Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (896)

Search Parameters:
Keywords = rainfall time series

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9506 KB  
Article
An SBAS-InSAR Analysis and Assessment of Landslide Deformation in the Loess Plateau, China
by Yan Yang, Rongmei Liu, Liang Wu, Tao Wang and Shoutao Jiao
Remote Sens. 2026, 18(3), 411; https://doi.org/10.3390/rs18030411 - 26 Jan 2026
Abstract
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions [...] Read more.
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions in China due to frequent rains, strong topographical gradients and severe soil erosion. By constructing subsets of interferograms, SBAS-InSAR can mitigate the influence of decorrelation to a certain extent, making it a highly effective technique for monitoring regional surface deformation and identifying landslides. To overcome the limitations of the satellite’s one-dimensional Line-of-Sight (LOS) measurements and the challenge of distinguishing true landslide signals from noise, two optimization strategies were implemented. First, LOS velocities were projected onto the local steepest slope direction, assuming translational movement parallel to the slope. Second, a Z-score clustering algorithm was employed to aggregate measurement points with consistent kinematic signatures, enhancing identification robustness, with a slight trade-off in spatial completeness. Based on 205 Sentinel-1 Single-Look Complex (SLC) images acquired from 2014 to 2024, the integrated workflow identified 69 “active, very slow” and 63 “active, extremely slow” landslides. These results were validated through high-resolution historical optical imagery. Time series analysis reveals that creep deformation in this region is highly sensitive to seasonal rainfall patterns. This study demonstrates that the SBAS-InSAR post-processing framework provides a cost-effective, millimeter-scale solution for updating landslide inventories and supporting regional risk management and early warning systems in loess-covered terrains, with the exception of densely forested areas. Full article
Show Figures

Figure 1

29 pages, 19190 KB  
Article
Addressing the Advance and Delay in the Onset of the Rainy Seasons in the Tropical Andes Using Harmonic Analysis and Climate Change Indices
by Sheila Serrano-Vincenti, Jonathan González-Chuqui, Mariana Luna-Cadena and León A. Escobar
Atmosphere 2026, 17(1), 98; https://doi.org/10.3390/atmos17010098 - 17 Jan 2026
Viewed by 164
Abstract
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate [...] Read more.
The advance and delay of the rainy season is among the most frequently cited effects of climate change in the central Ecuadorian Andes. However, its assessment is not feasible using the indicators recommended by the standardized indices of the Expert Team on Climate Change Detection and Indices (ETCCDI), designed to detect changes in intensity, frequency, or duration of intense events. This study aims to analyze such advances and delays through harmonic analysis in Tungurahua, a predominantly agricultural province in the Tropical Central Andes, where in situ data are scarce. Daily in situ data from five meteorological stations were used, including precipitation, maximum, and minimum temperature records spanning 39 to 68 years. The study involved an analysis of the region’s climatology, climate change indices, and harmonic analysis using Cross-Wavelet Transform (XWT) and Wavelet Coherence Transform (WCT) to identify seasonal patterns and their variability (advance or delay) by comparing historical and recent time series, and Krigging for regionalization. The year 2000 was used as a study point for comparing past and present trends. Results show a generalized increase in both minimum and maximum temperatures. In the case of extreme rainfall events, no significant changes were detected. Harmonic analysis was found to be fruitful despite of the missing data. Furthermore, the observed advances and delays in seasonality were not statistically significant and appeared to be more closely related to the geographic location of the stations than to temporal shifts. Full article
(This article belongs to the Special Issue Hydrometeorological Simulation and Prediction in a Changing Climate)
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Viewed by 323
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

