Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = radish (Raphanus sativus L.)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 - 3 Aug 2025
Viewed by 233
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

14 pages, 2881 KiB  
Article
Nano-Titanium Dioxide Regulates the Phenylpropanoid Biosynthesis of Radish (Raphanus sativus L.) and Alleviates the Growth Inhibition Induced by Polylactic Acid Microplastics
by Lisi Jiang, Wenyuan Li, Yuqi Zhang, Zirui Liu, Yangwendi Yang, Lixin Guo, Chang Guo, Zirui Yu and Wei Fu
Agriculture 2025, 15(14), 1478; https://doi.org/10.3390/agriculture15141478 - 11 Jul 2025
Viewed by 341
Abstract
Nano-titanium dioxide (nano-TiO2) can alleviate oxidative damage in plants subjected to abiotic stress, interfere with related gene expression, and change metabolite content. Polylactic acid (PLA) microplastics can inhibit plant growth, induce oxidative stress in plant cells, and alter the biophysical properties [...] Read more.
Nano-titanium dioxide (nano-TiO2) can alleviate oxidative damage in plants subjected to abiotic stress, interfere with related gene expression, and change metabolite content. Polylactic acid (PLA) microplastics can inhibit plant growth, induce oxidative stress in plant cells, and alter the biophysical properties of rhizosphere soil. In this study, untargeted metabolomics (LC-MS) and RNA-seq sequencing were performed on radish root cells exposed to nano-TiO2 and PLA. The results showed that nano-TiO2 alleviated the growth inhibition of radish roots induced by PLA. Nano-TiO2 alleviated PLA-induced oxidative stress, and the activities of SOD and POD were decreased by 28.6% and 36.0%, respectively. A total of 1673 differentially expressed genes (DEGs, 844 upregulated genes, and 829 downregulated genes) were detected by transcriptome analysis. Metabolomics analysis showed that 5041 differential metabolites were involved; they mainly include terpenoids, fatty acids, alkaloids, shikimic acid, and phenylpropionic acid. Among them, phenylpropanoid biosynthesis as well as flavone and flavonol biosynthesis were the key metabolic pathways. This study demonstrates that nano-TiO2 mitigates PLA phytotoxicity in radish via transcriptional and metabolic reprogramming of phenylpropanoid biosynthesis. These findings provide important references for enhancing crop resilience against pollutants and underscore the need for ecological risk assessment of co-existing novel pollutants in agriculture. Full article
Show Figures

Figure 1

15 pages, 17950 KiB  
Article
Transcriptome Analysis Reveals Key Pathways and Candidate Genes for Resistance to Plasmodiophora brassicae in Radish
by Yinbo Ma, Xinyuan Li, Feng Cui, Qian Yu, Baoyang Liu, Xinyi Guo and Liwang Liu
Horticulturae 2025, 11(7), 777; https://doi.org/10.3390/horticulturae11070777 - 3 Jul 2025
Viewed by 401
Abstract
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot [...] Read more.
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot resistance remains elusive in radish compared to other Brassicaceae species. In this study, 52 radish inbred lines were screened for disease responses following P. brassicae inoculation, with the resistant line T6 and the susceptible line T14 selected for transcriptome analysis. RNA-Seq was performed at 10, 20, and 30 days post inoculation (DPI) to elucidate transcriptional responses. The susceptible line T14 exhibited a higher number of differentially expressed genes (DEGs) and persistent upregulation across all time points, indicating ineffective defense responses and metabolic hijacking by the pathogen. In contrast, the resistant line T6 displayed temporally coordinated defense activation marked by rapid induction of core immune mechanisms: enhanced plant–pathogen interaction recognition, MAPK cascade signaling, and phytohormone transduction pathways, consistent with effector-triggered immunity priming and multilayered defense orchestration. These findings indicate that resistance in T6 could be mediated by the rapid activation of multilayered defense mechanisms, including R gene-mediated recognition, MAPK-Ca2+-ROS signaling, and jasmonic acid (JA) pathway modulation. The outcomes of this study would not only facilitate clarifying the molecular mechanism underlying clubroot resistance, but also provide valuable resources for genetic improvement of clubroot resistance in radish. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

