Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,025)

Search Parameters:
Keywords = rainfall extremes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6730 KiB  
Article
Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District
by Yongqi Liu, Ziheng Xiong, Mo Wang, Menghan Zhang, Rana Muhammad Adnan, Weicong Fu, Chuanhao Sun and Soon Keat Tan
Water 2025, 17(15), 2325; https://doi.org/10.3390/w17152325 - 5 Aug 2025
Viewed by 22
Abstract
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West [...] Read more.
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West Street Historic Reserve, China. Using a multi-objective optimization framework integrating SWMM simulations, life-cycle cost (LCC) modeling, and resilience metrics, we found that the decentralized CGGI layouts reduced the total LCC by up to 29.6% and required 60.7% less green infrastructure (GI) area than centralized schemes. Under nine extreme rainfall scenarios, the GREI-only systems showed slightly higher technical resilience (Tech-R: max 99.6%) than CGGI (Tech-R: max 99.1%). However, the CGGI systems outperformed GREI in operational resilience (Oper-R), reducing overflow volume by up to 22.6% under 50% network failure. These findings demonstrate that decentralized CGGI provides a more resilient and cost-effective drainage solution, well-suited for heritage districts with spatial and cultural constraints. Full article
Show Figures

Figure 1

22 pages, 1247 KiB  
Article
Evaluating and Predicting Urban Greenness for Sustainable Environmental Development
by Chun-Che Huang, Wen-Yau Liang, Tzu-Liang (Bill) Tseng and Chia-Ying Chan
Processes 2025, 13(8), 2465; https://doi.org/10.3390/pr13082465 - 4 Aug 2025
Viewed by 205
Abstract
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental [...] Read more.
With the rapid pace of urbanization, cities are increasingly facing severe challenges related to environmental pollution, ecological degradation, and climate change. Extreme climate events—such as heatwaves, droughts, heavy rainfall, and wildfires—have intensified public concern about sustainability, environmental protection, and low-carbon development. Ensuring environmental preservation while maintaining residents’ quality of life has become a central focus of urban governance. In this context, evaluating green indicators and predicting urban greenness is both necessary and urgent. This study incorporates international frameworks such as the EU Green City Index, the European Green Capital Award, and the United Nations Sustainable Development Goals to assess urban sustainability. The Extreme Gradient Boosting (XGBoost) algorithm is employed to predict the green level of cities and to develop multiple optimized models. Comparative analysis with traditional models demonstrates that XGBoost achieves superior performance, with an accuracy of 0.84 and an F1-score of 0.81. Case study findings identify “Greenhouse Gas Emissions per Person” and “Per Capita Emissions from Transport” as the most critical indicators. These results provide practical guidance for policymakers, suggesting that targeted regulations based on these key factors can effectively support emission reduction and urban sustainability goals. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 114
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

17 pages, 12127 KiB  
Article
Shoreline Response to Hurricane Otis and Flooding Impact from Hurricane John in Acapulco, Mexico
by Luis Valderrama-Landeros, Iliana Pérez-Espinosa, Edgar Villeda-Chávez, Rafael Alarcón-Medina and Francisco Flores-de-Santiago
Coasts 2025, 5(3), 28; https://doi.org/10.3390/coasts5030028 - 4 Aug 2025
Viewed by 299
Abstract
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 [...] Read more.
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 September 2024), Hurricane John—a Category 2 storm—caused severe flooding despite its lower intensity, primarily due to its unusual trajectory and prolonged rainfall. Digital shoreline analysis of PlanetScope images (captured one month before and after Hurricane Otis) revealed that the southern coast of Acapulco, specifically Zona Diamante—where the major seafront hotels are located—experienced substantial shoreline erosion (94 ha) and damage. In the northwestern section of the study area, the Coyuca Bar experienced the most dramatic geomorphological change in surface area. This was primarily due to the complete disappearance of the bar on October 26, which resulted in a shoreline retreat of 85 m immediately after the passage of Hurricane Otis. Sentinel-1 Synthetic Aperture Radar (SAR) showed that Hurricane John inundated 2385 ha, four times greater than Hurricane Otis’s flooding (567 ha). The retrofitted QGIS methodology demonstrated high reliability when compared to limited in situ local reports. Given the increased frequency of intense hurricanes, these methods and findings will be relevant in other coastal areas for monitoring and managing local communities affected by severe climate events. Full article
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Viewed by 217
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 467
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

16 pages, 8879 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 - 2 Aug 2025
Viewed by 148
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 293
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

9 pages, 3035 KiB  
Commentary
A Lens on Fire Risk Drivers: The Role of Climate and Vegetation Index Anomalies in the May 2025 Manitoba Wildfires
by Afshin Amiri, Silvio Gumiere and Hossein Bonakdari
Earth 2025, 6(3), 88; https://doi.org/10.3390/earth6030088 (registering DOI) - 1 Aug 2025
Viewed by 88
Abstract
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning [...] Read more.
In early May 2025, extreme wildfires swept across Manitoba, Canada, fueled by unseasonably warm temperatures, prolonged drought, and stressed vegetation. We explore how multi-source satellite indicators—such as anomalies in snow cover, precipitation, temperature, vegetation indices, and soil moisture in April–May—jointly signal landscape preconditioning for fire, highlighting the potential of these compound anomalies to inform fire risk awareness in boreal regions. Results indicate that rainfall deficits and diminished snowpack significantly reduced soil moisture, which subsequently decreased vegetative greenness and created a flammable environment prior to ignition. This concept captures how multiple moderate anomalies, when occurring simultaneously, can converge to create high-impact fire conditions that would not be flagged by individual thresholds alone. These findings underscore the importance of integrating climate and biosphere anomalies into wildfire risk monitoring to enhance preparedness in boreal regions under accelerating climate change. Full article
Show Figures

