Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = radiometric corrections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3681 KB  
Article
Absolute Radiometric Calibration of CAS500-1/AEISS-C: Reflectance-Based Vicarious Calibration and Cross-Calibration with Sentinel-2/MSI
by Kyung-Bae Choi, Kyoung-Wook Jin, Dong-Hwan Cha, Jin-Hyeok Choi, Yong-Han Jo, Kwang-Nyun Kim, Gwui-Bong Kang, Ho-Yeon Shin, Ji-Yun Lee, Eun-Young Kim and Yun Gon Lee
Remote Sens. 2026, 18(1), 177; https://doi.org/10.3390/rs18010177 - 5 Jan 2026
Viewed by 147
Abstract
The absolute radiometric calibration of a satellite sensor is an essential process that determines the coefficients required to convert the radiometric quantities of satellite images. This procedure is crucial for ensuring the applicability and enhancing the reliability of optical sensors onboard satellites. This [...] Read more.
The absolute radiometric calibration of a satellite sensor is an essential process that determines the coefficients required to convert the radiometric quantities of satellite images. This procedure is crucial for ensuring the applicability and enhancing the reliability of optical sensors onboard satellites. This study performs the absolute radiometric calibration of the Compact Advanced Satellite 500-1 (CAS500-1) Advanced Earth Imaging Sensor System-C (AEISS-C), a low Earth orbit satellite developed independently by Republic of Korea for precise ground observation. Field campaign using a tarp, an Analytical Spectral Devices FieldSpecIII spectroradiometer, and a MicrotopsII sunphotometer was conducted. Additionally, reflectance-based vicarious calibration was performed using observational data and the MODerate resolution atmospheric TRANsmission model (version 6) radiative transfer model (RTM). Cross-calibration was also performed using data from the Sentinel-2 MultiSpectral Instrument, RadCalNet observations, and MODIS Bidirectional nReflectance Distribution Function (BRDF) products (MCD43A1) to account for differences in spectral response functions, viewing/solar geometry, and atmospheric conditions between the two satellites. From these datasets, two correction factors were derived: the Spectral Band Adjustment Factor and the BRDF Correction Factor. CAS500-1/AEISS-C acquires satellite imagery using two Time Delay Integration (TDI) modes, and the absolute radiometric calibration coefficients were derived considering these TDI modes. The coefficient of determination (R2) ranged from 0.70 to 0.97 for the reflectance-based vicarious calibration and from 0.90 to 0.99 for the cross-calibration. For reflectance-based vicarious calibration, aerosol optical depth was identified as the primary source of uncertainty among atmospheric factors. For cross-calibration, the reference satellite and RTMs were the primary sources of uncertainty. The results of this study will support the monitoring of CAS500-1/AEISS-C, which produces high-resolution imagery with a spatial resolution of 2 m, and can serve as foundational material for absolute radiometric calibration procedures for other CAS500 satellites. Full article
Show Figures

Figure 1

15 pages, 2523 KB  
Article
Shutter Speed Influences the Capability of a Low-Cost Multispectral Sensor to Estimate Turfgrass (Cynodon dactylon L.—Poaceae) Vegetation Vigor Under Different Solar Radiation Conditions
by Rosa M. Martínez-Meroño, Pedro F. Freire-García, Nicola Furnitto, Sebastian Lupica, Salvatore Privitera, Giuseppe Sottosanti, Maria Spagnuolo, Luciano Caruso, Emanuele Cerruto, Sabina Failla, Domenico Longo, Giuseppe Manetto, Giampaolo Schillaci and Juan Miguel Ramírez-Cuesta
Sensors 2026, 26(1), 47; https://doi.org/10.3390/s26010047 - 20 Dec 2025
Viewed by 369
Abstract
Radiometric calibration of multispectral imagery plays a critical role in the determination of vegetation-related features. This radiometric calibration strongly depends on a proper sensor configuration when acquiring images, the shutter speed being a critical parameter. The objective of the present study was to [...] Read more.
Radiometric calibration of multispectral imagery plays a critical role in the determination of vegetation-related features. This radiometric calibration strongly depends on a proper sensor configuration when acquiring images, the shutter speed being a critical parameter. The objective of the present study was to appraise the influence of shutter speed on the reflectance in the visible and near-infrared (NIR) spectral regions registered by a low-cost multispectral sensor (MAPIR Survey3) on a homogeneous field of turfgrass (Cynodon dactylon L.—Poaceae) and on the vegetation index (VI) values calculated from them, under different solar radiation conditions. For this purpose, 10 shutter speed configurations were tested in field campaigns with variable solar radiation values. The main results demonstrated that the reflectance in the green spectral region was more sensitive to shutter speed than that of the red and NIR spectral regions, particularly under high solar radiation conditions. Moreover, VIs calculated using the green band were more sensitive to slow shutter speeds, thus presenting a higher probability of providing meaningless artifact values. In conclusion, this study provides shutter speed recommendations under different illumination conditions to optimize the reflectance and the VI sensitivity within the image, which can be applied as a simple method to optimize image acquisition from unmanned aerial vehicles under varying solar radiation conditions. Full article
Show Figures