16 pages, 1343 KiB  
Article
The Effect of Light on the Germination of Raphanus sativus Seeds and the Use of Sprout Extracts in the Development of a Dermatocosmetic Gel
by Mihaela Carmen Eremia, Ramona Daniela Pavaloiu, Oana Livadariu, Anca Daniela Raiciu, Fawzia Sha’at, Corina Bubueanu and Dana Maria Miu
Gels 2025, 11(7), 515; https://doi.org/10.3390/gels11070515 - 2 Jul 2025
Viewed by 265
Abstract
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted [...] Read more.
This study investigates the influence of different light sources (sunlight, green, red, and white LED) on the germination of Raphanus sativus L. sprouts and the potential use of their sprout extracts in the development of natural dermatocosmetic gels. The bioactive fractions were extracted using simple methods and analyzed for total polyphenol content and antioxidant activity. Statistical analysis of weight, total phenolic content, and antioxidant activity of Raphanus sativus L. sprouts was performed using ANOVA. Sprouts exposed to green LED light showed the highest biomass (16.13 ± 0.38 g), while red LED light resulted in the highest total polyphenol content (3.28 ± 0.03 mg GAE/g fresh weight). The highest antioxidant activity (6.60 ± 0.08 mM Trolox/g fresh weight) was obtained under white LED. Although variations were observed, ANOVA analysis revealed that only sprout weight differed significantly among treatments (p < 0.001), while differences in polyphenol content and antioxidant activity were not statistically significant (p > 0.05). The extract with the highest antioxidant activity was incorporated as an active ingredient into Carbopol-based hydrogel formulations containing natural gelling agents and gentle preservatives. The resulting gels demonstrated favorable pH (4.85–5.05), texture, and stability. The results indicate that the light spectrum influences the germination process and the initial development of seedlings. Moreover, radish sprout extracts, rich in bioactive compounds, show promise for dermatocosmetic applications due to their antioxidant, soothing, and antimicrobial properties. This study supports the use of natural resources in the development of care products, in line with current trends in green cosmetics. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

13 pages, 2967 KiB  
Article
Production, Purification, and Application of a Biomolecule with Herbicidal Activity Produced by Fusarium fujikuroi in Submerged Cultivation
by Silvana Schmaltz, Clair Walker, Keli Souza da Silva, Renata Gulart Ninaus, Cláudia Braga Dutra, Luiza Andrea Schmidt, Gilson Zeni and Marcio Antonio Mazutti
Fermentation 2025, 11(7), 375; https://doi.org/10.3390/fermentation11070375 - 29 Jun 2025
Viewed by 393
Abstract
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and [...] Read more.
This study investigated the production, purification, and evaluation of a microbial metabolite with herbicidal activity produced by Fusarium fujikuroi via submerged fermentation. The purified compound (PC) was obtained through organic solvent extraction and chromatographic purification, and assessed in bioassays using Raphanus sativus and Triticum aestivum as bioindicator plants. A concentration of 23 mg mL−1 completely inhibited seed germination in 96-well plate assays, while the crude extract (EXT) and cell-free broth (CFB) allowed radicle protrusion but resulted in abnormal seedlings with chlorosis and reduced growth. Mathematical models estimated that concentrations of 16.0 mg mL−1 for radish and 0.9 mg mL−1 for wheat were sufficient to suppress germination with the PC. In substrate experiments, the PC at 6.4 and 64.0 mg mL−1 did not inhibit germination but caused anomalies in radish and significantly reduced wheat seedling growth. In naturally infested soil, the PC maintained phytotoxicity symptoms for 21 days, and after 28 days, a concentration of 64.0 mg mL−1 significantly reduced radish seedling growth. The results highlight the potential of the compound as a bioherbicide. Full article
Show Figures

