasets and analyses provide new insights into the influence of shear on BBB models that will aid in model selection and guide further model development. Full article
(This article belongs to the Special Issue Barrier Formation and Homeostasis in the Vertebrate Brain)
Show Figures

Figure 1

15 pages, 5854 KiB  
Article
Mechanism of Marinobufagenin-Induced Hyperpermeability of Human Brain Microvascular Endothelial Cell Monolayer: A Potential Pathogenesis of Seizure in Preeclampsia
by Ahmed F. Pantho, Manisha Singh, Syeda H. Afroze, Kelsey R. Kelso, Jessica C. Ehrig, Niraj Vora, Thomas J. Kuehl, Steven R. Lindheim and Mohammad N. Uddin
Cells 2024, 13(21), 1800; https://doi.org/10.3390/cells13211800 - 30 Oct 2024
Viewed by 1106
Abstract
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach [...] Read more.
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach of the blood–brain barrier (BBB). Urinary marinobufagenin (MBG) is elevated in a preE rat model prior to developing hypertension and proteinuria. We investigated what effect MBG has on the endothelial cell permeability of the BBB. Human brain microvascular endothelial cells (HBMECs) were utilized to examine the permeability caused by MBG. The phosphorylation of ERK1/2, Jnk, p38, and Src was evaluated after the treatment with MBG. Apoptosis was evaluated by examining caspase 3/7. MBG ≥ 1 nM inhibited the proliferation of HBMECs by 46–50%. MBG induced monolayer permeability, causing a decrease in the phosphorylation of ERK1/2 and the activated phosphorylation of Jnk, p38, and Src. MBG increased the caspase 3/7 expression, indicating the activation of apoptosis. Apoptotic signaling or the disruption of endothelia tight junction proteins was not observed when using the p38 inhibitor as a pretreatment in MBG-treated cells. The MBG-induced enhancement of the HBMEC monolayer permeability occurs by the downregulation of ERK1/2, the activation of Jnk, p38, Src, and apoptosis, resulting in the cleavage of tight junction proteins, and are attenuated by p38 inhibition. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

13 pages, 4207 KiB  
Article
Modulation of the Blood–Brain Barrier by Sigma-1R Activation
by Eugen Brailoiu, Jeffrey L. Barr, Hailey N. Wittorf, Saadet Inan, Ellen M. Unterwald and Gabriela Cristina Brailoiu
Int. J. Mol. Sci. 2024, 25(10), 5147; https://doi.org/10.3390/ijms25105147 - 9 May 2024
Cited by 7 | Viewed by 1983
Abstract
Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The [...] Read more.
Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The role of Sigma-1R at the blood–brain barrier (BBB) is incompletely characterized. In this study, the effect of Sigma-1R activation was investigated in vitro on rat brain microvascular endothelial cells (RBMVEC), an important component of the blood–brain barrier (BBB), and in vivo on BBB permeability in rats. The Sigma-1R agonist PRE-084 produced a dose-dependent increase in mitochondrial calcium, and mitochondrial and cytosolic reactive oxygen species (ROS) in RBMVEC. PRE-084 decreased the electrical resistance of the RBMVEC monolayer, measured with the electric cell-substrate impedance sensing (ECIS) method, indicating barrier disruption. These effects were reduced by pretreatment with Sigma-1R antagonists, BD 1047 and NE 100. In vivo assessment of BBB permeability in rats indicates that PRE-084 produced a dose-dependent increase in brain extravasation of Evans Blue and sodium fluorescein brain; the effect was reduced by the Sigma-1R antagonists. Immunocytochemistry studies indicate that PRE-084 produced a disruption of tight and adherens junctions and actin cytoskeleton. The brain microcirculation was directly visualized in vivo in the prefrontal cortex of awake rats with a miniature integrated fluorescence microscope (aka, miniscope; Doric Lenses Inc.). Miniscope studies indicate that PRE-084 increased sodium fluorescein extravasation in vivo. Taken together, these results indicate that Sigma-1R activation promoted oxidative stress and increased BBB permeability. Full article
Show Figures