Figure 1

19 pages, 10844 KB  
Article
Hyperspectral Ghost Image Residual Correction Method Based on PSF Degradation Model
by Xijie Li, Jiating Yang, Tieqiao Chen, Siyuan Li, Pengchong Wang, Sai Zhong, Ming Gao and Bingliang Hu
Remote Sens. 2025, 17(24), 4006; https://doi.org/10.3390/rs17244006 - 11 Dec 2025
Viewed by 266
Abstract
In hyperspectral images, ghost image residuals exceeding a certain threshold not only reduce the recognition accuracy of the imaging detection system but also decrease the target identification rate. Ghost image residuals affect both the recognition accuracy of the detection system and the accuracy [...] Read more.
In hyperspectral images, ghost image residuals exceeding a certain threshold not only reduce the recognition accuracy of the imaging detection system but also decrease the target identification rate. Ghost image residuals affect both the recognition accuracy of the detection system and the accuracy of spectral calibration, thereby influencing qualitative and quantitative inversion. Conventional ghost image residual correction methods can significantly affect both the relative and absolute calibration accuracy of hyperspectral images. To minimize the impact on spectral calibration accuracy during ghost image residual correction, we propose a ghost image degradation model and an iterative optimization algorithm. In the proposed approach, a ghost image residual degradation model is constructed based on the point spread function (PSF) of ghost image residuals and their energy distribution characteristics. Using the proportion of ghost image residuals and the accuracy of hyperspectral image calibration as constraints, we iteratively optimized typical regional target ghost image residuals across different spectral channels, achieving automated correction of ghost image residuals in various spectral bands. The experimental results show that the energy proportion of ghost image residuals at different wavelengths decreased from 4.6% to 0.3%, the variations in spectral curves before and after correction were less than 0.8%, and the change in absolute radiometric calibration accuracy was below 0.06%. Full article
Show Figures

Figure 1

22 pages, 9443 KB  
Article
A Dynamic Gaussian Modified Spectral Band Adjustment Factors Method for Radiometric Cross-Calibration of HJ-2A/HSI with ZY1-02D/AHSI
by Can Yu, Xiangyu Gao, Hang Zhao, Xiangpeng Feng, Juan Cheng, Bingliang Hu and Shuang Wang
Remote Sens. 2025, 17(24), 3988; https://doi.org/10.3390/rs17243988 - 10 Dec 2025
Viewed by 292
Abstract
The Huanjing Jianzai-2A (HJ-2A), launched in 2020 as China’s civilian operational environmental satellite, exhibits intrinsic non-uniformity from spectral channel distribution and inconsistency from the spectral resolution in its hyperspectral imager (HSI). These spectral characteristics compromise the spectral channel matching process, posing challenges to [...] Read more.
The Huanjing Jianzai-2A (HJ-2A), launched in 2020 as China’s civilian operational environmental satellite, exhibits intrinsic non-uniformity from spectral channel distribution and inconsistency from the spectral resolution in its hyperspectral imager (HSI). These spectral characteristics compromise the spectral channel matching process, posing challenges to the traditional cross-calibration method. To overcome these spectral matching constraints, this study proposed a Dynamic Gaussian Spectral Band Adjustment Factors (DG-SBAF) method for cross-calibration that constructs a Gaussian distribution model for each spectral channel of the target sensor, dynamically matches the spectral channels of the reference sensor and optimizes SBAF compensation weights through Gaussian function values. The cross-calibration of HJ-2A/HSI was conducted using ZiYuan1-02D Advanced Hyperspectral Imager (ZY1-02D/AHSI) through three distinct test sites: Dunhuang, Baotou, and Taklamakan Desert. The cross-calibration results analysis across three sites revealed mean relative deviations of 6.46% (VNIR) and 8.67% (SWIR), demonstrating superior performance over the traditional SBAF method (7.35% to VNIR, 9.49% to SWIR). Analyses of SBAF fluctuation showed that the DG-SBAF method achieved SBAF distributions approaching 1 with mean RMSE values of 0.0312 (VNIR) and 0.1086 (SWIR). Validation through spectral consistency assessment showed spectral angles less than 5° and 7° in VNIR bands when compared with Gaofen-5B/AHSI and Land-sat-9/OLI-2, respectively, and less than 6° with GF-5B/AHSI in SWIR bands. The pro-posed method effectively corrects spectral channel discrepancies in the matching process, enhances radiometric stability, and provides effective supplementary on-orbit calibration capability. Full article
Show Figures