Figure 1

22 pages, 18796 KiB  
Article
Genome-Wide Identification and Characterization of the Class III Peroxidase Gene Family in Radish (Raphanus sativus) with Insights into Their Roles in Anthocyanin Metabolism
by Zihao Wei, Weimin Fu, Xianxian Liu, Wenling Xu, Lichun Chang, Chen Liu and Shufen Wang
Int. J. Mol. Sci. 2025, 26(13), 5917; https://doi.org/10.3390/ijms26135917 - 20 Jun 2025
Viewed by 384
Abstract
Class III peroxidases (PODs) are plant-specific enzymes that play crucial roles in plant growth, development and responses to stress. However, the POD gene family in the radish (Raphanus sativus L.) has not been comprehensively investigated to date. In this study, a total [...] Read more.
Class III peroxidases (PODs) are plant-specific enzymes that play crucial roles in plant growth, development and responses to stress. However, the POD gene family in the radish (Raphanus sativus L.) has not been comprehensively investigated to date. In this study, a total of 95 RsPODs were identified in the radish genome, which were classified into six subgroups based on a phylogenetic analysis. The gene structures and conserved motifs of the RsPODs were highly conserved within each subgroup. An intraspecific collinearity analysis revealed 7 tandem and 40 segmental duplication events. An expression analysis across diverse tissues and developmental stages demonstrated that the RsPODs were functionally involved in radish development. Using a chimeric-colored radish mutant, this study revealed significantly higher POD activity in the green tissues compared to purple tissues. Through transcriptome sequencing, two RsPOD genes (RsPOD14 and RsPOD28) were identified as candidate genes related to the anthocyanin metabolism. Our study provides a genome-wide perspective on the RsPOD genes in the radish and highlights their potential roles in the anthocyanin metabolism. These findings establish a critical foundation for future research aimed at uncovering the functional roles of specific RsPOD genes, with a particular emphasis on elucidating the molecular mechanisms that regulate anthocyanin degradation in the radish. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5277 KiB  
Article
Cesium Accumulation Patterns and Stress Response in Hydroponic Radish (Raphanus sativus L.): A Physiological–Transcriptomic Study
by Yu-Han Wen, Xi Chen, Ming Sun, Chao-Hui Yang, Meng-Yuan Xu, Feng-Xiang Lai, Si-Qi Fu, Yu-Meng Fan, Xin-Peng Guo, Qun Li and Guo Wu
Plants 2025, 14(12), 1802; https://doi.org/10.3390/plants14121802 - 12 Jun 2025
Viewed by 1132
Abstract
The present study systematically investigated the cesium (Cs) enrichment characteristics and physiological responses to Cs exposure in radish (Raphanus sativus L.) seedlings under hydroponic conditions through integrated physiological, biochemical, and transcriptome analyses. The results showed that the Cs content in radish roots, [...] Read more.
The present study systematically investigated the cesium (Cs) enrichment characteristics and physiological responses to Cs exposure in radish (Raphanus sativus L.) seedlings under hydroponic conditions through integrated physiological, biochemical, and transcriptome analyses. The results showed that the Cs content in radish roots, stems, and cotyledons increased progressively with rising Cs concentrations (0.25–2 mM), and Cs mainly accumulated in the cotyledon. The transfer factor (TF) increased by 63.29% (TF = 3.87) as the Cs concentration increased from 0.25 to 2 mM, while the biological concentration factor (BCF) decreased by 72.56% (BCF = 14.87). Severe growth inhibition was observed at 2 mM Cs stress, with biomass reduction reaching 29.73%. The carotenoid content decreased by 11.92%; however, the total chlorophyll content did not change significantly, and the photosynthesis of radish was not affected. In addition, Cs exposure disrupted mineral nutrient homeostasis, decreasing potassium (K), sodium (Na), magnesium (Mg), and iron (Fe) content. The superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, reactive oxygen species (ROS), and malondialdehyde (MDA) content increased under the different Cs treatments, which indicated that Cs exposure induced oxidative stress response in radish seedlings. Transcriptome analysis detected a total of 4326 differentially expressed genes (DEGs), in which altered expression patterns in genes associated with mineral transport, antioxidant systems, and carotenoid biosynthesis pathways in radish under 2 mM Cs treatment were observed. In conclusion, this study comprehensively investigated the physiological and molecular responses of radish to Cs stress, revealing that Cs accumulation exhibited site-specific preference and concentration dependence and induced physiological disturbances, including growth inhibition and photosynthetic pigment metabolism alterations. At the transcription level, Cs activated the enzymatic antioxidant system, related genes, and stress-response pathways. Notably, this study is the first to demonstrate that Cs disrupts plant mineral nutrition homeostasis and inhibits carotenoid biosynthesis. These findings establish a crucial theoretical foundation for utilizing radish in Cs-contaminated phytoremediation strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Responses to Heavy Metal Stress)
Show Figures