22 pages, 2581 KB  
Article
Cassava Response to Weather Variability in Eastern Africa
by Zsuzsanna Bacsi and Dawit Dandano Jarso
Agriculture 2026, 16(2), 209; https://doi.org/10.3390/agriculture16020209 - 13 Jan 2026
Viewed by 215
Abstract
Cassava is one of the most important crops in global food security. It is the second most important staple crop in Africa. Its significance is enhanced by the fact that it very well tolerates droughts, and therefore it may be a prospective response [...] Read more.
Cassava is one of the most important crops in global food security. It is the second most important staple crop in Africa. Its significance is enhanced by the fact that it very well tolerates droughts, and therefore it may be a prospective response to climate change in hot and dry areas. The potentials of cassava are under-utilized in Eastern Africa, and there is a lack of research studies regarding climate impacts on cassava yields in this region. The present research focuses on cassava production in Eastern Africa, analyzing the relationship of cassava yields, harvested areas, temperature, and precipitation from 1961 to 2023. The statistical analysis applies panel regression for the 63 years of time series, for the 15 most important cassava producing countries of Eastern Africa. Findings show that while the impacts of rainfall are insignificant on yields, the effects of temperature are significantly positive, indicating yield and area increases with warming climate. An expansion of the cassava growing area and the expanding rural population contributed to decreasing yields, probably because of the expansion of smallholder subsistence farming, suffering from to limitations in other farming resources. Therefore, even if climate change may benefit cassava production, other factors create severe limitations on improving yields. However, the positive response of the crop to rising temperatures is a clear sign that it is a useful choice for food security under climate change and would deserve more support from agricultural policymakers in Eastern Africa. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

22 pages, 3447 KB  
Article
Leveraging Machine Learning Flood Forecasting: A Multi-Dimensional Approach to Hydrological Predictive Modeling
by Ghazi Al-Rawas, Mohammad Reza Nikoo, Nasim Sadra and Malik Al-Wardy
Water 2026, 18(2), 192; https://doi.org/10.3390/w18020192 - 12 Jan 2026
Viewed by 225
Abstract
Flash flood events are some of the most life-threatening natural disasters, so it is important to predict extreme rainfall events effectively. This study introduces an LSTM model that utilizes a customized loss function to effectively predict extreme rainfall events. The proposed model incorporates [...] Read more.
Flash flood events are some of the most life-threatening natural disasters, so it is important to predict extreme rainfall events effectively. This study introduces an LSTM model that utilizes a customized loss function to effectively predict extreme rainfall events. The proposed model incorporates dynamic environmental variables, such as rainfall, LST, and NDVI, and incorporates additional static variables such as soil type and proximity to infrastructure. Wavelet transformation decomposes the time series into low- and high-frequency components to isolate long-term trends and short-term events. Model performance was compared against Random Forest (RF), Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and an LSTM-RF ensemble. The custom loss LSTM achieved the best performance (MAE = 0.022 mm/day, RMSE = 0.110 mm/day, R2 = 0.807, SMAPE = 7.62%), with statistical validation via a Kruskal–Wallis ANOVA, confirming that the improvement is significant. Model uncertainty is quantified using a Bayesian MCMC framework, yielding posterior estimates and credible intervals that explicitly characterize predictive uncertainty under extreme rainfall conditions. The sensitivity analysis highlights rainfall and LST as the most influential predictors, while wavelet decomposition provides multi-scale insights into environmental dynamics. The study concludes that customized loss functions can be highly effective in extreme rainfall event prediction and thus useful in managing flash flood events. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 5832 KB  
Article
Joint PS–SBAS Time-Series InSAR for Sustainable Urban Infrastructure Management: Tunnel Subsidence Mechanisms in Sanya, China
by Jun Hu, Zihan Song, Yamin Zhao, Kai Wei, Bing Liu and Qiong Liu
Sustainability 2026, 18(2), 688; https://doi.org/10.3390/su18020688 - 9 Jan 2026
Viewed by 242
Abstract
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation [...] Read more.
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation along the Sanya Estuary Channel tunnel (China) using Permanent Scatterer InSAR (PS-InSAR) and Small Baseline Subset InSAR (SBAS-InSAR). The two approaches reveal a consistent subsidence hotspot at Tunnel Section D (DK0+000–DK0+330), while most of the corridor remains within ±5 mm/a. The line-of-sight deformation rates range from −24 to 17.7 mm/year (PS-InSAR) and −29.9 to 18.7 mm/a (SBAS-InSAR). Time-series analysis at representative points in Section D indicates a maximum cumulative settlement of −75.7 mm and a clear acceleration after May 2023. By integrating the deformation results with geological reports, construction logs and rainfall records, we infer that compressible marine clays and interbedded sand/aquifer zones control the hotspot, whereas excavation/dewatering and rainfall-related groundwater fluctuations further promote consolidation. The results provide a practical basis for subsidence risk screening and monitoring prioritization for estuary-crossing infrastructure in coastal soft-soil settings. From a sustainability perspective, the proposed joint PS–SBAS InSAR framework provides a scalable and cost-effective tool for continuous deformation surveillance, supporting preventive maintenance and risk-informed management of urban underground infrastructure. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