Figure 1

18 pages, 3807 KiB  
Article
Involvement of the Restoration of Cerebral Blood Flow and Maintenance of eNOS Expression in the Prophylactic Protective Effect of the Novel Ferulic Acid Derivative FAD012 against Ischemia/Reperfusion Injuries in Rats
by Takashi Asano, Meiyan Xuan, Naohiro Iwata, Jun Takayama, Kousuke Hayashi, Yosuke Kato, Toshiya Aoyama, Hiroshi Sugo, Hirokazu Matsuzaki, Bo Yuan, Shinya Kamiuchi, Yasuhide Hibino, Takeshi Sakamoto and Mari Okazaki
Int. J. Mol. Sci. 2023, 24(11), 9663; https://doi.org/10.3390/ijms24119663 - 2 Jun 2023
Cited by 7 | Viewed by 2488
Abstract
Tissue plasminogen activator, aiming to restore cerebral blood flow (CBF), has been used for acute ischemic strokes in clinics; however, its narrow therapeutic time window remains a serious concern. To develop novel prophylactic drugs to alleviate cerebral ischemia/reperfusion injuries, ferulic acid derivative 012 [...] Read more.
Tissue plasminogen activator, aiming to restore cerebral blood flow (CBF), has been used for acute ischemic strokes in clinics; however, its narrow therapeutic time window remains a serious concern. To develop novel prophylactic drugs to alleviate cerebral ischemia/reperfusion injuries, ferulic acid derivative 012 (FAD012) was synthesized and showed comparable antioxidant properties to ferulic acid (FA) and probably possesses the potent ability to cross the blood–brain barrier. A more potent cytoprotective effect of FAD012 against H2O2-induced cytotoxicity in PC12 cells was also observed. In vivo toxicity was not observed in rats given a long-term oral administration of FAD012, indicating its good tolerability. A one-week-course oral administration of FAD012 significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injuries in rats, accompanied by the restoration of CBF and endothelial nitrogen oxide synthetase (eNOS) expression. Treatment with FAD012 significantly restored the cell viability and eNOS expression damaged by H2O2, used to mimic MCAO-triggered oxidative stress, in rat brain microvascular endothelial cells. Our findings suggested that FAD012 protected the viability of vascular endothelium and maintained eNOS expression, ultimately contributing to the restoration of CBF, and may provide a rationale for the development of FAD012 into an effective prophylactic drug for patients at high risk of stroke. Full article
Show Figures

Graphical abstract

14 pages, 3124 KiB  
Article
Aldo-Keto Reductase 1C15 Characterization and Protection in Ischemic Brain Injury
by Tuo Yang, Qianqian Li, George Fadoul, Nour Alraqmany, Milos Ikonomovic and Feng Zhang
Antioxidants 2023, 12(4), 909; https://doi.org/10.3390/antiox12040909 - 11 Apr 2023
Cited by 5 | Viewed by 2852
Abstract
Aldo-keto reductase (AKR) 1C15, a member of the AKR superfamily, was recently identified and cloned, and reported to alleviate oxidative stress in endothelial cells in rodent lungs. However, its expression and role in the brain and ischemic brain diseases have not been investigated. [...] Read more.
Aldo-keto reductase (AKR) 1C15, a member of the AKR superfamily, was recently identified and cloned, and reported to alleviate oxidative stress in endothelial cells in rodent lungs. However, its expression and role in the brain and ischemic brain diseases have not been investigated. AKR1C15 expression was detected with real-time PCR. Mouse ischemic stroke and ischemic preconditioning (IPC) were established with middle cerebral artery occlusion (MCAO) for 1 h or 12 min, respectively. Recombinant AKR1C15 was administered intraperitoneally, and stroke outcome was evaluated with neurobehavioral tests and infarct volumes. Rat primary brain cell cultures were subjected to oxygen–glucose deprivation (OGD) to mimic ischemic injury. Cell survival or in vitro blood–brain barrier (BBB) permeability was measured, and nitric oxide (NO) release was detected. Immunostaining and Western blotting were used to evaluate oxidative-stress-related protein expression. AKR1C15 administration decreased the infarct volume and neurological deficits 2d post-stroke, and its early (1-h) administration after IPC abolished the protection of IPC against stroke. In rat primary brain cell cultures, AKR1C15 was most abundantly expressed in brain microvascular endothelial cells (BMVECs) and microglia. Its expression decreased upon OGD in most cell types except for BMVECs and microglia. In primary neuronal cultures, AKR1C15 treatment prevented OGD-induced cell death accompanied by decreased levels of 4-hydroxynonenal, 8-hydroxy-2′-deoxyguanosine, and heme oxygenase-1. In BMVEC cultures, AKR1C15 treatment protected against OGD-induced cell death and in vitro BBB leakage. In primary microglial cultures, AKR1C15 reduced the release of NO upon proinflammatory stimulation. Our results provide a characterization of the novel antioxidant AKR1C15 and demonstrate its protective role against ischemic injury, both in vivo and in vitro. AKR1C15 may be a promising agent for ischemic stroke treatment. Full article
(This article belongs to the Special Issue Redox Homeostasis and Antioxidant Strategies in the Pathophysiology)
Show Figures