Graphical abstract

14 pages, 1217 KiB  
Article
Effects of Nitrogen Fertilizer Application on Growth, Vegetation Indices, and Ammonia Volatilization in Korean Radish (Raphanus sativus L.)
by TaeSeon Eom, TaeWan Kim and SungYung Yoo
Nitrogen 2025, 6(2), 42; https://doi.org/10.3390/nitrogen6020042 - 9 Jun 2025
Viewed by 583
Abstract
Nitrogen use efficiency (NUE) in plants is reduced when treated with excess nitrogen fertilizer. Our study aimed to investigate the impact of varied concentrations of urea on the growth responses, vegetation indices, and ammonia volatilization in radishes. The experiment was conducted across four [...] Read more.
Nitrogen use efficiency (NUE) in plants is reduced when treated with excess nitrogen fertilizer. Our study aimed to investigate the impact of varied concentrations of urea on the growth responses, vegetation indices, and ammonia volatilization in radishes. The experiment was conducted across four concentrations of urea (nitrogen source): 0 N (0 kg urea ha−1), 0.5 N (117 kg urea ha−1), 1 N (234 kg urea ha−1), and 2 N (468 kg urea ha−1). Compost was applied as a basal fertilizer in all treatments. Aboveground and belowground biomass were evaluated to measure growth response. The dynamic chamber method was used to collect ammonia volatilized from the cultivation area, and the vegetation index analysis was conducted to assess the effects of nitrogen fertilizer treatment. Our study results suggest there are no significant differences in the yield of radishes between the recommended nitrogen fertilization level (1 N) and half the recommended level in the Republic of Korea (0.5 N). Ammonia volatilization was significantly the lowest in the 0.5 N nitrogen fertilizer treatment among all treatments. Except for a few specific indices, there were no significant differences observed in most analyzed vegetation indices. Based on the specific environmental and soil conditions examined in this study, our results indicate that nitrogen input in radish cultivation in the Republic of Korea could be reduced without significant yield penalties, offering potential benefits in terms of reduced production costs and environmental impact. Nevertheless, to establish optimized fertilizer recommendations, further studies across diverse environmental conditions and cultivation practices, including planting timing, are essential. Full article
Show Figures