20 pages, 5111 KB  
Article
Integrating Long-Term Climate Data into Sponge City Design: A Case Study of the North Aegean and Marmara Regions
by Mehmet Anil Kizilaslan
Sustainability 2026, 18(1), 331; https://doi.org/10.3390/su18010331 - 29 Dec 2025
Viewed by 243
Abstract
Climate change is altering hydrological regimes across the North Aegean and Marmara regions of Türkiye, with increasing relevance for both drought occurrence and flood generation. This study examines long-term variability in temperature, precipitation, and evaporation using meteorological observations over a long time series [...] Read more.
Climate change is altering hydrological regimes across the North Aegean and Marmara regions of Türkiye, with increasing relevance for both drought occurrence and flood generation. This study examines long-term variability in temperature, precipitation, and evaporation using meteorological observations over a long time series and relates these changes to urban water management issues. Daily records from 12 meteorological stations, with data availability varying by station and extending back to 1926, were analysed using the non-parametric Mann–Kendall trend test and Sen’s slope estimator. The results indicate statistically significant warming trends across all stations, with several locations recording daily maximum temperatures exceeding 44 °C. Precipitation trends exhibit pronounced spatial heterogeneity: while most stations show decreasing long-term tendencies, others display unchanging or non-significant trends. Nevertheless, extreme daily rainfall events exceeding 200 mm are observed at multiple coastal and island stations, indicating a tendency toward high-intensity precipitation. Evaporation trends also vary across the region, with increasing rates at stations such as Tekirdağ and Çanakkale and decreasing trends at Bandırma and Yalova, reflecting the influence of local atmospheric conditions. Taken together, these findings point to a coupled risk of intensified flooding during short-duration rainfall events and increasing water stress during warm and dry periods. Such conditions challenge the effectiveness of conventional grey infrastructure. The results are therefore interpreted within the framework of the Sponge City approach, which emphasizes permeable surfaces, decentralized storage, infiltration, and the integration of green and blue infrastructure. By linking long-term hydroclimatic trends with urban design considerations, this study provides a quantitative basis for informing adaptive urban water management and planning strategies in Mediterranean-type climate regions. Full article
Show Figures

Figure 1

27 pages, 13724 KB  
Article
Observed (1979–2024) and Projected (2030) Climate Trends in Relation to Farmers’ Perceptions in Coffee Cooperatives of Northern Peru
by Jonathan Alberto Campos Trigoso, Pablo Rituay, Meliza del Pilar Bustos Chavez, Rosmery Ramos-Sandoval, Grobert A. Guadalupe, Dorila E. Grandez-Yoplac and Ligia García
Agriculture 2026, 16(1), 57; https://doi.org/10.3390/agriculture16010057 - 26 Dec 2025
Viewed by 490
Abstract
Climate change is increasingly threatening the sustainability of coffee farming in northern Peru, particularly in the Amazonas region, where coffee cooperatives serve as vital socioeconomic hubs for thousands of families. This study analyzed historical climate data from 1979 to 2024 to project trends [...] Read more.
Climate change is increasingly threatening the sustainability of coffee farming in northern Peru, particularly in the Amazonas region, where coffee cooperatives serve as vital socioeconomic hubs for thousands of families. This study analyzed historical climate data from 1979 to 2024 to project trends up to 2030, integrating local perceptions from coffee producers to identify trends, anomalies, and future scenarios within four coffee cooperatives in northern Peru. We examined variables such as precipitation, temperature, evapotranspiration, and wind speed using nonparametric statistical analyses and SARIMA time-series models. The findings indicate a steady increase in maximum and average temperatures, alongside greater irregularity in precipitation. Specifically, the Bagua Grande and COOPARM cooperatives are experiencing precipitation deficits, while the Alta Montaña and Ocumal cooperatives are facing excess rainfall. Additionally, we project an increase in evapotranspiration by 2030. Surveys conducted with coffee growers reveal a consensus regarding irregular rainfall patterns; however, there is less recognition of the rising temperature trends. This discrepancy emphasizes the importance of combining scientific data with local knowledge to develop more effective adaptation strategies at the cooperative level. We conclude that enhancing climate training and cooperative management is essential for improving the resilience of regional coffee farming. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

