Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (532)

Search Parameters:
Keywords = rainfall decline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5265 KB  
Article
Optimizing Ecosystem Service Patterns with Dynamic Bayesian Networks for Sustainable Land Management Under Climate Change: A Case Study in China’s Sanjiangyuan Region
by Qingmin Cheng, Xiaofeng Liu, Xiaowen Han, Jiayuan Yin, Junji Li, Xue Cheng, Hucheng Li, Qinyi Huang, Yuefeng Wang, Haotian You, Zhiwei Wang and Jianjun Chen
Remote Sens. 2025, 17(19), 3357; https://doi.org/10.3390/rs17193357 - 3 Oct 2025
Abstract
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable [...] Read more.
Identifying suitable areas for ecosystem services (ES) development is essential for balancing economic growth with environmental sustainability in ecologically fragile regions. However, existing studies often neglect integrating future climate and socioeconomic drivers into ES optimization, hindering the design of robust strategies for sustainable resource management. In this study, we propose a novel framework integrating the System Dynamics (SD) model, the Patch-based Land Use Simulation (PLUS) model, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, and the Dynamic Bayesian Network (DBN) to optimize ES patterns in the Sanjiangyuan region under three climate scenarios (SSP126, SSP245, and SSP585) from 2030 to 2060. Our results show the following: (1) Ecological land (forest) expanded by 0.86% under SSP126, but declined by 11.54% under SSP585 due to unsustainable land use intensification. (2) SSP126 emerged as the optimal scenario for ES sustainability, increasing carbon storage and sequestration, habitat quality, and water conservation by 3.2%, 1%, and 1.4%, respectively, compared to SSP585. (3) The central part of the Sanjiangyuan region, characterized by gentle topography and adequate rainfall, was identified as a priority zone for ES development. This study provides a transferable framework for aligning ecological conservation with low-carbon transitions in global biodiversity hotspots. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

26 pages, 7079 KB  
Article
Hydrological Response Analysis Using Remote Sensing and Cloud Computing: Insights from the Chalakudy River Basin, Kerala
by Gudihalli Munivenkatappa Rajesh, Sajeena Shaharudeen, Fahdah Falah Ben Hasher and Mohamed Zhran
Water 2025, 17(19), 2869; https://doi.org/10.3390/w17192869 - 1 Oct 2025
Abstract
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth [...] Read more.
Hydrological modeling is critical for assessing water availability and guiding sustainable resource management, particularly in monsoon-dependent, data-scarce basins such as the Chalakudy River Basin (CRB) in Kerala, India. This study integrated the Soil Conservation Service Curve Number (SCS-CN) method within the Google Earth Engine (GEE) platform, making novel use of multi-source, open access datasets (CHIRPS precipitation, MODIS land cover and evapotranspiration, and OpenLand soil data) to estimate spatially distributed long-term runoff (2001–2023). Model calibration against observed runoff showed strong performance (NSE = 0.86, KGE = 0.81, R2 = 0.83, RMSE = 29.37 mm and ME = 13.48 mm), validating the approach. Over 75% of annual runoff occurs during the southwest monsoon (June–September), with July alone contributing 220.7 mm. Seasonal assessments highlighted monsoonal excesses and dry-season deficits, while water balance correlated strongly with rainfall (r = 0.93) and runoff (r = 0.94) but negatively with evapotranspiration (r = –0.87). Time-series analysis indicated a slight rise in rainfall, a decline in evapotranspiration, and a marginal improvement in water balance, implying gradual enhancement of regional water availability. Spatial analysis revealed a west–east gradient in precipitation, evapotranspiration, and water balance, producing surpluses in lowlands and deficits in highlands. These findings underscore the potential of cloud-based hydrological modeling to capture spatiotemporal dynamics of hydrological variables and support climate-resilient water management in monsoon-driven and data-scarce river basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 3833 KB  
Article
Impact of Climate Change on the Spatio-Temporal Groundwater Recharge Using WetSpass-M Model in the Weyib Watershed, Ethiopia
by Mesfin Reta Aredo and Megersa Olumana Dinka
Earth 2025, 6(4), 118; https://doi.org/10.3390/earth6040118 - 28 Sep 2025
Abstract
Comprehension of spatio-temporal groundwater recharge (GWR) under climate change is imperative to enhance water resources availability and management. The main aim of this study is to examine climate change’s effects on spatio-temporal GWR. This study was done by ensembling five climate models and [...] Read more.
Comprehension of spatio-temporal groundwater recharge (GWR) under climate change is imperative to enhance water resources availability and management. The main aim of this study is to examine climate change’s effects on spatio-temporal GWR. This study was done by ensembling five climate models and the physically-based WetSpass-M model to estimate GWR during baseline (1986 to 2015), mid-term (2031 to 2060), and long-term (2071 to 2100) periods for the Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. In comparison to the Identification of unit Hydrographs and Component flows from Rainfall, Evaporation, and Streamflow (IHACRES)’s baseflow and direct runoff with corresponding WetSpass-M model outputs, the statistical indices showed good performance in simulating water balance components. Projected future temperature and rainfall will likely increase dramatically compared to the baseline period for RCP4.5 and RCP8.5. In comparison to the baseline period, the annual GWR had been projected to increase by 4.28 mm for RCP4.5 for the mid-term (MidT4.5), 15.27 mm for the long-term (LongT4.5), 2.38 mm for the mid-term (MidT8.5), and 13.11 mm for the long-term for RCP8.5 (LongT8.5), respectively. The seasonal GWR findings showed an increasing pattern during winter and spring, whereas it declined in autumn and summer. The mean monthly GWR for MidT4.5, LongT4.5, MidT8.5, and LongT8.5 will increase by 0.34, 1.26, 0.18, and 1.07 mm, respectively. The watershed’s downstream areas were receiving the lowest amount of GWR, and prone to drought. Therefore, this study advocates and recommends that stakeholders participate intensively in developing and implementing climate change resilience initiatives and water resources management strategies to offset the detrimental effects in the downstream areas. Full article
Show Figures