Figure 1

18 pages, 5218 KiB  
Article
Low NaCl Concentrations Increase Cotyledon Growth in Chinese White Radish (Raphanus sativus L. var. longipinnatus Bailey) Seedlings via Aquaporin-Mediated Water Transport
by Nutkamol Masepan, Sitthisak Intarasit, Aussara Panya and Jarunee Jungklang
Plants 2025, 14(11), 1616; https://doi.org/10.3390/plants14111616 - 26 May 2025
Viewed by 548
Abstract
This study aimed to elucidate the specific role of low NaCl concentrations, particularly 10 and 20 mM, in stimulating cotyledon growth in Chinese white radish (Raphanus sativus L. var. longipinnatus Bailey) seedlings. Chinese white radish seeds were cultivated in sand culture and [...] Read more.
This study aimed to elucidate the specific role of low NaCl concentrations, particularly 10 and 20 mM, in stimulating cotyledon growth in Chinese white radish (Raphanus sativus L. var. longipinnatus Bailey) seedlings. Chinese white radish seeds were cultivated in sand culture and subjected to daily watering with solutions containing 0, 10, 20, 50, or 100 mM NaCl. Growth, water status, aquaporin gene expression, ion contents, and physiology-related parameters were assessed 4 days after sowing. Applying 10 and 20 mM NaCl significantly promoted the growth of 4-day-old seedlings. Notably, the cotyledons exhibited the most significant growth, achieving a rate of 177% compared with the 125–138% growth observed in the hypocotyl and root parts. This substantial enhancement in cotyledon growth, including biomass, cotyledon area, cotyledon thickness, and mesophyll cell size, was induced by an optimal concentration of 10 mM NaCl. This induction correlated with the increased water content, degree of succulence, and expression of aquaporin genes, specifically within PIP1-1, PIP1-2, PIP2-1, PIP2-2, and TIP1-1, in addition to the maintenance of the Hill reaction, heightened free radical scavenging, and the elevated accumulation of Na+, Cl, K+, proline, total N, and C. These findings suggest a beneficial role of low NaCl levels in optimising early-stage seedling growth. Full article
Show Figures

Figure 1

22 pages, 1821 KiB  
Article
Comparative Nutrient Study of Raphanus sativus L. Sprouts Microgreens, and Roots
by Dominika Kajszczak, Dorota Sosnowska, Radosław Bonikowski, Kamil Szymczak, Barbara Frąszczak, Katarzyna Pielech-Przybylska and Anna Podsędek
Agronomy 2025, 15(5), 1216; https://doi.org/10.3390/agronomy15051216 - 17 May 2025
Cited by 2 | Viewed by 839
Abstract
Radish (Raphanus sativus L.) is an important vegetable crop worldwide. Four red radish cultivars (Carmen, Jutrzenka, Saxa 2, and Warta) were evaluated for their macronutrients (protein, fat, available carbohydrates), as well as ash, and dietary fiber at the sprout, microgreen, and mature [...] Read more.
Radish (Raphanus sativus L.) is an important vegetable crop worldwide. Four red radish cultivars (Carmen, Jutrzenka, Saxa 2, and Warta) were evaluated for their macronutrients (protein, fat, available carbohydrates), as well as ash, and dietary fiber at the sprout, microgreen, and mature (root) stages. Fatty acids, organic acids, and sugars were also profiled by using chromatographic methods. Radish roots are characterized by a good chemical composition due to a lower fat content, lower energy value, and higher available carbohydrate content compared to sprouts and microgreens. Microgreens outperformed other forms of radish in terms of organic acids, ash, and soluble dietary fiber, while sprouts contained the most protein. Both immature forms of radish proved to be better sources of fiber than their mature roots. In all radish samples analyzed, glucose, oxalic acid, and oleic acid or alpha-linolenic acid were the dominant sugar, organic acid, and fatty acid, respectively. The results indicate a diverse composition of radish sprouts, microgreens, and roots, and confirm the validity of using red radishes in various forms as valuable components of our diet. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 2413 KiB  
Article
Bacillus Bio-Organic Fertilizer Altered Soil Microorganisms and Improved Yield and Quality of Radish (Raphanus sativus L.)
by Yingbin Qi, Zhen Wu, Yachen Wang, Rong Zhou, Liwang Liu, Yan Wang, Jiying Zhao and Fangling Jiang
Plants 2025, 14(9), 1389; https://doi.org/10.3390/plants14091389 - 5 May 2025
Viewed by 716
Abstract
Excessive use of fertilizers will not only cause the enrichment of soil N nutrients, soil secondary salinization, soil acidification, and an imbalance of the soil microbial community structure, but will also lead to the nitrate content of vegetables and the ground water exceeding [...] Read more.
Excessive use of fertilizers will not only cause the enrichment of soil N nutrients, soil secondary salinization, soil acidification, and an imbalance of the soil microbial community structure, but will also lead to the nitrate content of vegetables and the ground water exceeding the standard. The application of bio-organic fertilizer could reduce the amount of mineral fertilizer used. However, the effects of nitrogen reduced with different bio-organic fertilizers on soil chemical properties, microbial community structure, and the yield and quality of radish are not clear. In a field experiment, we designed six fertilization treatments: no fertilization (CK), conventional fertilization (T1), a total nitrogen reduction of 20% (T2), and a total nitrogen reduction of 20% with “No. 1”, “Seek” or “Jiajiapei” bio-organic fertilizers. The results showed that nitrogen reduction of 20% with Bacillus bio-organic fertilizer (N1) significantly increased the organic matter, pH, total nitrogen content, and the relative abundance of Bacillus and Streptomyce in the soil compared with T1. RDA analysis showed that the pH, organic matter content, invertase and fluorescein diacetate enzyme activity of the soil were significantly correlated with the soil microbial community structure. In addition, the yield and Vc content in radish were increased with the application of bio-organic fertilizers, while on the contrary, the nitrate and cellulose content were decreased, and the N1 treatment showed the best effect. Moreover, the yield had a significant positive correlation with Bacillus. Overall, nitrogen reduction with bio-organic fertilizers, especially full-effective “No. 1” enriched with Bacillus, could alter the soil microbial community structure and effectively improve soil fertility, which in turn enhanced the yield and quality of radish. An application of Bacillus bio-organic fertilizer was an effective strategy to improve soil quality and vegetable safety. Full article
Show Figures