35 pages, 10362 KB  
Article
Towards Sustainable Heritage Conservation: A Hybrid Landslide Susceptibility Mapping Framework in Japan’s UNESCO Mountain Villages
by Ahmed Bassem, Hassan Shokry, Shinjiro Kanae and Mahmoud Sharaan
Sustainability 2026, 18(1), 237; https://doi.org/10.3390/su18010237 - 25 Dec 2025
Viewed by 338
Abstract
Sustainable management of cultural heritage in mountainous regions requires effective strategies to mitigate natural hazards such as landslides. Landslide susceptibility mapping (LSM) provides a critical tool to support these conservation efforts. This study presents a hybrid framework that integrates probabilistic slope stability modeling [...] Read more.
Sustainable management of cultural heritage in mountainous regions requires effective strategies to mitigate natural hazards such as landslides. Landslide susceptibility mapping (LSM) provides a critical tool to support these conservation efforts. This study presents a hybrid framework that integrates probabilistic slope stability modeling with ensemble learning for LSM in the UNESCO World Heritage sites of Shirakawa-gō and Gokayama, Japan. The framework uses probabilities of failure from Bishop’s simplified method combined with Monte Carlo simulations to guide non-landslide sample selection. An enhanced tri-parametric optimization was applied to refine the slope unit segmentation process. SHAP analysis revealed that the hybrid framework emphasizes physically meaningful features such as rainfall. The proposed method results in AUC gains of 0.072 for XGBoost, 0.066 CatBoost for, and 0.063 for LightGBM compared to their buffer-based counterparts. Future landslide susceptibility was mapped based on the 2035 precipitation projections from ARIMA time-series modeling. By enhancing accuracy, interpretability, and geotechnical consistency, the proposed approach delivers a robust tool for sustainable risk management. The study further evaluates the exposure of Gasshō-style houses and other historic buildings to varying levels of landslide susceptibility, offering actionable insights for local planning and heritage conservation. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