Figure 1

24 pages, 5153 KB  
Article
Temperature-Field Driven Adaptive Radiometric Calibration for Scan Mirror Thermal Radiation Interference in FY-4B GIIRS
by Xiao Liang, Yaopu Zou, Changpei Han, Pengyu Huang, Libing Li and Yuanshu Zhang
Remote Sens. 2025, 17(24), 3948; https://doi.org/10.3390/rs17243948 - 6 Dec 2025
Viewed by 266
Abstract
To meet the growing demand for quantitative remote sensing applications in GIIRS radiometric calibration, this paper proposes a temperature field-driven adaptive scan mirror thermal radiation interference correction method. Based on the on-orbit deep space observation data from the Fengyun-4B satellite, this paper systematically [...] Read more.
To meet the growing demand for quantitative remote sensing applications in GIIRS radiometric calibration, this paper proposes a temperature field-driven adaptive scan mirror thermal radiation interference correction method. Based on the on-orbit deep space observation data from the Fengyun-4B satellite, this paper systematically analyzes the thermal radiation interference characteristics caused by scan mirror deflection and constructs the first scan mirror thermal radiation response model suitable for GIIRS. On the basis of this model, this paper further introduces the dynamic variation characteristics of the internal thermal environment of the instrument, enabling adaptive response and compensation for radiation disturbances. This method overcomes the limitations of relying on static calibration parameters and improves the generality and robustness of the model. Independent validation results show that this method effectively suppresses the interference of scan mirror deflection on instrument background radiation and enhances the consistency of the deep space and blackbody spectral diurnal variation time series. After correction, the average system bias of the interference-sensitive channel decreased by 94%, and the standard deviation of radiance bias from 2.5 mW/m2·sr·cm−1 to below 0.5 mW/m2·sr·cm−1. In the O-B test, the maximum improvement in relative standard deviation reached 0.15 K. Full article
(This article belongs to the Special Issue Remote Sensing Data Preprocessing and Calibration)
Show Figures