Figure 1

23 pages, 9727 KB  
Article
Evaluating Seasonal Rainfall Forecast Gridded Models over Sub-Saharan Africa
by Winifred Ayinpogbilla Atiah, Eduardo Garcia Bendito and Francis Kamau Muthoni
Hydrology 2025, 12(10), 251; https://doi.org/10.3390/hydrology12100251 - 26 Sep 2025
Abstract
Changes in the amount and distribution of rainfall highly impact agricultural production in predominantly rainfed farming systems in Africa. Reliable rainfall forecasts on a daily timescale are vital for in-season decision-making. This study evaluated the relative prediction abilities of the European Centre for [...] Read more.
Changes in the amount and distribution of rainfall highly impact agricultural production in predominantly rainfed farming systems in Africa. Reliable rainfall forecasts on a daily timescale are vital for in-season decision-making. This study evaluated the relative prediction abilities of the European Centre for Medium-Range Weather Forecasts Season 5.1 (ECMWFSv5.1) and the Climate Forecast System version 2 (CFSv2) gridded rainfall models across Africa and three sub-regions from 2012–2022. The results indicate that the performance of both models declines with increasing lead times and improves with aggregated or coarser temporal resolutions. ECMWFv5.1 consistently represented observed daily rainfall better than CFSv2 at all lead times, particularly in West Africa. On dekadal timescales, ECMWFv5.1 outperformed CFSv2 across all sub-regions. CFSv2 tended to overestimate low- and high-intensity rainfall events, whereas ECMWFv5.1 slightly underestimated low-intensity rainfall but accurately captured high-intensity events. While ECMWFv5.1 showed superior skill overall, model reliability was generally limited to West Africa; in contrast, both models performed poorly in East Africa. The high probability of detection (POD) indicates that the models are generally effective at identifying rainy days. However, their overall accuracy in forecasting rainfall across Africa varies depending on lead time, region, rainfall intensity, and elevation. While we did not apply bias-correction methods in this study, we recommend that such techniques be used in future work to improve the reliability of forecasts for operational and sectoral applications. This study therefore highlights both the strengths and the limitations of CFSv2 and ECMWFv5.1 for climate impact assessments, particularly in West Africa and low-elevation regions. Full article
Show Figures