Graphical abstract

16 pages, 4900 KiB  
Article
Role of Orai3-Mediated Store-Operated Calcium Entry in Radiation-Induced Brain Microvascular Endothelial Cell Injury
by Qibing Wu, Yang Fang, Xiaoyu Huang, Fan Zheng, Shaobo Ma, Xinchen Zhang, Tingting Han, Huiwen Gao and Bing Shen
Int. J. Mol. Sci. 2023, 24(7), 6818; https://doi.org/10.3390/ijms24076818 - 6 Apr 2023
Cited by 2 | Viewed by 2269
Abstract
Radiation-induced brain injury is a serious complication with complex pathogenesis that may accompany radiotherapy of head and neck tumors. Although studies have shown that calcium (Ca2+) signaling may be involved in the occurrence and development of radiation-induced brain injury, the underlying [...] Read more.
Radiation-induced brain injury is a serious complication with complex pathogenesis that may accompany radiotherapy of head and neck tumors. Although studies have shown that calcium (Ca2+) signaling may be involved in the occurrence and development of radiation-induced brain injury, the underlying molecular mechanisms are not well understood. In this study, we used real-time quantitative polymerase chain reaction and Western blotting assays to verify our previous finding using next-generation sequencing that the mRNA and protein expression levels of Orai3 in rat brain microvascular endothelial cells (rBMECs) increased after X-ray irradiation. We next explored the role of Orai3 and Orai3-mediated store-operated Ca2+ entry (SOCE) in radiation-induced brain injury. Primary cultured rBMECs derived from wild-type and Orai3 knockout (Orai3(−/−)) Sprague–Dawley rats were used for in vitro experiments. Orai3-mediated SOCE was significantly increased in rBMECs after X-ray irradiation. However, X-ray irradiation-induced SOCE increase was markedly reduced in Orai3 knockout rBMECs, and the percentage of BTP2 (a nonselective inhibitor of Orai channels)-inhibited SOCE was significantly decreased in Orai3 knockout rBMECs. Functional studies indicated that X-ray irradiation decreased rBMEC proliferation, migration, and tube formation (a model for assessing angiogenesis) but increased rBMEC apoptosis, all of which were ameliorated by BTP2. In addition, occurrences of all four functional deficits were suppressed in X-ray irradiation-exposed rBMECs derived from Orai3(−/−) rats. Cerebrovascular damage caused by whole-brain X-ray irradiation was much less in Orai3(−/−) rats than in wild-type rats. These findings provide evidence that Orai3-mediated SOCE plays an important role in radiation-induced rBMEC damage and brain injury and suggest that Orai3 may warrant development as a potential therapeutic target for reducing or preventing radiation-induced brain injury. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2532 KiB  
Article
Simulated Microgravity Alters P-Glycoprotein Efflux Function and Expression via the Wnt/β-Catenin Signaling Pathway in Rat Intestine and Brain
by Huayan Liu, Min Liang, Yulin Deng and Yujuan Li
Int. J. Mol. Sci. 2023, 24(6), 5438; https://doi.org/10.3390/ijms24065438 - 12 Mar 2023
Cited by 9 | Viewed by 2531
Abstract
The drug efflux transporter permeability glycoprotein (P-gp) plays an important role in oral drug absorption and distribution. Under microgravity (MG), the changes in P-gp efflux function may alter the efficacy of oral drugs or lead to unexpected effects. Oral drugs are currently used [...] Read more.