Figure 1

18 pages, 5147 KB  
Technical Note
Assessment of Instrument Performance of the FY3E/JTSIM/DARA Radiometer Through the Analysis of TSI Observations
by Jean-Philippe Montillet, Wolfgang Finsterle, Ping Zhu, Margit Haberreiter, Silvio Koller, Daniel Pfiffner, Duo Wu, Xin Ye, Dongjun Yang, Wei Fang, Jin Qi and Peng Zhang
Remote Sens. 2025, 17(23), 3902; https://doi.org/10.3390/rs17233902 - 30 Nov 2025
Viewed by 278
Abstract
Since the late 1970s, satellite missions have monitored Total Solar Irradiance (TSI), providing a long-term record of solar variability. The Digital Absolute Radiometer (DARA), onboard the Chinese Fengyun-3E (FY3E) spacecraft since 4 July 2021, contributes to extending this record. In this study, we [...] Read more.
Since the late 1970s, satellite missions have monitored Total Solar Irradiance (TSI), providing a long-term record of solar variability. The Digital Absolute Radiometer (DARA), onboard the Chinese Fengyun-3E (FY3E) spacecraft since 4 July 2021, contributes to extending this record. In this study, we evaluate the DARA observations in both World Radiometric Reference (WRR) and International System of Units (SI) scales. We compare these records with those from other instruments on different spacecraft (i.e., VIRGO/PMO6, TSIS-1/TIM) and with the co-located Solar Irradiance Absolute Radiometer (SIAR) on FY3E. A key finding is the identification and correction of an instrumental artifact: an issue in the thermal aperture model, linked to annual satellite maneuvers, repetitively introduced an artificial step of 0.15 ± 0.05 Wm−2 into the TSI measurements. A statistical analysis of the measurements in the SI scale shows that the mean value of the DARA TSI observations is approximately 1359.58 Wm−2 (6-hourly rate), which is lower than the ones recorded by VIRGO/PMO6 (1.82 Wm−2), TSIS-1/TIM (2.90 Wm−2), and SIAR (2.54 Wm−2). We estimate a degradation of ∼49 ppm over 46 months due to the exposure of the instrument to the (Extreme) Ultraviolet (UV/EUV) radiations. Finally, the corrected DARA observations are incorporated into the long-term TSI composite time series. Comparison with the PMOD/WRC composite shows only marginal differences (less than 0.015 Wm−2), confirming the consistency and reliability of including the new TSI product (i.e., JTSIM-DARAv1). Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

35 pages, 7000 KB  
Article
Laboratory Calibration Comparison of Hyperspectral Ocean Color Radiometers in the Frame of the FRM4SOC Phase 2 Project
by Viktor Vabson, Ilmar Ansko, Agnieszka Bialek, Michael E. Feinholz, Joel Kuusk, Ryan Lamb, Sabine Marty, Michael Ondrusek, Clemens Rammeloo, Eric Rehm, Riho Vendt, Kenneth J. Voss, Juan Ignacio Gossn and Ewa Kwiatkowska
Remote Sens. 2025, 17(22), 3692; https://doi.org/10.3390/rs17223692 - 12 Nov 2025
Viewed by 713
Abstract
Variability across different calibration laboratories can impact the consistency of ocean color data; this study addresses that challenge through a coordinated comparison of spectral irradiance and radiance calibrations. As part of the Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) Phase 2 project, [...] Read more.
Variability across different calibration laboratories can impact the consistency of ocean color data; this study addresses that challenge through a coordinated comparison of spectral irradiance and radiance calibrations. As part of the Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) Phase 2 project, the metrological consistency across six international laboratories was tested in the years 2022–2023. Each participant determined the responsivity for four transfer radiometers using their own SI-traceable radiometric standards and calibration procedures. This was among the first laboratory comparisons for Ocean Color Radiometry (OCR) using hyperspectral radiometers. The main objective was to verify that the instrument manufacturers and research laboratories can fulfill the updated International Ocean Color Coordination Group (IOCCG) protocols to perform SI traceable calibrations with an uncertainty of 1% (k = 1) for irradiance and slightly more for radiance. The comparison revealed biases among participants and provided an overview of the calibration capabilities of OCRs. The differences between the participants varied from ±1 … 2% up to ±5%. Biases due to different measurement conditions were corrected by the Pilot. Furthermore, biases due to traceability and different conditions revealed several data handling errors. However, after uniform data processing, the metrological compatibility between the participants was reached within ±3%. Full article
Show Figures