Figure 1

29 pages, 730 KB  
Article
Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine
by Sergiusz Pimenow, Olena Pimenowa, Lubov Moldavan, Piotr Prus and Katarzyna Sadowska
Resources 2025, 14(10), 152; https://doi.org/10.3390/resources14100152 - 25 Sep 2025
Abstract
Climate change is intensifying droughts, heatwaves, dust storms, and rainfall variability across Eastern Europe, undermining yields and soil stability. In Ukraine, decades of underinvestment and wartime damage have led to widespread degradation of field shelterbelts, while the adoption of agroforestry remains constrained by [...] Read more.
Climate change is intensifying droughts, heatwaves, dust storms, and rainfall variability across Eastern Europe, undermining yields and soil stability. In Ukraine, decades of underinvestment and wartime damage have led to widespread degradation of field shelterbelts, while the adoption of agroforestry remains constrained by tenure ambiguity, fragmented responsibilities, and limited access to finance. This study develops a policy-and-technology framework to restore agroforestry at scale under severe fiscal and institutional constraints. We apply a three-stage approach: (i) a national baseline (post-1991 legislation, statistics) to diagnose the biophysical and legal drivers of shelterbelt decline, including wartime damage; (ii) a comparative synthesis of international support models (governance, incentives, finance); and (iii) an assessment of transferability of digital monitoring, reporting, and verification (MRV) tools to Ukraine. We find that eliminating tenure ambiguities, introducing targeted cost sharing, and enabling access to payments for ecosystem services and voluntary carbon markets can unlock financing at scale. A digital MRV stack—Earth observation, UAV/LiDAR, IoT sensors, and AI—can verify tree establishment and survival, quantify biomass and carbon increments, and document eligibility for performance-based incentives while lowering transaction costs relative to field-only surveys. The resulting sequenced policy package provides an actionable pathway for policymakers and donors to finance, monitor, and scale shelterbelt restoration in Ukraine and in similar resource-constrained settings. Full article
Show Figures

