Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (176)

Search Parameters:
Keywords = railway infrastructure managers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
86 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 184
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 365
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

16 pages, 1747 KiB  
Article
Augmented and Virtual Reality for Improving Safety in Railway Infrastructure Monitoring and Maintenance
by Marina Ricci, Nicola Mosca and Maria Di Summa
Sensors 2025, 25(12), 3772; https://doi.org/10.3390/s25123772 - 17 Jun 2025
Viewed by 477
Abstract
The highly demanding safety standards adopted in the railway context imply that cutting-edge technologies must limit accidents. This paper presents the human-centered outcomes of the VRAIL project, an industrial research project aiming to use enabling technologies and develop methodologies for operators directly involved [...] Read more.
The highly demanding safety standards adopted in the railway context imply that cutting-edge technologies must limit accidents. This paper presents the human-centered outcomes of the VRAIL project, an industrial research project aiming to use enabling technologies and develop methodologies for operators directly involved in infrastructure management in the railway field. Developing integrated monitoring systems and applications that exploit Augmented Reality (AR) and Virtual Reality (VR) becomes crucial to support the awareness of planning and maintenance operators required to comply with high-quality standards. This paper addresses the abovementioned issue by proposing the development of two different prototype applications in both AR and VR for railway infrastructure data management. These environments will provide the planning operator with a complete platform to explore, use to plan maintenance interventions, and gather detailed reports to improve the overall safety of the railway line effectively. Full article
Show Figures

Figure 1

16 pages, 805 KiB  
Article
Using SWARA for the Evaluation Criteria of Connecting Airports with Railway Networks
by Jure Šarić and Borna Abramović
Systems 2025, 13(6), 428; https://doi.org/10.3390/systems13060428 - 3 Jun 2025
Viewed by 475
Abstract
The optimisation of airport infrastructure capacities lacks adequate tools that would enable airport owners and managers to make strategic decisions related to sustainable development and strengthening multimodal connectivity. Assessing the sustainability of the transport system is one of the important issues in creating [...] Read more.
The optimisation of airport infrastructure capacities lacks adequate tools that would enable airport owners and managers to make strategic decisions related to sustainable development and strengthening multimodal connectivity. Assessing the sustainability of the transport system is one of the important issues in creating transport policies worldwide. In this research, the methodology of multi-criteria decision making (MCDM) was used, which can be applied to decision making and the evaluation of transport projects, considering more than one criterion in the selection process. The Stepwise Weight Assessment Ratio Analysis (SWARA) method is one of the new MCDM methods. The SWARA method will assess the weights of the selected main criteria and sub-criteria for the multimodal connection of airports to the railway transport infrastructure. In this method, the expert plays an important role in the evaluation and calculation of the criteria weights. This research also aims to respond to the need to define a framework for objective and transparent decision-making based on the assessment of the weighting factors of the selected main criteria and sub-criteria. To assess the justification for the choice of railway transport for connecting airports, financial, traffic, environmental, and availability criteria were used. Full article
(This article belongs to the Special Issue Optimization-Based Decision-Making Models in Rail Systems Engineering)
Show Figures

Figure 1

27 pages, 11744 KiB  
Article
Enhancing Railway Track Intervention Planning: Accounting for Component Interactions and Evolving Failure Risks
by Hamed Mehranfar, Bryan T. Adey, Saviz Moghtadernejad and Claudia Fecarotti
Infrastructures 2025, 10(5), 126; https://doi.org/10.3390/infrastructures10050126 - 21 May 2025
Viewed by 423
Abstract
This manuscript proposes a methodology to leverage digitalisation to efficiently generate an overview of required condition-based railway track interventions, possession windows, and expected costs for railway networks at the beginning of the intervention planning process. The consistent and efficient generation of such an [...] Read more.
This manuscript proposes a methodology to leverage digitalisation to efficiently generate an overview of required condition-based railway track interventions, possession windows, and expected costs for railway networks at the beginning of the intervention planning process. The consistent and efficient generation of such an overview not only helps track managers in their decision-making but also facilitates the discussion among other decision-makers in later phases of the track intervention planning process, including line planners, capacity managers, and project managers. The methodology uses data of different levels of detail, discrete state modelling for uncertain deterioration of components, and component-level intervention strategies. It dynamically updates the condition estimates of components by capturing the interaction between deteriorating components using Bayesian filters. It also estimates the risks associated with different types of potential service losses that may occur due to sudden events using fault trees as a function of time and the condition of components. An implementation of the methodology is conducted for a 25 km regional railway network in Switzerland. The results suggest that the methodology has the potential to help track managers early in the intervention planning process. In addition, it is argued that the methodology will lead to improvements in the efficiency of the planning process, improvements in the scheduling of preventive interventions, and the reduction in corrective intervention costs upon the implementation in a digital environment. Full article
(This article belongs to the Section Infrastructures Inspection and Maintenance)
Show Figures