55 pages, 19021 KB  
Article
IDF Curve Modification Under Climate Change: A Case Study in the Lombardy Region Using EURO-CORDEX Ensemble
by Andrea Abbate, Monica Papini and Laura Longoni
Atmosphere 2026, 17(1), 14; https://doi.org/10.3390/atmos17010014 - 23 Dec 2025
Viewed by 470
Abstract
Intensity–Frequency–Duration Curves (IDF curves) are a tool applied in hydraulic and hydrology engineering to design infrastructure for rainfall management. They express how precipitation, with a defined duration (D) and intensity (I), is frequent in a certain area. They are built from past recorded [...] Read more.
Intensity–Frequency–Duration Curves (IDF curves) are a tool applied in hydraulic and hydrology engineering to design infrastructure for rainfall management. They express how precipitation, with a defined duration (D) and intensity (I), is frequent in a certain area. They are built from past recorded rainfall series, applying the extreme value statistics, and they are considered invariant in time. However, the current climate change projections are showing a detectable positive trend in temperatures, which, according to Clausius–Clapeyron, is expected to intensify extreme precipitation (higher temperatures bring more water vapour available for precipitation). According to the IPCC (Intergovernmental Panel on Climate Change) reports, rainfall events are projected to intensify their magnitude and frequency, becoming more extreme, especially across “climatic hot-spot” areas such as the Mediterranean basin. Therefore, a sensible modification of IDF curves is expected, posing some challenges for future hydraulic infrastructure design (i.e., sewage networks), which may experience damage and failure due to extreme intensification. In this paper, a methodology for reconstructing IDF curves by analysing the EURO-CORDEX climate model outputs is presented. The methodology consists of the analysis of climatic rainfall series (that cover a future period up to 2100) using GEV (Generalised Extreme Value) techniques. The future anomalies of rainfall height (H) and their return period (RP) have been evaluated and then compared to the currently adopted IDF curves. The study is applied in Lombardy (Italy), a region characterised by strong orographic precipitation gradients due to the influence of Alpine complex orography. The future anomalies of H evaluated in the study show an increase of 20–30 mm (2071–2100 ensemble median, RCP 8.5) in rainfall depth. Conversely, a significant reduction in the return period by 40–60% (i.e., the current 100-year event becomes a ≈40–60-year event by 2071–2100 under RCP 8.5) is reported, leading to an intensification of extreme events. The former have been considered to correct the currently adopted IDF curves, taking into account climate change drivers. A series of applications in the field of hydraulic infrastructure (a stormwater retention tank and a sewage pipe) have demonstrated how the influence of IDF curve modification may change their design. The latter have shown how future RP modification (i.e., reduction) of the design rainfall may lead to systematic under-design and increased flood risk if not addressed properly. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 4164 KB  
Article
Environmental Safety Assessment of Riverfront Spaces Under Erosion–Deposition Dynamics and Vegetation Variability
by Sangung Lee, Jongmin Kim and Young Do Kim
Appl. Sci. 2026, 16(1), 36; https://doi.org/10.3390/app16010036 - 19 Dec 2025
Viewed by 284
Abstract
Urban river floodplains function not only as zones for flood regulation and ecological buffering but have increasingly been utilized as multifunctional spaces that support leisure, waterfront, and cultural activities. However, overlapping hydraulic and geomorphic factors such as channel meandering, vegetation distribution, and flood-induced [...] Read more.
Urban river floodplains function not only as zones for flood regulation and ecological buffering but have increasingly been utilized as multifunctional spaces that support leisure, waterfront, and cultural activities. However, overlapping hydraulic and geomorphic factors such as channel meandering, vegetation distribution, and flood-induced flow redistribution have amplified environmental risks, including recurrent erosion deposition, vegetation disturbance, and infrastructure damage, yet quantitative assessment frameworks remain limited. This study systematically evaluates the environmental safety of an urban floodplain by estimating vegetation variability using Sentinel-2 derived NDVI time series and deriving SEDI and TEDI through FaSTMECH two-dimensional hydraulic modeling. NDVI response cases were identified for different rainfall intensities, and interpolation-based hazard maps were generated using spatial cross-validation. Results show that the left bank exhibits higher vegetation variability, indicating strong sensitivity to hydrological fluctuations, while outer meander bends repeatedly display elevated SEDI and TEDI values, revealing concentrated structural vulnerability. Integrated analyses across rainfall conditions indicate that overall safety remains high; however, low-safety zones expand in the upstream meander and several outer bends as rainfall intensity increases. Full article
Show Figures