Figure 1

18 pages, 2201 KB  
Article
The Effects of Nitrogen Deposition and Rainfall Enhancement on Intraspecific and Interspecific Competitive Patterns in Deciduous Broad-Leaved Forests
by Liang Hong, Guangshuang Duan, Yanhua Yang, Shenglei Fu, Liyong Fu, Lei Ma, Xiaowei Li and Juemin Fu
Forests 2025, 16(10), 1505; https://doi.org/10.3390/f16101505 - 23 Sep 2025
Viewed by 65
Abstract
Amid accelerating global nitrogen deposition, China has emerged as the world’s third-largest hotspot after Western Europe and North America. Disentangling how elevated N inputs interact with intensifying precipitation and silvicultural practices is therefore essential for forecasting forest responses to ongoing climate change. Taking [...] Read more.
Amid accelerating global nitrogen deposition, China has emerged as the world’s third-largest hotspot after Western Europe and North America. Disentangling how elevated N inputs interact with intensifying precipitation and silvicultural practices is therefore essential for forecasting forest responses to ongoing climate change. Taking advantage of the “canopy-simulated nitrogen deposition” platform in Jigongshan National Nature Reserve, we compared tree-level census data from 2012 and 2022 to quantify decadal shifts in neighborhood competition under seven nitrogen addition and rainfall enhancement regimes. After using ordered-sample clustering to identify eight competitors as the optimal neighborhood size, we applied the Hegyi family of competitive indices (CI, CI1, CI2, mCI, mCI1 and mCI2) to analyze competitive responses at three hierarchical levels: the entire stand, all surviving trees and three dominant species (Quercus acutissima, Quercus variabilis, and Liquidambar formosana). The results indicate: (1) Nitrogen addition and rainfall enhancement did not alter the dominant tree species of the stand, which remained primarily Q. acutissima, Q. variabilis, and L. formosana. (2) The competition indices based on all trees showed an upward trend, whereas those calculated for surviving trees and for dominant species declined markedly (surviving trees p < 0.1, L. formosana CI1 p < 0.05). (3) Although nitrogen addition treatments did not alter overall stand competition intensity, it relieved competitive pressure on surviving trees by suppressing interspecific interactions (CI2 and mCI2); intraspecific competition also weakened, but at a slower rate. (4) Interspecific competition intensity for surviving L. formosana decreased significantly, whereas competition indices for Q. acutissima and Q. variabilis remained statistically unchanged. (5) Nitrogen addition methods (canopy vs. understory) had no significant effect on competition indices, while nitrogen addition intensity exhibited a dose-dependent effect: high nitrogen addition significantly reduced interspecific competition intensity more than low nitrogen addition (p < 0.05). In summary, nitrogen deposition primarily regulates interspecific competition through concentration rather than pathway, providing scientific basis for adaptive management of broad-leaved mixed forests in transitional zones under sustained nitrogen deposition scenarios. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 4159 KB  
Article
Optimizing Irrigation and Drainage Practices to Control Soil Salinity in Arid Agroecosystems: A Scenario-Based Modeling Approach Using SaltMod
by Yule Sun, Liping Wang, Shaodong Yang, Zhongyi Qu and Dongliang Zhang
Agronomy 2025, 15(9), 2239; https://doi.org/10.3390/agronomy15092239 - 22 Sep 2025
Viewed by 124
Abstract
Soil secondary salinization is a major limiting factor of sustainable agricultural production in arid and semi-arid irrigation zones, yet predictive tools for regional water–salt dynamics remain limited. The Yichang Irrigation District, located within the Hetao Irrigation Area, has experienced persistent salinity challenges due [...] Read more.
Soil secondary salinization is a major limiting factor of sustainable agricultural production in arid and semi-arid irrigation zones, yet predictive tools for regional water–salt dynamics remain limited. The Yichang Irrigation District, located within the Hetao Irrigation Area, has experienced persistent salinity challenges due to shallow groundwater tables and intensive irrigation. In this study, we aimed to simulate long-term soil water–salt dynamics in the Yichang Irrigation District and evaluate the effectiveness of different engineering and management scenarios using the SaltMod model. Field monitoring of soil salinity and groundwater levels during summer and fall (2022–2024) was used to calibrate and validate SaltMod parameters, ensuring accurate reproduction of seasonal soil salinity fluctuations. Based on the calibrated model, ten-year scenario simulations were conducted to assess the effects of changes in soil texture, irrigation water quantity, water quality, rainfall, and groundwater table depth on root-zone salinity. Our results show that under baseline management, soil salinity is projected to decline by 5% over the next decade. Increasing fall autumn leaching irrigation further reduces salinity by 5–10% while conserving 50–300 m3·ha−1 of water. Sensitivity analysis indicated groundwater depth and irrigation water salinity as key drivers. Among the engineering strategies, drainage system improvement and groundwater regulation achieved the highest salinity reduction (15–20%), while irrigation regime optimization provided moderate benefits (~10%). This study offers a quantitative basis for integrated water–salt management in the Hetao Irrigation District and similar regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