The drug efflux transporter permeability glycoprotein (P-gp) plays an important role in oral drug absorption and distribution. Under microgravity (MG), the changes in P-gp efflux function may alter the efficacy of oral drugs or lead to unexpected effects. Oral drugs are currently used to protect and treat multisystem physiological damage caused by MG; whether P-gp efflux function changes under MG remains unclear. This study aimed to investigate the alteration of P-gp efflux function, expression, and potential signaling pathway in rats and cells under different simulated MG (SMG) duration. The altered P-gp efflux function was verified by the in vivo intestinal perfusion and the brain distribution of P-gp substrate drugs. Results showed that the efflux function of P-gp was inhibited in the 7 and 21 day SMG-treated rat intestine and brain and 72 h SMG-treated human colon adenocarcinoma cells and human cerebral microvascular endothelial cells. P-gp protein and gene expression levels were continually down-regulated in rat intestine and up-regulated in rat brain by SMG. P-gp expression was regulated by the Wnt/β-catenin signaling pathway under SMG, verified by a pathway-specific agonist and inhibitor. The elevated intestinal absorption and brain distribution of acetaminophen levels also confirmed the inhibited P-gp efflux function in rat intestine and brain under SMG. This study revealed that SMG alters the efflux function of P-gp and regulates the Wnt/β-catenin signaling pathway in the intestine and the brain. These findings may be helpful in guiding the use of P-gp substrate drugs during spaceflight. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2196 KiB  
Article
Involvement of TRPM7 in Alcohol-Induced Damage of the Blood–Brain Barrier in the Presence of HIV Viral Proteins
by Michelle L. Mack, Wenfei Huang and Sulie L. Chang
Int. J. Mol. Sci. 2023, 24(3), 1910; https://doi.org/10.3390/ijms24031910 - 18 Jan 2023
Cited by 4 | Viewed by 2089
Abstract
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of [...] Read more.
Ethanol (EtOH) exerts its effects through various protein targets, including transient receptor potential melastatin 7 (TRPM7) channels, which play an essential role in cellular homeostasis. We demonstrated that TRPM7 is expressed in rat brain microvascular endothelial cells (rBMVECs), the major cellular component of the blood–brain barrier (BBB). Heavy alcohol drinking is often associated with HIV infection, however mechanisms underlying alcohol-induced BBB damage and HIV proteins, are not fully understood. We utilized the HIV-1 transgenic (HIV-1Tg) rat to mimic HIV-1 patients on combination anti-retroviral therapy (cART) and demonstrated TRPM7 expression in rBMVECs wass lower in adolescent HIV-1Tg rats compared to control animals, however control and HIV-1Tg rats expressed similar levels at 9 weeks, indicating persistent presence of HIV-1 proteins delayed TRPM7 expression. Binge exposure to EtOH (binge EtOH) decreased TRPM7 expression in control rBMVECs in a concentration-dependent manner, and abolished TRPM7 expression in HIV-1Tg rats. In human BMVECs (hBMVECs), TRPM7 expression was downregulated after treatment with EtOH, HIV-1 proteins, and in combination. Next, we constructed in vitro BBB models using BMVECs and found TRPM7 antagonists enhanced EtOH-mediated BBB integrity changes. Our study demonstrated alcohol decreased TRPM7 expression, whereby TRPM7 could be involved in the mechanisms underlying BBB alcohol-induced damage in HIV-1 patients on cART. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology)
Show Figures