Graphical abstract

21 pages, 16049 KB  
Article
A Microwave–Optical Multi-Stage Synergistic Daily 30 m Soil Moisture Downscaling Framework
by Hong Xie, Tong Wang, Yujiang Xiong, Xiaodong Zhang, Yu Zhang, Guanzhou Chen, Kaiqi Zhang and Qing Wang
Remote Sens. 2025, 17(22), 3677; https://doi.org/10.3390/rs17223677 - 9 Nov 2025
Viewed by 1394
Abstract
Accurate daily surface soil moisture (SSM) mapping at high spatial resolution (e.g., 30 m) remains challenging due to individual satellite sensor limitations. Although passive microwave sensors provide frequent coarse-resolution observations and synthetic aperture radar (SAR) offers high-resolution data intermittently, achieving both simultaneously requires [...] Read more.
Accurate daily surface soil moisture (SSM) mapping at high spatial resolution (e.g., 30 m) remains challenging due to individual satellite sensor limitations. Although passive microwave sensors provide frequent coarse-resolution observations and synthetic aperture radar (SAR) offers high-resolution data intermittently, achieving both simultaneously requires sensor synergy. This paper introduces the microwave–optical multi-stage synergistic downscaling framework (MMSDF) to generate daily 30 m SSM products. The framework integrates SMAP L4 (9 km), MODIS data (500 m–1 km), harmonized Landsat Sentinel-2 (HLS, 30 m), radiometric terrain corrected Sentinel-1 (RTC-S1, 30 m), and auxiliary geographic data. It comprises three stages: (1) downscaling SMAP L4 to 1 km via random forest; (2) calibrating Sentinel-1 water cloud model (WCM) using intermediate 1 km SSM to retrieve 30 m SSM without in situ calibration; and (3) fusing daily 1 km SSM and intermittent 30 m WCM-derived retrievals using the spatial–temporal fusion model (ESTARFM) to generate seamless daily 30 m SSM maps. Validation against in situ measurements from 16 sites in Hunan Province, China (summer 2024) yielded R of 0.54 and RMSE of 0.045 cm3/cm3. Results demonstrate the framework’s capability to synergize multi-source data for high-resolution daily SSM estimates valuable for hydrological and agricultural applications. Full article
Show Figures

Figure 1

26 pages, 6622 KB  
Article
Radiometric Cross-Calibration and Performance Analysis of HJ-2A/2B 16m-MSI Using Landsat-8/9 OLI with Spectral-Angle Difference Correction
by Jian Zeng, Hang Zhao, Yongfang Su, Qiongqiong Lan, Qijin Han, Xuewen Zhang, Xinmeng Wang, Zhaopeng Xu, Zhiheng Hu, Xiaozheng Du and Bopeng Yang
Remote Sens. 2025, 17(21), 3569; https://doi.org/10.3390/rs17213569 - 28 Oct 2025
Viewed by 761
Abstract
The Huanjing-2A/2B (HJ-2A/2B) satellites are China’s next-generation environmental monitoring satellites, equipped with four visible light wide-swath charge-coupled device (CCD) sensors. These sensors enable the acquisition of 16-m multispectral imagery (16m-MSI) with a swath width of 800 km through field-of-view stitching. However, traditional vicarious [...] Read more.
The Huanjing-2A/2B (HJ-2A/2B) satellites are China’s next-generation environmental monitoring satellites, equipped with four visible light wide-swath charge-coupled device (CCD) sensors. These sensors enable the acquisition of 16-m multispectral imagery (16m-MSI) with a swath width of 800 km through field-of-view stitching. However, traditional vicarious calibration techniques are limited by their calibration frequency, making them insufficient for continuous monitoring requirements. To address this challenge, the present study proposes a spectral-angle difference correction-based cross-calibration approach, using the Landsat 8/9 Operational Land Imager (OLI) as the reference sensor to calibrate the HJ-2A/2B CCD sensors. This method improves both radiometric accuracy and temporal frequency. The study utilizes cloud-free image pairs of HJ-2A/2B CCD and Landsat 8/9 OLI, acquired simultaneously at the Dunhuang and Golmud calibration sites between 2021 and 2024, in combination with atmospheric parameters from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset and historical ground-measured spectral reflectance data for cross-calibration. The methodology includes spatial matching and resampling of the image pairs, along with the identification of radiometrically stable homogeneous regions. To account for sensor viewing geometry differences, an observation-angle linear correction model is introduced. Spectral band adjustment factors (SBAFs) are also applied to correct for discrepancies in spectral response functions (SRFs) across sensors. Experimental results demonstrate that the cross-calibration coefficients differ by less than 10% compared to vicarious calibration results from the China Centre for Resources Satellite Data and Application (CRESDA). Additionally, using Sentinel-2 MSI as the reference sensor, the cross-calibration coefficients were independently validated through cross-validation. The results indicate that the radiometrically corrected HJ-2A/2B 16m-MSI CCD data, based on these coefficients, exhibit improved radiometric consistency with Sentinel-2 MSI observations. Further analysis shows that the cross-calibration method significantly enhances radiometric consistency across the HJ-2A/2B 16m-MSI CCD sensors, with radiometric response differences between CCD1 and CCD4 maintained below 3%. Error analysis quantifies the impact of atmospheric parameters and surface reflectance on calibration accuracy, with total uncertainty calculated. The proposed spectral-angle correction-based cross-calibration method not only improves calibration accuracy but also offers reliable technical support for long-term radiometric performance monitoring of the HJ-2A/2B 16m-MSI CCD sensors. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation: 2nd Edition)
Show Figures