Figure 1

19 pages, 4716 KB  
Article
Simulating Rainfall for Flood Forecasting in the Upper Minjiang River
by Wenjie Zhao, Yang Zhao, Qijia Zhao, Xingping Wang, Tiantian Su and Yuan Guo
Water 2026, 18(1), 4; https://doi.org/10.3390/w18010004 - 19 Dec 2025
Viewed by 348
Abstract
The accuracy and timeliness of precipitation inputs have significant impact on flood forecasting. Upstream Minjiang River Basin is characterized by complex terrain and highly variable climatic conditions, posing a significant challenge for runoff forecasting. This study proposes a combined forecasting approach integrating numerical [...] Read more.
The accuracy and timeliness of precipitation inputs have significant impact on flood forecasting. Upstream Minjiang River Basin is characterized by complex terrain and highly variable climatic conditions, posing a significant challenge for runoff forecasting. This study proposes a combined forecasting approach integrating numerical weather prediction (NWP) models with hydrodynamic models to enhance flood process simulation. The most appropriate initial field data for the Weather Research and Forecasting Model (WRF) exist in time and space resolution. Compared with the measured series, the characteristics of precipitation forecasting are summarized from practical and scientific perspectives. InfoWorks ICM is then used to implement runoff generation calculations and flooding processes. The results indicate that the WRF model effectively simulates the spatial distribution and peak timing of precipitation in the upper Minjiang River. The model systematically underestimates both peak rainfall intensity and cumulative precipitation compared to observations. Initial field data with 0.25° spatial resolution and 3 h temporal intervals demonstrate good performance and the 10–14 h forecast period exhibits superior predictive capability in numerical simulations. Updates to elevation and land use conditions yield increased cumulative rainfall estimates, though simulated peaks remain lower than measured values. The runoff results could indicate peak flow but rely on the precipitation inputs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 6352 KB  
Article
Integrated Stochastic Framework for Drought Assessment and Forecasting Using Climate Indices, Remote Sensing, and ARIMA Modelling
by Majed Alsubih, Javed Mallick, Hoang Thi Hang, Mansour S. Almatawa and Vijay P. Singh
Water 2025, 17(24), 3582; https://doi.org/10.3390/w17243582 - 17 Dec 2025
Viewed by 429
Abstract
This study presents an integrated stochastic framework for assessing and forecasting drought dynamics in the western Bhagirathi–Hooghly River Basin, encompassing the districts of Bankura, Birbhum, Burdwan, Medinipur, and Purulia. Employing multiple probabilistic and statistical techniques, including the gamma-based standardized precipitation index (SPI), effective [...] Read more.
This study presents an integrated stochastic framework for assessing and forecasting drought dynamics in the western Bhagirathi–Hooghly River Basin, encompassing the districts of Bankura, Birbhum, Burdwan, Medinipur, and Purulia. Employing multiple probabilistic and statistical techniques, including the gamma-based standardized precipitation index (SPI), effective drought index (EDI), rainfall anomaly index (RAI), and the auto-regressive integrated moving average (ARIMA) model, the research quantifies spatio-temporal variability and projects drought risk under non-stationary climatic conditions. The analysis of century-long rainfall records (1905–2023), coupled with LANDSAT-derived vegetation and moisture indices, reveals escalating drought frequency and severity, particularly in Purulia, where recurrent droughts occur at roughly four-year intervals. Stochastic evaluation of rainfall anomalies and SPI distributions indicates significant inter-annual variability and complex temporal dependencies across all districts. ARIMA-based forecasts (2025–2045) suggest persistent negative SPI trends, with Bankura and Purulia exhibiting heightened drought probability and reduced predictability at longer timescales. The integration of remote sensing and time-series modelling enhances the robustness of drought prediction by combining climatic stochasticity with land-surface responses. The findings demonstrate that a hybrid stochastic modelling approach effectively captures uncertainty in drought evolution and supports climate-resilient water resource management. This research contributes a novel, region-specific stochastic framework that advances risk-based drought assessment, aligning with the broader goal of developing adaptive and probabilistic environmental management strategies under changing climatic regimes. Full article
(This article belongs to the Special Issue Drought Evaluation Under Climate Change Condition)
Show Figures