28 pages, 6123 KB  
Article
Evaluating Future Water Resource Risks in the Driftless Midwest from Climate and Land Use Change
by Sagarika Rath, Sam Arden, Tassia Mattos Brighneti, Sam Moore and Raghavan Srinivasan
Land 2025, 14(9), 1919; https://doi.org/10.3390/land14091919 - 20 Sep 2025
Viewed by 370
Abstract
Assessing the impacts of future changes in rainfall, temperature, and land use on streamflow and nutrient loads is critical for long-term watershed management, particularly in the unglaciated Driftless Area with steep slopes, erodible soils, and karst geology. This study evaluates the Kickapoo watershed [...] Read more.
Assessing the impacts of future changes in rainfall, temperature, and land use on streamflow and nutrient loads is critical for long-term watershed management, particularly in the unglaciated Driftless Area with steep slopes, erodible soils, and karst geology. This study evaluates the Kickapoo watershed in southwestern Wisconsin to examine how projected climate change and cropland expansion may affect hydrology during the mid- (post-2050) and late century (post-2070). Climate projections suggest temperature increase, wetter springs, and drier summers over the century. Annual average streamflow is projected to decline by 5–40% relative to 2000–2020, primarily due to a 5–15% reduction in groundwater discharge. While land use changes from prairie to cropland had a limited additional impact on streamflow, it increased annual average total phosphorus (TP) by 5.67–10.08%, total nitrogen (TN) by 1.08–2.34%, and sediment by 3.11–6.07%, frequently exceeding total maximum daily load (TMDL) thresholds in comparison to the climate change scenario. These findings suggest that although land use changes exacerbate nutrient and sediment pollution, climate change remains the dominant driver of hydrologic alteration in this watershed. Instead, converting 18% (~290 km2) of cropland to grassland could enhance baseflow (0.84–14%), and reduce TP (30–45%), TN (3–5%), sediment (80–90%), and meeting TMDL 90% of the time. These findings underscore the importance of nature-based solutions, such as prairie restoration, supporting adaptive management to reduce nutrient load, sustaining low flows, and strengthening hydrologic resilience, that support key Sustainable Development Goals. This approach offers valuable insights for other unglaciated watersheds globally. Full article
(This article belongs to the Special Issue Integrating Climate, Land, and Water Systems)
Show Figures

Figure 1

20 pages, 8934 KB  
Article
Strengthening Ecosystem Sustainability and Climate Resilience Through Integrative Nature-Based Solutions in Bontioli Natural Reserve, West African Drylands
by Issaka Abdou Razakou Kiribou, Kangbéni Dimobe and Sintayehu W. Dejene
Earth 2025, 6(3), 111; https://doi.org/10.3390/earth6030111 - 18 Sep 2025
Viewed by 547
Abstract
Natural reserves in the West African drylands play a critical role in sustaining livelihoods and preserving ecological integrity. However, these ecosystems face growing threats from climate variability and anthropogenic pressure. This study assesses the potential of Nature-based Solutions (NbSs) to enhance climate resilience [...] Read more.
Natural reserves in the West African drylands play a critical role in sustaining livelihoods and preserving ecological integrity. However, these ecosystems face growing threats from climate variability and anthropogenic pressure. This study assesses the potential of Nature-based Solutions (NbSs) to enhance climate resilience and mitigate human-induced degradation in Bontioli Natural Reserve (BNR), one of the region’s key biodiversity hotspots. We employed an integrated approach combining ecological assessments, climate and anthropogenic pressures analysis, and participatory governance framework. Generalized additive modeling (GAM) is applied to assess the long-term vegetation response to climate stressors. A conceptual framework that integrates climate resilience with socio-ecological systems is developed for synergies conservation. Our findings indicate a consistent vegetation decline at a rate of 0.051 ± 0.043/year, driven by rising temperatures, and declining rainfall, which is exacerbated by anthropogenic land use pressure since 2000. Human population growth is strongly correlated with cropland expansion (R2 = 0.903) and vegetation loss (R2 = 0.793). As a result, 53.85% of species populations are declining, with 30.77% classified as endangered or vulnerable. Based on the scientific evidence, NbSs have emerged as cost-effective and sustainable strategies to restore ecological function and strengthen communities-based conservation. The proposed NbS framework offers a holistic pathway for safeguarding long-term ecosystem resilience in dryland reserves, directly contributing to Sustainable Development Goals (SDGs) 13 and 15. Full article
Show Figures