Graphical abstract

30 pages, 4855 KB  
Article
Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons
by Samuel Martin, Philippe Bryère, Pierre Gernez, Pannimpullath Remanan Renosh and David Doxaran
Remote Sens. 2025, 17(20), 3430; https://doi.org/10.3390/rs17203430 - 14 Oct 2025
Viewed by 857
Abstract
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a [...] Read more.
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a valuable tool to support this effort, the optical complexity and shallow depths of lagoons pose major challenges for retrieving water column biogeochemical parameters such as chlorophyll-a ([chl-a]) and suspended particulate matter ([SPM]) concentrations. In this study, we develop and evaluate a robust satellite-based processing chain using Sentinel-2 MSI imagery over two French Mediterranean lagoon systems (Berre and Thau), supported by extensive in situ radiometric and biogeochemical datasets. Our approach includes the following: (i) a comparative assessment of six atmospheric correction (AC) processors, (ii) the development of an Optically Shallow Water Probability Algorithm (OSWPA), a new semi-empirical algorithm to estimate the probability of bottom contamination (BC), and (iii) the evaluation of several [chl-a] and [SPM] inversion algorithms. Results show that the Sen2Cor AC processor combined with a near-infrared similarity correction (NIR-SC) yields relative errors below 30% across all bands for retrieving remote-sensing reflectance Rrs(λ). OSWPA provides a spatially continuous and physically consistent alternative to binary BC masks. A new [chl-a] algorithm based on a near-infrared/blue Rrs ratio improves the retrieval accuracy while the 705 nm band appears to be the most suitable for retrieving [SPM] in optically shallow lagoons. This processing chain enables high-resolution WQ monitoring of two coastal lagoon systems and supports future large-scale assessments of ecological trends under increasing climate and anthropogenic stress. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

22 pages, 4736 KB  
Article
Radiometric Cross-Calibration and Validation of KOMPSAT-3/AEISS Using Sentinel-2A/MSI
by Jin-Hyeok Choi, Kyoung-Wook Jin, Dong-Hwan Cha, Kyung-Bae Choi, Yong-Han Jo, Kwang-Nyun Kim, Gwui-Bong Kang, Ho-Yeon Shin, Ji-Yun Lee, Eunyeong Kim, Hojong Chang and Yun Gon Lee
Remote Sens. 2025, 17(19), 3280; https://doi.org/10.3390/rs17193280 - 24 Sep 2025
Viewed by 979
Abstract
The successful launch of Korea Multipurpose Satellite-3/Advanced Earth Imaging Sensor System (KOMPSAT-3/AEISS) on 18 May 2012 allowed the Republic of Korea to meet the growing demand for high-resolution satellite imagery. However, like all satellite sensors, KOMPSAT-3/AEISS experienced temporal changes post-launch and thus requires [...] Read more.
The successful launch of Korea Multipurpose Satellite-3/Advanced Earth Imaging Sensor System (KOMPSAT-3/AEISS) on 18 May 2012 allowed the Republic of Korea to meet the growing demand for high-resolution satellite imagery. However, like all satellite sensors, KOMPSAT-3/AEISS experienced temporal changes post-launch and thus requires ongoing evaluation and calibration. Although more than a decade has passed since launch, the KOMPSAT-3/AEISS mission and its multi-year data archive remain widely used. This study focused on the cross-calibration of KOMPSAT-3/AEISS with Sentinel-2A/Multispectral Instrument (MSI) by comparing the radiometric responses of the two satellite sensors under similar observation conditions, leveraging the linear relationship between Digital Numbers (DN) and top-of-atmosphere (TOA) radiance. Cross-calibration was performed using near-simultaneous satellite images of the same region, and the Spectral Band Adjustment Factor (SBAF) was calculated and applied to account for differences in spectral response functions (SRF). Additionally, Bidirectional Reflectance Distribution Function (BRDF) correction was applied using MODIS-based kernel models to minimize angular reflectance effects caused by differences in viewing and illumination geometry. This study aims to evaluate the radiometric consistency of KOMPSAT-3/AEISS relative to Sentinel-2A/MSI over Baotou scenes acquired in 2022–2023, derive band-specific calibration coefficients and compare them with prior results, and conduct a side-by-side comparison of cross-calibration and vicarious calibration. Furthermore, the cross-calibration yielded band-specific gains of 0.0196 (Blue), 0.0237 (Green), 0.0214 (Red), and 0.0136 (NIR). These findings offer valuable implications for Earth observation, environmental monitoring, and the planning and execution of future satellite missions. Full article
Show Figures