Figure 1

21 pages, 2768 KiB  
Article
I-BIM Applied in Railway Geometric Inspection Activity: Diagnostic and Alert
by Zita Sampaio, Nuno Moreira and José Neves
Appl. Sci. 2025, 15(10), 5733; https://doi.org/10.3390/app15105733 - 20 May 2025
Viewed by 481
Abstract
The Building Information Modeling (BIM) concept has been recently implemented in railway infrastructure, assisting mainly in the project elaboration, and further, the facility management aspect. The present study addresses the inspection activity of the railway geometry, in a BIM context, using a rigorous [...] Read more.
The Building Information Modeling (BIM) concept has been recently implemented in railway infrastructure, assisting mainly in the project elaboration, and further, the facility management aspect. The present study addresses the inspection activity of the railway geometry, in a BIM context, using a rigorous modeling process of the railway track components, and the development of a Dynamo script for the evaluation of the degree of geometric irregularity detected during inspection works. The monitoring phase of the rail tracks involves a planned railway inspection schedule, normally supported by human analyses of data collected in a railway geometric inspection. The created script allows for evaluating the inspection data and categorizes the data by alert levels that are associated with a color code, visualized over the railway components of the BIM model. The Dynamo script uses new BIM parameters considering the maintenance activity, allowing for analyzing inspection data and visualizing the colored alerts. This capacity alerts the maintenance engineer about the urgency of planning a retrofitting action, according to the severity level of the detected geometric anomaly. An illustrative real railway track segment is considered supporting the modeling process, the inspection data collection and the efficiency analyses of the script application. This research intends to contribute to increment knowledge of BIM adoption in railway infrastructures, emphasizing the potential of using Dynamo programming on BIM model database management. Full article
(This article belongs to the Special Issue Building Information Modelling: From Theories to Practices)
Show Figures

Figure 1

21 pages, 450 KiB  
Article
Regional Impacts of Public Transport Development in the Agglomeration of Budapest in Hungary
by Szilvia Erdei-Gally, Tomasz Witko and Attila Erdei
Geographies 2025, 5(2), 22; https://doi.org/10.3390/geographies5020022 - 19 May 2025
Viewed by 1212
Abstract
Budapest and its metropolitan area serve as a key railway hub both within Hungary and across Europe, intersected by multiple European rail corridors and characterized by substantial suburban traffic driven by daily commuters from surrounding areas. The Budapest agglomeration is served by 11 [...] Read more.
Budapest and its metropolitan area serve as a key railway hub both within Hungary and across Europe, intersected by multiple European rail corridors and characterized by substantial suburban traffic driven by daily commuters from surrounding areas. The Budapest agglomeration is served by 11 rail lines to Budapest managed by the MÁV Group Company (MÁV: Magyar Államvasutak Co., Budapest, Hungary) is a railway company owned by the Hungarian state). The majority of these are high-capacity, mostly double-track electrified main lines, which play a major role in long-distance and international transport. The main goal of the MÁV Group Company is the continuous development of the quality of passenger transport in Hungary and Europe, quality improvement in passenger comfort, sales, and passenger information systems, and the introduction of up-to-date, environmentally friendly means and solutions. Infrastructure plays a decisive role in the development and transformation of the country and its regions, municipalities, and settlement systems. The development of transport infrastructure not only dynamically transforms and shapes spatial structures but also initiates processes of internal differentiation. In our study, statistical analysis of municipalities and rail-based public transport confirmed a positive correlation between the modernization of transport infrastructure and selected demographic indicators. Full article
Show Figures