Figure 1

21 pages, 10818 KB  
Article
Landcover Change in Tigray’s Semi-Arid Highlands (1935–2020): Implications for Runoff and Channel Morphology
by Kiara Haegeman, Emnet Negash, Hailemariam Meaza, Jan Nyssen and Stefaan Dondeyne
Land 2025, 14(9), 1897; https://doi.org/10.3390/land14091897 - 17 Sep 2025
Viewed by 473
Abstract
This study investigates how landcover change between 1935 and 2020 have shaped hydrological responses in the semi-arid highlands of Tigray, Ethiopia. Focusing on the Tsili catchment (27.5 km2), it examines links between landcover change, drainage network evolution, and river channel width [...] Read more.
This study investigates how landcover change between 1935 and 2020 have shaped hydrological responses in the semi-arid highlands of Tigray, Ethiopia. Focusing on the Tsili catchment (27.5 km2), it examines links between landcover change, drainage network evolution, and river channel width under conditions of population growth and climate variability. Landcover and drainage maps were derived from historical aerial photographs and satellite imagery for four time steps, and surface runoff was simulated using the SWAT model with uniform meteorological forcing to isolate landcover effects. Results show a 37.6% increase in cropland and substantial declines in shrubland (−29.3%) and forest (−10.1%). River channel width at the outlet widened from 7.5 to 10.5 m, while drainage density increased 1.5-fold. These physical changes aligned with modelled increases in surface runoff. Strong correlations were found between runoff, channel width, drainage density, and landcover types. The findings highlight that cropland expansion—at the expense of natural vegetated land—has intensified runoff and erosion risks. As climate change is expected to bring more intense rainfall to East Africa, this underscores the need for land management strategies that reduce hydrological connectivity and support sustainable agriculture in data-scarce regions. Full article
Show Figures

Figure 1

30 pages, 5345 KB  
Article
Climate Change and Its Potential Impact on the Conservation of Wooden Pole Dwellings in Lake Bolsena: Insights from Climate Proxy Data and High-Frequency Water Monitoring
by Swati Tamantini, Maria Cristina Moscatelli, Francesco Cappelli, Barbara Barbaro, Egidio Severi, Federica Antonelli, Giulia Galotta, Marco Ciabattoni and Manuela Romagnoli
Hydrology 2025, 12(9), 235; https://doi.org/10.3390/hydrology12090235 - 10 Sep 2025
Viewed by 387
Abstract
This study examines the impact of recent climatic trends on the preservation of submerged wooden structures at the Gran Carro archaeological site in Lake Bolsena, Italy. Climatic data from the Bolsena Meteorological Station were analysed alongside in situ water quality measurements collected near [...] Read more.
This study examines the impact of recent climatic trends on the preservation of submerged wooden structures at the Gran Carro archaeological site in Lake Bolsena, Italy. Climatic data from the Bolsena Meteorological Station were analysed alongside in situ water quality measurements collected near the archaeological remains at a depth of 4 m. The key parameters included water temperature (Tw), redox potential (Eh), dissolved oxygen (DO), and total dissolved solids (TDS). Trend analyses using the Mann–Kendall test and Sen’s slope revealed significant increases in air and water temperatures, which were strongly correlated. Although precipitation exhibited an upward trend, its negative correlation with temperature suggests greater variability rather than a stable water supply. Despite increased rainfall, lake levels showed a significant decline, likely due to intensified evaporation and water extraction for irrigation. UAV surveys confirmed recent lowering of the lake’s water surface during drought periods. Among the limnological parameters, dissolved oxygen saturation declined significantly, while redox potential increased, indicating shifts toward more anaerobic conditions. These environmental changes could promote the activity of erosive bacteria that degrade submerged wood. Conversely, increased evaporation might also enhance oxygen penetration at depth, potentially activating decay agents such as soft rot fungi and wood-boring bacteria. Overall, the findings suggest that ongoing climatic changes are adversely affecting the preservation of submerged wooden structures, highlighting the need for adaptive management strategies to protect both the lake ecosystem and its archaeological heritage. Full article
Show Figures