Graphical abstract

22 pages, 14069 KB  
Article
Assessment of Atmospheric Correction Algorithms for Landsat-8/9 Operational Land Imager over Inland and Coastal Waters
by Yiqiang Hu, Haigang Zhan, Qingyou He and Weikang Zhan
Remote Sens. 2025, 17(17), 3055; https://doi.org/10.3390/rs17173055 - 2 Sep 2025
Cited by 2 | Viewed by 2318
Abstract
Atmospheric correction (AC) over inland and coastal waters remains a key challenge in ocean color remote sensing, often limiting the effective use of satellite data for aquatic monitoring. AC algorithm performance is highly sensitive to water type and optical properties. To address this, [...] Read more.
Atmospheric correction (AC) over inland and coastal waters remains a key challenge in ocean color remote sensing, often limiting the effective use of satellite data for aquatic monitoring. AC algorithm performance is highly sensitive to water type and optical properties. To address this, we systematically evaluated six state-of-the-art AC algorithms—ACOLITE, C2RCC, iCOR, L2GEN, OC-SMART, and POLYMER—using Landsat-8/9 OLI data. This study leverages 440 high-quality in situ radiometric matchups spanning a wide range of aquatic environments, including inland lakes from China’s Satellite-Ground Synchronous Campaign and coastal waters from the globally distributed GLORIA dataset. These complementary datasets provide a robust benchmark for evaluating AC algorithm performance. A unified Optical Water Type (OWT) classification framework ensured consistency across environmental conditions. Results highlight significant variability in algorithm performance based on water type. In coastal waters, L2GEN demonstrated the lowest errors in visible bands, whereas OC-SMART achieved superior overall accuracy in inland waters. Notably, ACOLITE exhibited better performance than other algorithms in the blue spectral region (443 and 482 nm) for inland waters. OWT-specific analysis showed that OC-SMART maintained robust accuracy across the turbidity gradient, while ACOLITE and iCOR excelled in highly turbid waters (OWTs 5–6). In contrast, L2GEN, C2RCC, and POLYMER were more effective in clearer waters (OWTs 3–4). The study further discusses the applicability of each algorithm and offers recommendations for mitigating adjacency effects (AE) to improve AC accuracy. These findings provide valuable guidance for selecting and optimizing AC strategies for inland and coastal water monitoring. Full article
Show Figures