Figure 1

25 pages, 6013 KB  
Article
Assessment of Spatio-Temporal Trends in Rainfall Indices in Senegal: Validation of CMIP6 Models over the Historical Period and Projections Under Future Climate Scenarios
by Ibrahima Diouf, Papa Fall, Aissatou Faye, Semou Diouf, Abdou Khadyr Diouf, Mamadou Baïlo Barry, Ansoumana Bodian and Amadou Sall
Climate 2025, 13(12), 247; https://doi.org/10.3390/cli13120247 - 10 Dec 2025
Viewed by 627
Abstract
Senegal, like many West African countries reliant on natural resources and agriculture, faces severe impacts from climate change. This study provides an analysis undertaken by the United States Agency for International Development (USAID) under the Senegal Water Resources Management Activity, investigating historical and [...] Read more.
Senegal, like many West African countries reliant on natural resources and agriculture, faces severe impacts from climate change. This study provides an analysis undertaken by the United States Agency for International Development (USAID) under the Senegal Water Resources Management Activity, investigating historical and projected rainfall extremes to assess potential risks to water resources under future climate scenarios. Using bias-corrected CMIP6 data validated against the Enhancing National Climate Services (ENACTS) dataset for 1985–2014, we assess model performance through time series analysis, spatial distribution, and Taylor diagrams. We examine changes across three time periods—1985–2013 (historical), 2021–2040 (near future), and 2041–2060 (distant future)—focusing on nine key rainfall indices relevant to agriculture and water security. The results indicate that CMIP6 models capture historical rainfall patterns well. The models MPI-ESM1-2-HR, MIROC-ES2L, MRI-ESM2-0, CanESM5, and GISS-E2-1-G show the best performance and are recommended for climate impact assessments. Spatial analysis reveals prolonged dry periods in the north and heavier rainfall in the south. Under SSP585, the near future shows an increase in consecutive dry days (CDDs) and a decline in extreme rainfall events in northern Senegal, whereas the distant future projects a reversal with intensified rainfall (Rx5day). The south shows contrasting patterns, with increasing rainfall intensities in the long term. These findings highlight shifts in rainfall regimes and underscore the urgency of integrating future climate scenarios into adaptation planning. This study recommends extending analysis to temperature extremes due to their implications for agriculture and public health. Full article
(This article belongs to the Special Issue Extreme Precipitation and Responses to Climate Change)
Show Figures

Figure 1

26 pages, 16103 KB  
Article
Integrating Phenological Features with Time Series Transformer for Accurate Rice Field Mapping in Fragmented and Cloud-Prone Areas
by Tiantian Xu, Peng Cai, Hangan Wei, Huili He and Hao Wang
Sensors 2025, 25(24), 7488; https://doi.org/10.3390/s25247488 - 9 Dec 2025
Cited by 1 | Viewed by 525
Abstract
Accurate identification and monitoring of rice cultivation areas are essential for food security and sustainable agricultural development. However, regions with frequent cloud cover, high rainfall, and fragmented fields often face challenges due to the absence of temporal features caused by cloud and rain [...] Read more.
Accurate identification and monitoring of rice cultivation areas are essential for food security and sustainable agricultural development. However, regions with frequent cloud cover, high rainfall, and fragmented fields often face challenges due to the absence of temporal features caused by cloud and rain interference, as well as spectral confusion from scattered plots, which hampers rice recognition accuracy. To address these issues, this study employs a Satellite Image Time Series Transformer (SITS-Former) model, enhanced with the integration of diverse phenological features to improve rice phenology representation and enable precise rice identification. The methodology constructs a rice phenological feature set that combines temporal, spatial, and spectral information. Through its self-attention mechanism, the model effectively captures growth dynamics, while multi-scale convolutional modules help suppress interference from non-rice land covers. The study utilized Sentinel-2 satellite data to analyze rice distribution in Wuxi City. The results demonstrated an overall classification accuracy of 0.967, with the estimated planting area matching 91.74% of official statistics. Compared to traditional rice distribution analysis methods, such as Random Forest, this approach outperforms in both accuracy and detailed presentation. It effectively addresses the challenge of identifying fragmented rice fields in regions with persistent cloud cover and heavy rainfall, providing accurate mapping of cultivated areas in difficult climatic conditions while offering valuable baseline data for yield assessments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

Back to TopTop