Figure 1

17 pages, 3662 KB  
Article
Numerical Study of Moisture Transfer and Methane Emission in Earthen Final Covers: Effects of Ambient Conditions
by Tao Wu, Song Feng, Cheng Chen, Guannian Chen and Zhangjing Zhang
Atmosphere 2025, 16(9), 1058; https://doi.org/10.3390/atmos16091058 - 8 Sep 2025
Viewed by 273
Abstract
Earthen final covers (EFCs) are widely used to mitigate environmental impacts from landfills, particularly in controlling methane emissions and groundwater contamination. In this study, a one-dimensional numerical model was built to simulate the interactions of liquid water, water vapor, landfill gas, and heat, [...] Read more.
Earthen final covers (EFCs) are widely used to mitigate environmental impacts from landfills, particularly in controlling methane emissions and groundwater contamination. In this study, a one-dimensional numerical model was built to simulate the interactions of liquid water, water vapor, landfill gas, and heat, incorporating the biochemical process of methane oxidation. Parametric studies revealed that both atmospheric and waste temperatures significantly influence the soil temperature and evaporation, thereby affecting methane oxidation. Oxidation efficiency increased from 8.7% to 55.3% as atmospheric temperature rose from 5 °C to 35 °C. High waste temperatures enhanced oxidation by up to 2.9 times under cold conditions. An increase in atmospheric pressure (950–990 mbar) promoted oxygen diffusion into the cover and improved oxidation efficiency from 0.8% to 77.1%. Atmospheric relative humidity also played a critical role by affecting surface evaporation, with higher humidity promoting better water retention but limiting oxygen diffusion. The methane oxidation performance of the cover declined by 12.0% to 68.5% compared to pre-rainfall conditions. Rainfall temporarily inhibited oxidation due to moisture-induced oxygen limitation, with partial recovery after rainfall ceased. This study provided valuable insights into the complex interactions between ambient conditions and EFC performance, contributing to the optimization of landfill cover designs and methane mitigation strategies. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

25 pages, 17509 KB  
Article
Assessment of Vegetation Cover and Rainfall Infiltration Effects on Slope Stability
by Gaoliang Tao, Lingsan Guo, Henglin Xiao, Qingsheng Chen, Sanjay Nimbalkar, Shiju Feng and Zhijia Wu
Appl. Sci. 2025, 15(17), 9831; https://doi.org/10.3390/app15179831 - 8 Sep 2025
Viewed by 475
Abstract
Investigating rainfall infiltration mechanisms and slope stability dynamics under varying vegetation cover conditions is essential for advancing ecological slope protection methodologies. This research focuses on large-scale outdoor slope models, with the objective of monitoring soil moisture variations in real-time during rainfall events on [...] Read more.
Investigating rainfall infiltration mechanisms and slope stability dynamics under varying vegetation cover conditions is essential for advancing ecological slope protection methodologies. This research focuses on large-scale outdoor slope models, with the objective of monitoring soil moisture variations in real-time during rainfall events on four types of slopes: bare, herbaceous, shrub, and mixed herb–shrub planting. Combining direct shear tests for unsaturated soil with numerical simulations, and considering the weakening effect of water on shear strength, this study analyzes slope stability. The findings reveal significant spatial variations in rainfall infiltration rates, with maximum values recorded at a burial depth of 0.2 m, declining as the burial depth increases. Different types of vegetation have distinct impacts on slope infiltration patterns: herbaceous increases cumulative infiltration by 21.32%, while shrub reduces it by 61.06%. The numerically simulated moisture content values demonstrate strong congruence with field-measured data. Compared with monoculture herbaceous or shrub root systems, the mixed herb–shrub root system exhibits the most significant enhancement effects on shear strength parameters. Under high water content conditions, root systems demonstrate substantially greater improvement in cohesion than in internal friction angle. Before rainfall, shrub vegetation contributed the most significant improvement to the safety factor, increasing it from 2.766 to 3.046, followed by herbaceous and mixed herb–shrub vegetation, which raised it to 2.81 and 2.948. After rainfall, mixed herb–shrub vegetation demonstrated the greatest enhancement of the safety factor, elevating it from 1.139 to 1.361, followed by herbaceous and shrub vegetation, which increased it to 1.192 and 1.275. The study offers preliminary insights and a scientific basis for the specific conditions tested for selecting and optimizing eco-friendly slope protection measures. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