Figure 1

30 pages, 8675 KiB  
Article
Assessment of the Railway Line Capacity on the Railway Network Using a New Innovative Method
by Vladimír Ľupták, Milan Dedík, Peter Morihladko, Peter Šulko and Lumír Pečený
Sustainability 2025, 17(10), 4476; https://doi.org/10.3390/su17104476 - 14 May 2025
Viewed by 573
Abstract
Nowadays, it is essential to contribute to sustainable transport to the maximum extent possible. Therefore, a significant emphasis is placed on environmentally friendly modes of transport, especially railway transport. For this reason, it is very important to ensure sufficient capacity of the railway [...] Read more.
Nowadays, it is essential to contribute to sustainable transport to the maximum extent possible. Therefore, a significant emphasis is placed on environmentally friendly modes of transport, especially railway transport. For this reason, it is very important to ensure sufficient capacity of the railway infrastructure and high-quality railway transport operations. Railway transport control, operation, and management bring several specifications and unique features. One of the most important things is to correctly determine the capacity and throughput of the railway infrastructure because it must be clear how many trains can be operated on a concrete railway line for a certain time. Therefore, the issue of railway infrastructure capacity is a relatively broad and complex topic. Currently, there are several methods and ways to determine it. However, for scientific progress and research in this field, it is necessary to look for new scientific and professional solutions to the mentioned issue with effective implementation into practice. The mentioned contribution deals with new modern progressive methods of determining the capacity of the railway line using simulations and software applications. The main objective is to establish a methodology, specifically a heuristic procedure, in which specific partial steps of a new method of determining the capacity of railway infrastructure are defined. Subsequently, this new way of determining it is directly applied and explained on the specific railway line Bratislava–Komárno, which is located in southwestern Slovakia. The first part of the paper contains a theoretical framework and a brief explanation of the issue, including current used methods, as well as current scientific and professional manuscripts and papers that deal with this topic. Subsequently, the mentioned railway line is described, including the current operational problems arising on it due to insufficient current capacity. As part of the results, the proposal part is presented, including a universal heuristic procedure, which includes partial steps of the new methodology with application to the mentioned railway line. The discussions present its theoretical and practical benefits and topics for the further development of this issue. However, the most significant benefit will be the more effective identification of bottlenecks in railway operations, which will improve its smoothness and will have a significant impact on sustainable development and its aspects in the field of transport. Full article
Show Figures

Figure 1

25 pages, 25281 KiB  
Article
Blending Nature with Technology: Integrating NBSs with RESs to Foster Carbon-Neutral Cities
by Anastasia Panori, Nicos Komninos, Dionysis Latinopoulos, Ilektra Papadaki, Elisavet Gkitsa and Paraskevi Tarani
Designs 2025, 9(3), 60; https://doi.org/10.3390/designs9030060 - 9 May 2025
Viewed by 2388
Abstract
Nature-based solutions (NBSs) offer a promising framework for addressing urban environmental challenges while also enhancing social and economic resilience. As cities seek to achieve carbon neutrality, the integration of NBSs with renewable energy sources (RESs) presents both an opportunity and a challenge, requiring [...] Read more.
Nature-based solutions (NBSs) offer a promising framework for addressing urban environmental challenges while also enhancing social and economic resilience. As cities seek to achieve carbon neutrality, the integration of NBSs with renewable energy sources (RESs) presents both an opportunity and a challenge, requiring an interdisciplinary approach and an innovative planning strategy. This study aims to explore potential ways of achieving synergies between NBSs and RESs to contribute to urban resilience and climate neutrality. Focusing on the railway station district in western Thessaloniki (Greece), this research is situated within the ReGenWest project, part of the EU Cities Mission. This study develops a comprehensive, well-structured framework for integrating NBSs and RESs, drawing on principles of urban planning and energy systems to address the area’s specific spatial and ecological characteristics. Using the diverse typologies of open spaces in the district as a foundation, this research analyzes the potential for combining NBSs with RESs, such as green roofs with photovoltaic panels, solar-powered lighting, and solar parking shaders, while assessing the resulting impacts on ecosystem services. The findings reveal consistent benefits for cultural and regulatory services across all interventions, with provisioning and supporting services varying according to the specific solution applied. In addition, this study identifies larger-scale opportunities for integration, including the incorporation of NBSs and RESs into green and blue corridors and metropolitan mobility infrastructures and the development of virtual power plants to enable smart, decentralized energy management. A critical component of the proposed strategy is the implementation of an environmental monitoring system that combines hardware installation, real-time data collection and visualization, and citizen participation. Aligning NBS–RES integration with Positive Energy Districts is another aspect that is stressed in this paper, as achieving carbon neutrality demands broader systemic transformations. This approach supports iterative, adaptive planning processes that enhance the efficiency and responsiveness of NBS–RES integration in urban regeneration efforts. Full article
(This article belongs to the Special Issue Design and Applications of Positive Energy Districts)
Show Figures