Figure 1

17 pages, 3258 KiB  
Article
A Novel Method to Investigate Environmental Risk in Wastewater Toxicity
by Isha Shakoor, Amina Sultan, Kamran Shaukat, Talha Mahboob Alam and Aisha Nazir
Agronomy 2025, 15(4), 841; https://doi.org/10.3390/agronomy15040841 - 28 Mar 2025
Viewed by 2404
Abstract
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal [...] Read more.
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal accumulation in soil across an 11 km stretch of land used for vegetable cultivation. By using 90 samples of mixed wastewater and sludge, as well as 10 quadruplicate samples of rhizospheric soils and crops from ten vegetable fields, it was observed that the concentrations of Cr, Cu, Cd, Zn, Fe, Pb, Mg, and Ni in cauliflower (Brassica oleracea var. botrytis L.), coriander (Coriandrum sativum L.), radish (Raphanus sativus L.), mustard (Brassica juncea L.), spinach (Spinacia oleracea L.), meadow clover (Trifolium sp. L.), sorghum (Sorghum bicolour L.), garlic (Allium sativum L.), brinjal (Solanum melongena L.), and mint (Mentha L.) were beyond the permissible limits set by the FAO/WHO, 2001. The declining trend of the toxic metal concentrations in the effluent was Mg > Cr > Ni > Zn > Pb > Cd > Cu > Fe, and in sludge, soil, and plants, it varied in the order of Mg > Fe > Cr > Ni > Zn > Pb > Cd > Cu. Radish, mint, and brinjal had the highest quantities of toxic metals. The spatial pattern of toxic metals was determined by using proximity interpolation, Inverse Distance Weighted (IDW), the fine tuning of the interpolation characteristics, and the kriging of selected sample variograms. Toxic metals were found in the following order: plants > soil > sludge > effluents. The most prevalent cause of metal pollution was soil irrigation with polluted water. This study provides crucial information about the extent of contamination, which could help in the identification of public health risk, the assessment of environmental impacts, and also sustainable water management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 4543 KiB  
Article
Integrating Cover Crops and Manure to Boost Goji Berry Yield: Responses of Soil Physicochemical Properties and Microbial Communities
by Haonan Chen, Fang Wang, Yamiao Gao, Yaran Ma, Lizhen Zhu and Xiongxiong Nan
Microorganisms 2025, 13(3), 696; https://doi.org/10.3390/microorganisms13030696 - 20 Mar 2025
Viewed by 505
Abstract
A sustainable Goji berry (Lycium barbarum L.) planting system that integrates forage radish cover crops (Raphanus sativus L.) and animal manure has been established in northwestern China. This study investigated the effects of different cropping systems and manure application levels on [...] Read more.
A sustainable Goji berry (Lycium barbarum L.) planting system that integrates forage radish cover crops (Raphanus sativus L.) and animal manure has been established in northwestern China. This study investigated the effects of different cropping systems and manure application levels on soil physicochemical properties, microbial community structure, and L. barbarum yield under field conditions. A split-plot design was used, with the main-plot treatments consisting of two cropping systems and the sub-plot treatments involving three manure application levels. The results showed that compared to L. barbarum monocropping, cover cropping with R. sativus led to a decrease in soil bulk density (1.90%) and increase in soil electrical conductivity (11.5%), nutrient contents (total N and available N, P, and K: 30.3–138%), and microbial biomass (C: 79.0%; N: 184%). Cover cropping additionally enhanced the community diversity and richness of soil bacteria. Beta-diversity analysis revealed significant differences in bacterial rather than fungal community composition among various treatments. The bacterial network showed a lower ratio of positive to negative correlations and reduced complexity in response to cover cropping, which contrasted with fungal network patterns. Integration of cover cropping and medium manure application increased fruit yield by 8.71%. Cover crops and manure influenced soil microbial diversity mainly through their positive effects on soil total and available N contents. Full article
(This article belongs to the Special Issue Feature Paper in Plant–Microbe Interactions in Asia)
Show Figures