Figure 1

12 pages, 1823 KiB  
Article
Tumor Treating Fields (TTFields) Induce Cell Junction Alterations in a Human 3D In Vitro Model of the Blood-Brain Barrier
by Ellaine Salvador, Theresa Köppl, Julia Hörmann, Sebastian Schönhärl, Polina Bugaeva, Almuth F. Kessler, Malgorzata Burek, Ralf-Ingo Ernestus, Mario Löhr and Carsten Hagemann
Pharmaceutics 2023, 15(1), 185; https://doi.org/10.3390/pharmaceutics15010185 - 4 Jan 2023
Cited by 20 | Viewed by 3444
Abstract
In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins [...] Read more.
In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies. Full article
(This article belongs to the Special Issue Targeting Cell Junctions for Therapy and Delivery)
Show Figures

Figure 1

15 pages, 5677 KiB  
Article
Delta Opioid Peptide Targets Brain Microvascular Endothelial Cells Reducing Apoptosis to Relieve Hypoxia-Ischemic/Reperfusion Injury
by Ran Zhang, Meixuan Chen, Zhongfang Deng, Lingchao Kong, Bing Shen and Lesha Zhang
Pharmaceutics 2023, 15(1), 46; https://doi.org/10.3390/pharmaceutics15010046 - 23 Dec 2022
Cited by 3 | Viewed by 2942
Abstract
Stroke is one of the leading causes of death. (D-ala2, D-leu5) enkephalin (DADLE) is a synthetic peptide and highly selective delta opioid receptor (δOR) agonist that has exhibited protective properties in ischemia. However, the specific target and mechanism are still unclear. The present [...] Read more.
Stroke is one of the leading causes of death. (D-ala2, D-leu5) enkephalin (DADLE) is a synthetic peptide and highly selective delta opioid receptor (δOR) agonist that has exhibited protective properties in ischemia. However, the specific target and mechanism are still unclear. The present study explores the expression of δOR on brain microvascular endothelial cells (BMECs) and whether DADLE could relieve I/R-induced injury by reducing apoptosis. A lateral ventricular injection of DADLE for pretreatment, the neurofunctional behavior score, and TTC staining, were used to evaluate the protective effect of DADLE. Immunofluorescence technology was used to label different types of cells with apoptosis-positive signals to test co-localization status. Primary cultured BMECs were separated and treated with DADLE, accompanied by OGD/R. The CCK-8 test was conducted to evaluate cell viability and TdT-mediated dUTP Nick-end Labelling (TUNEL) staining to test apoptosis levels. The levels of apoptosis-related proteins were analyzed by Western blotting. The co-localization results showed that BMECs, but not astrocytes, microglia, or neurons, presented mostly TUNEL-positive signals, especially in the Dentate gyrus (DG) area of the hippocampus. Either activation of δORs on rats’ brains or primary BMECs mainly reduce cellular apoptosis and relieve the injury. Interference with the expression δOR could block this effect. DADLE also significantly increased levels of Bcl-2 and reduced levels of Bax. δOR’s expressions can be detected on the BMECs, but not on the HEK293 cells, by Western blotting and IFC. Therefore, DADLE exerts a cytoprotective effect, primarily under hypoxia-ischemic injury/reperfusion conditions, by targeting BMECs to inhibit apoptosis. Full article
Show Figures

Figure 1

20 pages, 6474 KiB  
Article
Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood–Brain Barrier In Vitro and In Vivo
by Ellaine Salvador, Almuth F. Kessler, Dominik Domröse, Julia Hörmann, Clara Schaeffer, Aiste Giniunaite, Malgorzata Burek, Catherine Tempel-Brami, Tali Voloshin, Alexandra Volodin, Adel Zeidan, Moshe Giladi, Ralf-Ingo Ernestus, Mario Löhr, Carola Y. Förster and Carsten Hagemann
Biomolecules 2022, 12(10), 1348; https://doi.org/10.3390/biom12101348 - 22 Sep 2022
Cited by 31 | Viewed by 6831
Abstract
Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We [...] Read more.
Despite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood–brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB’s integrity and permeability. Here, we treated murine microvascular cerebellar endothelial cells (cerebEND) with 100–300 kHz TTFields for up to 72 h and analyzed the expression of barrier proteins by immunofluorescence staining and Western blot. In vivo, compounds normally unable to cross the BBB were traced in healthy rat brain following TTFields administration at 100 kHz. The effects were analyzed via MRI and immunohistochemical staining of tight-junction proteins. Furthermore, GBM tumor-bearing rats were treated with paclitaxel (PTX), a chemotherapeutic normally restricted by the BBB combined with TTFields at 100 kHz. The tumor volume was reduced with TTFields plus PTX, relative to either treatment alone. In vitro, we demonstrate that TTFields transiently disrupted BBB function at 100 kHz through a Rho kinase-mediated tight junction claudin-5 phosphorylation pathway. Altogether, if translated into clinical use, TTFields could represent a novel CNS drug delivery strategy. Full article
(This article belongs to the Special Issue Regulation of the Endothelial Cell Barrier)
Show Figures

Figure 1

Back to TopTop