Figure 1

29 pages, 1358 KiB  
Article
Exploring Behavioral Intentions and Sustainability Perspectives for the China–Laos High-Speed Rail Service Among Thai People: A Comparative Study of Urban and Rural Zones
by Thanapong Champahom, Dissakoon Chonsalasin, Kestsirin Theerathitichaipa, Fareeda Watcharamaisakul, Sajjakaj Jomnonkwao, Vatanavongs Ratanavaraha and Rattanaporn Kasemsri
Infrastructures 2025, 10(5), 116; https://doi.org/10.3390/infrastructures10050116 - 8 May 2025
Cited by 1 | Viewed by 2430
Abstract
The Belt and Road Initiative’s infrastructure development faces significant challenges in understanding and addressing the divergent perceptions between urban and rural populations, particularly regarding high-speed rail projects. This study investigates the behavioral intentions and sustainability perspectives regarding the China–Laos High-Speed Rail Service among [...] Read more.
The Belt and Road Initiative’s infrastructure development faces significant challenges in understanding and addressing the divergent perceptions between urban and rural populations, particularly regarding high-speed rail projects. This study investigates the behavioral intentions and sustainability perspectives regarding the China–Laos High-Speed Rail Service among Thai people, with particular focus on urban–rural differences. While the China–Laos railway became operational in December 2021, it is important to note that the high-speed rail extension into Thailand is not yet in operation and remains in the planning and development stage. Using survey data from 2866 respondents (1301 urban and 1565 rural) across 22 Thai provinces, this study employs structural equation modeling to examine relationships between perceived benefits, service quality, cultural factors, emotional aspects, and behavioral intentions. The findings reveal significant urban–rural disparities in infrastructure acceptance patterns. Urban residents demonstrate stronger relationships between perceived benefits and attitudes (β = 0.260) compared to rural residents (β = 0.170), while rural populations show substantially stronger responses to cultural factors (β = 0.365 vs. β = 0.309). Service quality more strongly influences behavioral intentions in rural areas (β = 0.154 vs. β = 0.138), suggesting varying priorities across geographical contexts. The study recommends implementing differentiated development strategies that address these urban–rural differences, including culturally sensitive rural engagement approaches and comprehensive service quality management systems. This research contributes to infrastructure development literature by empirically validating spatial heterogeneity in acceptance factors, extending theoretical frameworks on sustainability perceptions, and providing evidence-based guidance for managing urban–rural disparities in major infrastructure projects. Full article
Show Figures

Figure 1

24 pages, 1931 KiB  
Article
A Multi-Parameter Approach to Support Sustainable Hydraulic Risk Analysis for the Protection of Transportation Infrastructure: The Case Study of the Gargano Railways (Southern Italy)
by Ciro Apollonio, Gabriele Iemmolo, Maria Di Modugno, Marianna Apollonio, Andrea Petroselli, Fabio Recanatesi and Daniele Giannetta
Sustainability 2025, 17(9), 4151; https://doi.org/10.3390/su17094151 - 4 May 2025
Viewed by 692
Abstract
Transport networks are crucial for economic growth, yet their sustainability is increasingly threatened by natural hazards. Recent floods in Italy have highlighted the vulnerability of rail and road infrastructure, causing severe damage and economic losses. The Gargano Promontory in northern Apulia has experienced [...] Read more.
Transport networks are crucial for economic growth, yet their sustainability is increasingly threatened by natural hazards. Recent floods in Italy have highlighted the vulnerability of rail and road infrastructure, causing severe damage and economic losses. The Gargano Promontory in northern Apulia has experienced frequent hydrogeological disruptions over the past decade, significantly affecting bridges and the railway network managed by Ferrovie del Gargano s.r.l. (FdG). However, structural interventions are complex, time-consuming, costly, and involve certain risks. To enhance sustainability and comply with railway safety regulations, FdG has adopted non-structural measures to improve hydrogeological risk classification and management. Despite the prevalence of flood events, the existing literature often overlooks crucial technical aspects, which this study addresses. The HYD.RAIL (HYDraulic Risk Assessment for Infrastructure and Lane) research project aims to improve transport infrastructure resilience by refining hydraulic risk assessments and introducing new classification parameters. HYD.RAIL employs a multicriteria approach, integrating parameters defined in collaboration with railway professionals. This paper presents the initial framework, offering a methodology to identify, classify, and manage hydrogeological risks in transportation infrastructure. Compared to standard methods, which lack detailed risk classification, HYD.RAIL enables more precise flood risk mapping. For example, high-risk points were reduced from 37 to 6 locations on Line 1 and from 134 to 50 on Line 2 using HYD.RAIL. This approach enhances flood risk management efficiency, providing railway operators with a more accurate understanding of infrastructure vulnerabilities. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