Graphical abstract

13 pages, 631 KiB  
Article
Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus)
by Miroslav Šlosár, Lucia Galovičová, Júlia Fabianová, Ivana Porubská and Marianna Schwarzová
Agriculture 2025, 15(6), 595; https://doi.org/10.3390/agriculture15060595 - 11 Mar 2025
Viewed by 704
Abstract
This study aimed to evaluate the effect of the humic biostimulant Agriful on the average weight of root per plant, yield, antioxidant capacity, and total polyphenol content of three radish (Raphanus sativus L.) varieties during two growing seasons. The research was carried [...] Read more.
This study aimed to evaluate the effect of the humic biostimulant Agriful on the average weight of root per plant, yield, antioxidant capacity, and total polyphenol content of three radish (Raphanus sativus L.) varieties during two growing seasons. The research was carried out as a small-plot field experiment, comparing a control variant with a variant treated with Agriful. The results showed that Agriful significantly increased root weight, yield, antioxidant capacity (measured using DPPH, FRAP, and ABTS methods), and polyphenol content in all varieties tested. The most significant improvement in all monitored parameters was observed in the ’Kulatá černá’ variety. On the contrary, the least significant improvement in the monitored parameters was observed in the ’Red Meat’ variety. The results indicate the potential of Agriful to increase the nutritional and yield parameters of radish production and to provide an organic alternative to synthetic inputs. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

32 pages, 4224 KiB  
Article
Proteome and Metabolome Alterations in Radish (Raphanus sativus L.) Seedlings Induced by Inoculation with Agrobacterium tumefaciens
by Nadezhda Frolova, Daria Gorbach, Christian Ihling, Tatiana Bilova, Anastasia Orlova, Elena Lukasheva, Ksenia Fedoseeva, Irina Dodueva, Lyudmila A. Lutova and Andrej Frolov
Biomolecules 2025, 15(2), 290; https://doi.org/10.3390/biom15020290 - 14 Feb 2025
Viewed by 876
Abstract
Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant–microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and [...] Read more.
Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant–microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with A. tumefaciens provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the A. tumefaciens culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant’s adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling. Full article
Show Figures

Figure 1

Back to TopTop