Figure 1

10 pages, 3658 KiB  
Proceeding Paper
A Comparison Between Adam and Levenberg–Marquardt Optimizers for the Prediction of Extremes: Case Study for Flood Prediction with Artificial Neural Networks
by Julien Yise Peniel Adounkpe, Valentin Wendling, Alain Dezetter, Bruno Arfib, Guillaume Artigue, Séverin Pistre and Anne Johannet
Eng. Proc. 2025, 101(1), 12; https://doi.org/10.3390/engproc2025101012 - 31 Jul 2025
Viewed by 9
Abstract
Artificial neural networks (ANNs) adjust to the underlying behavior in the dataset using a training rule or optimizer. The most popular first-and second-order optimizers, Adam (AD) and Levenberg–Marquardt (LM), were compared with the aim of predicting extreme flash floods of a runoff-dominated hydrological [...] Read more.
Artificial neural networks (ANNs) adjust to the underlying behavior in the dataset using a training rule or optimizer. The most popular first-and second-order optimizers, Adam (AD) and Levenberg–Marquardt (LM), were compared with the aim of predicting extreme flash floods of a runoff-dominated hydrological system. A fully connected multilayer perceptron with a shallow structure was used to reduce complexity and limit overfitting. The inputs of the ANN were determined by rainfall–water level cross-correlation analysis. For each optimizer, the hyperparameters of the ANN were selected using a grid search and the cross-validation score on a novel criterion (PERS PEAK) mixing the persistency (PERS) and the quality of flood-peak restitution (PEAK). For an extreme and unseen event used as a test set, LM outperformed AD by 25% on all performance criteria. The peak water level of this event, 66% greater than that of the training set, was predicted by 92% after more training iterations were done by the LM optimizer. This shows that the ANN can predict beyond the ranges of the training set, given the right optimizer. Nevertheless, the LM training time was up to five times longer than that of AD during grid search. Full article
Show Figures

Figure 1

17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 197
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Disastrous Effects of Hurricane Helene in the Southern Appalachian Mountains Including a Review of Mechanisms Producing Extreme Rainfall
by Jeff Callaghan
Hydrology 2025, 12(8), 201; https://doi.org/10.3390/hydrology12080201 - 31 Jul 2025
Viewed by 222
Abstract
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well [...] Read more.
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well to the north around the City of Ashville (Latitude 35.6 N) where extreme rainfall fell and some of the strongest wind gusts were reported. This paper describes the change in the hurricane’s structure as it tracked northwards, how it gathered tropical moisture from the Atlantic and a turning wind profile between the 850 hPa and 500 hPa elevations, which led to such extreme rainfall. This turning wind profile is shown to be associated with extreme rainfall and loss of life from drowning and landslides around the globe. The area around Ashville suffered 157 fatalities, which is a considerable proportion of the 250 fatalities so far recorded in the whole United Stares from Helene. This is of extreme concern and should be investigated in detail as the public expect the greatest impact from hurricanes to be confined to coastal areas near the landfall site. It is another example of increased death tolls from tropical cyclones moving inland and generating heavy rainfall. As the global population increases and inland centres become more urbanised, run off from such rainfall events increases, which causes greater devastation. Full article
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Viewed by 224
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

13 pages, 4261 KiB  
Article
Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
by Tianlong Zhang, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang and Yantao Li
Materials 2025, 18(15), 3585; https://doi.org/10.3390/ma18153585 - 30 Jul 2025
Viewed by 185
Abstract
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl [...] Read more.
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl, rainfall, and temperature fluctuations) remain poorly understood—particularly regarding dynamic corrosion–product evolution. The corrosion characteristics and behavior of AZ31 magnesium alloy exposed in Sanya and Nansha were evaluated using X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical measurements, scanning electron microscopy, and weight loss tests. The results showed that the main components of corrosion products were MgCO3·xH2O(x = 3, 5), Mg5(CO3)4(OH)2·4H2O, Mg2Cl(OH)3·4H2O, and Mg(OH)2. The corrosion rate exposed in the Nansha was 26.5 μm·y−1, which was almost two times than that in Sanya. Localized corrosion is the typical corrosion characteristic of AZ31 magnesium alloy in this tropical marine atmosphere. This study exposes the dynamic crack–regeneration mechanism of corrosion products under high-Cl-rainfall synergy. The corrosion types of AZ31 magnesium alloy in this tropical marine atmosphere were mainly represented by pitting corrosion and filamentous corrosion. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Viewed by 447
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

Back to TopTop