Graphical abstract

26 pages, 62819 KB  
Article
Low-Light Image Dehazing and Enhancement via Multi-Feature Domain Fusion
by Jiaxin Wu, Han Ai, Ping Zhou, Hao Wang, Haifeng Zhang, Gaopeng Zhang and Weining Chen
Remote Sens. 2025, 17(17), 2944; https://doi.org/10.3390/rs17172944 - 25 Aug 2025
Cited by 3 | Viewed by 1821
Abstract
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot [...] Read more.
The acquisition of nighttime remote-sensing visible-light images is often accompanied by low-illumination effects and haze interference, resulting in significant image quality degradation and greatly affecting subsequent applications. Existing low-light enhancement and dehazing algorithms can handle each problem individually, but their simple cascade cannot effectively address unknown real-world degradations. Therefore, we design a joint processing framework, WFDiff, which fully exploits the advantages of Fourier–wavelet dual-domain features and innovatively integrates the inverse diffusion process through differentiable operators to construct a multi-scale degradation collaborative correction system. Specifically, in the reverse diffusion process, a dual-domain feature interaction module is designed, and the joint probability distribution of the generated image and real data is constrained through differentiable operators: on the one hand, a global frequency-domain prior is established by jointly constraining Fourier amplitude and phase, effectively maintaining the radiometric consistency of the image; on the other hand, wavelets are used to capture high-frequency details and edge structures in the spatial domain to improve the prediction process. On this basis, a cross-overlapping-block adaptive smoothing estimation algorithm is proposed, which achieves dynamic fusion of multi-scale features through a differentiable weighting strategy, effectively solving the problem of restoring images of different sizes and avoiding local inconsistencies. In view of the current lack of remote-sensing data for low-light haze scenarios, we constructed the Hazy-Dark dataset. Physical experiments and ablation experiments show that the proposed method outperforms existing single-task or simple cascade methods in terms of image fidelity, detail recovery capability, and visual naturalness, providing a new paradigm for remote-sensing image processing under coupled degradations. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

30 pages, 1292 KB  
Review
Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges
by Xiaofei Yang, Junying Chen, Xiaohan Lu, Hao Liu, Yanfu Liu, Xuqian Bai, Long Qian and Zhitao Zhang
Plants 2025, 14(16), 2544; https://doi.org/10.3390/plants14162544 - 15 Aug 2025
Cited by 5 | Viewed by 4021
Abstract
With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress [...] Read more.
With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress and key technological pathways in UAV-based remote sensing for crop water and nutrient monitoring. It provides an in-depth analysis of UAV platforms, sensor configurations, and their suitability across diverse agricultural applications. The review also highlights critical data processing steps—including radiometric correction, image stitching, segmentation, and data fusion—and compares three major modeling approaches for parameter inversion: vegetation index-based, data-driven, and physically based methods. Representative application cases across various crops and spatiotemporal scales are summarized. Furthermore, the review explores factors affecting monitoring performance, such as crop growth stages, spatial resolution, illumination and meteorological conditions, and model generalization. Despite significant advancements, current limitations include insufficient sensor versatility, labor-intensive data processing chains, and limited model scalability. Finally, the review outlines future directions, including the integration of edge intelligence, hybrid physical–data modeling, and multi-source, three-dimensional collaborative sensing. This work aims to provide theoretical insights and technical support for advancing UAV-based remote sensing in precision agriculture. Full article
Show Figures

Figure 1

20 pages, 3015 KB  
Article
Radiometric Correction of Stray Radiation Induced by Non-Nominal Optical Paths in Fengyun-4B Geostationary Interferometric Infrared Sounder Based on Pre-Launch Thermal Vacuum Calibration
by Xiao Liang, Yaopu Zou, Changpei Han, Libing Li, Yuanshu Zhang and Jieling Yu
Remote Sens. 2025, 17(16), 2828; https://doi.org/10.3390/rs17162828 - 14 Aug 2025
Viewed by 609
Abstract
The Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Fengyun-4B satellite plays a critical role in numerical weather prediction and extreme weather monitoring. To meet the requirements of quantitative remote sensing and high-precision operational applications for radiometric calibration accuracy, this study, based on pre-launch [...] Read more.
The Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Fengyun-4B satellite plays a critical role in numerical weather prediction and extreme weather monitoring. To meet the requirements of quantitative remote sensing and high-precision operational applications for radiometric calibration accuracy, this study, based on pre-launch calibration experiments, conducts a novel modeling analysis of the coupling between stray radiation at the input side and the system’s nonlinearity, and proposes a correction method for nonlinear coupling errors. This method explicitly models and physically traces the calibration residuals caused by stray radiation introduced via non-nominal optical paths under the effect of system nonlinearity, which are related to the radiance of the observed target. Experimental results show that, within the brightness temperature range of 200–320 K, the calibration bias is reduced from approximately 0.7 to 0.3–0.4 K, with good consistency and stability observed across channels and pixels. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

Back to TopTop