20 pages, 16930 KiB  
Article
Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
by Karl Lin, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun and Lynn Harris
Appl. Sci. 2025, 15(9), 4987; https://doi.org/10.3390/app15094987 - 30 Apr 2025
Viewed by 609
Abstract
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion [...] Read more.
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

30 pages, 5336 KiB  
Article
Railway Cloud Resource Management as a Service
by Ivaylo Atanasov, Dragomira Dimitrova, Evelina Pencheva and Ventsislav Trifonov
Future Internet 2025, 17(5), 192; https://doi.org/10.3390/fi17050192 - 24 Apr 2025
Cited by 1 | Viewed by 943
Abstract
Cloud computing has the potential to accelerate the digital journey of railways. Railway systems are big and complex, involving a lot of parts, like trains, tracks, signaling systems, and control systems, among others. The application of cloud computing technologies in the railway industry [...] Read more.
Cloud computing has the potential to accelerate the digital journey of railways. Railway systems are big and complex, involving a lot of parts, like trains, tracks, signaling systems, and control systems, among others. The application of cloud computing technologies in the railway industry has the potential to enhance operational efficiency, data management, and overall system performance. Cloud management is essential for complex systems, and the automation of management services can speed up the provisioning, deployment, and maintenance of cloud infrastructure and applications by enabling visibility across the environment. It can provide consistent and unified management over resource allocation, streamline security processes, and automate the monitoring of key performance indicators. Key railway cloud management challenges include the lack of open interfaces and standardization, which are related to the vendor lock-in problem. In this paper, we propose an approach to design the railway cloud resource management as a service. Based on typical use cases, the requirements to fault and performance management of the railway cloud resources are identified. The main functionality is designed as RESTful services. The approach feasibility is proved by formal verification of the cloud resource management models supported by cloud management application and services. The proposed approach is open, in contrast to any proprietary solutions and feature scalability and interoperability. Full article
(This article belongs to the Special Issue Cloud and Edge Computing for the Next-Generation Networks)
Show Figures

Figure 1

22 pages, 7239 KiB  
Article
A Reliability-Oriented Framework for the Preservation of Historical Railway Assets Under Regulatory and Material Uncertainty
by Thomas Wailes, Muhammad Khan and Feiyang He
Appl. Sci. 2025, 15(9), 4705; https://doi.org/10.3390/app15094705 - 24 Apr 2025
Viewed by 484
Abstract
Preserving historical railway assets presents a complex systems challenge, in which uncertainties in material performance, structural degradation, and regulatory requirements directly impact long-term reliability and operational continuity. Traditional maintenance practices often limit the use of modern materials, introducing inefficiencies, increased lifecycle costs, and [...] Read more.
Preserving historical railway assets presents a complex systems challenge, in which uncertainties in material performance, structural degradation, and regulatory requirements directly impact long-term reliability and operational continuity. Traditional maintenance practices often limit the use of modern materials, introducing inefficiencies, increased lifecycle costs, and higher failure risk due to material ageing and environmental exposure. This study proposes a reliability-informed preservation framework that supports the integration of contemporary materials into historical railway infrastructure while accounting for legal, material, and procedural uncertainties. The framework is validated through two industrial case studies, each reflecting different regulatory and operational constraints. The first case demonstrates the successful substitution of timber with certified PVC cladding on a non-listed signal box, achieving improved durability, reduced maintenance intervals, and enhanced system reliability. The second case explores an unsuccessful attempt to replace decayed timber gables with aluminium, in which late-stage planning misalignment, underestimated risks, and uncertainty in approval outcomes led to a significant cost increase and reduced reliability regarding delivery. By systematically applying and evaluating the framework under real-world conditions, this research contributes to engineering asset management by introducing a structured method for mitigating regulatory and material uncertainties. Full article
(This article belongs to the Special Issue Uncertainty and Reliability Analysis for Engineering Systems)
Show Figures

Figure 1

Back to TopTop