19 pages, 7486 KB  
Article
Quantifying the Impacts of Climate Change and Human Activities on Monthly Runoff in the Liuhe River Basin, Northeast China
by Jiyun Yao, Xiaomeng Song and Mingqian Li
Sustainability 2025, 17(17), 8050; https://doi.org/10.3390/su17178050 - 7 Sep 2025
Viewed by 817
Abstract
Both climate change and human activities have had a significant impact on hydrological processes. Quantification of affecting factors on river regime changes is scientifically essential for understanding hydrological processes and sustainable water resources management in the basins. This study investigates the features of [...] Read more.
Both climate change and human activities have had a significant impact on hydrological processes. Quantification of affecting factors on river regime changes is scientifically essential for understanding hydrological processes and sustainable water resources management in the basins. This study investigates the features of variations in meteorological and hydrological variables in the Liuhe River Basin (LRB) from 1956 to 2020 based on various observed records and statistical methods. It then quantitatively identifies the possible impacts of climate variability and human activities on runoff in the LRB using the empirical methods and the Budyko framework. The results show that (1) the runoff demonstrates a significantly decreasing trend over the past 65 years, but the rainfall has no obvious trend with significant interannual fluctuations, and potential evapotranspiration exhibits a weekly decreasing trend, particularly in summer. (2) The runoff series can be divided into two periods, i.e., the baseline (1956–1969) and change (1970–2020) periods, and the change period can also be divided into two stages, i.e., stage I (1970–1999) and stage II (2000–2020). (3) Human activities are the dominant factors in the runoff decline in the LRB, with the contribution rates being greater than 80% in the change period, particularly for stage II. The analysis of this study can provide a reference for the rational utilization of water resources in the LRB. Full article
Show Figures

Figure 1

18 pages, 3578 KB  
Article
Impacts of Climate Change on Streamflow to Ban Chat Reservoir
by Tran Khac Thac, Nguyen Tien Thanh, Nguyen Hoang Son and Vu Thi Minh Hue
Atmosphere 2025, 16(9), 1054; https://doi.org/10.3390/atmos16091054 - 5 Sep 2025
Viewed by 522
Abstract
Climate change is increasingly altering rainfall regimes and hydrological processes, posing major challenges to reservoir operation, flood control, and hydropower production. Understanding its impacts on the Ban Chat reservoir in Northwest Vietnam is therefore crucial for ensuring reliable water resource management under future [...] Read more.
Climate change is increasingly altering rainfall regimes and hydrological processes, posing major challenges to reservoir operation, flood control, and hydropower production. Understanding its impacts on the Ban Chat reservoir in Northwest Vietnam is therefore crucial for ensuring reliable water resource management under future uncertainties. This study aims to assess potential changes in streamflow to the Ban Chat reservoir under different climate change scenarios. The study employed nine Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Future climate projections were bias-corrected using the Quantile Delta Mapping (QDM) method and used as input for the Hydrological Engineering Center–Hydrological Modeling System (HEC-HMS) to simulate future inflows. Streamflow changes were evaluated for near- (2021–2040), mid- (2041–2060), and late-century (2061–2080) periods relative to the baseline (1995–2014). Results show that under SSP1-2.6, mean annual discharge and flood-season flows steadily increase (up to +6.9% by 2061–2080), while storage deficits persist (−27.7% to −13.1%). Under SSP2-4.5, changes remain small, with flood peaks limited to +4.5% mid-century, but severe dry-season deficits continue (−29.5% to −24.4%). In contrast, SSP5-8.5 projects strong late-century increases in mean flows (+7.5%) and flood peaks (+8.2%), though early-century flood flows decline (−2.1%). These findings provide essential scientific evidence for adaptive reservoir operation, hydropower planning, and flood risk management, underscoring the significance of incorporating climate scenarios into sustainable water resource strategies in mountainous regions. Full article
(This article belongs to the Special Issue Hydrometeorological Extremes: Mechanisms, Impacts and Future Risks)
Show Figures

Figure 1

Back to TopTop