Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (188)

Search Parameters:
Keywords = radio occultation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 556 KiB  
Article
Added Value of SPECT/CT in Radio-Guided Occult Localization (ROLL) of Non-Palpable Pulmonary Nodules Treated with Uniportal Video-Assisted Thoracoscopy
by Demetrio Aricò, Lucia Motta, Giulia Giacoppo, Michelangelo Bambaci, Paolo Macrì, Stefania Maria, Francesco Barbagallo, Nicola Ricottone, Lorenza Marino, Gianmarco Motta, Giorgia Leone, Carlo Carnaghi, Vittorio Gebbia, Domenica Caponnetto and Laura Evangelista
J. Clin. Med. 2025, 14(15), 5337; https://doi.org/10.3390/jcm14155337 - 29 Jul 2025
Viewed by 249
Abstract
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule [...] Read more.
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule resections; however, intraoperative localization remains challenging, especially for deep or subsolid lesions. This study explores whether SPECT/CT improves the technical and clinical outcomes of radio-guided occult lesion localization (ROLL) before uniportal video-assisted thoracoscopic surgery (u-VATS). Methods: This is a retrospective study involving consecutive patients referred for the resection of pulmonary nodules who underwent CT-guided ROLL followed by u-VATS between September 2017 and December 2024. From January 2023, SPECT/CT was systematically added after planar imaging. The cohort was divided into a planar group and a planar + SPECT/CT group. The inclusion criteria involved nodules sized ≤ 2 cm, with ground glass or solid characteristics, located at a depth of <6 cm from the pleural surface. 99mTc-MAA injected activity, timing, the classification of planar and SPECT/CT image findings (focal uptake, multisite with focal uptake, multisite without focal uptake), spillage, and post-procedure complications were evaluated. Statistical analysis was performed, with continuous data expressed as the median and categorical data as the number. Comparisons were made using chi-square tests for categorical variables and the Mann–Whitney U test for procedural duration. Cohen’s kappa coefficient was calculated to assess agreement between imaging modalities. Results: In total, 125 patients were selected for CT-guided radiotracer injection followed by uniportal-VATS. The planar group and planar + SPECT/CT group comprised 60 and 65 patients, respectively. Focal uptake was detected in 68 (54%), multisite with focal uptake in 46 (36.8%), and multisite without focal uptake in 11 patients (8.8%). In comparative analyses between planar and SPECT/CT imaging in 65 patients, 91% exhibited focal uptake, revealing significant differences in classification for 40% of the patients. SPECT/CT corrected the classification of 23 patients initially categorized as multisite with focal uptake to focal uptake, improving localization accuracy. The mean procedure duration was 39 min with SPECT/CT. Pneumothorax was more frequently detected with SPECT/CT (43% vs. 1.6%). The intraoperative localization success rate was 96%. Conclusions: SPECT/CT imaging in the ROLL procedure for detecting pulmonary nodules before u-VATs demonstrates a significant advantage in reclassifying radiotracer positioning compared to planar imaging. Considering its limited impact on surgical success rates and additional procedural time, SPECT/CT should be reserved for technically challenging cases. Larger sample sizes, multicentric and prospective randomized studies, and formal cost–utility analyses are warranted. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

10 pages, 1640 KiB  
Communication
Investigating the Effects of the Solar Eclipse on the Atmosphere over Land and Oceanic Regions: Observations from Ground Stations and COSMIC2 Data
by Ghouse Basha, M. Venkat Ratnam, Jonathan H. Jiang and Kishore Pangaluru
Atmosphere 2025, 16(7), 872; https://doi.org/10.3390/atmos16070872 - 17 Jul 2025
Viewed by 299
Abstract
The impacts of the solar eclipse that occurred on 8 April 2024 over the United States on various atmospheric parameters are investigated. We analyzed surface and vertical profiles of temperature and humidity to understand how this eclipse affected the atmosphere from the ground [...] Read more.
The impacts of the solar eclipse that occurred on 8 April 2024 over the United States on various atmospheric parameters are investigated. We analyzed surface and vertical profiles of temperature and humidity to understand how this eclipse affected the atmosphere from the ground to the stratosphere. Our findings show a significant response throughout the atmospheric range. The eclipse caused a decrease in shortwave radiation, leading to cooler Earth surfaces and a subsequent drop in surface temperature. This cooling effect also resulted in high relative humidity and lower wind speeds at the surface. Furthermore, GPS radio occultation data from COSMIC-2 revealed a decrease in tropospheric temperature and increase in stratospheric temperature during the eclipse. We also observed a reduction in both the temperature and height of the tropopause. The uniqueness of the present investigations lies in delineating the solar eclipse’s effects on the land and ocean. Our analysis indicates that land regions experienced a more pronounced temperature change compared to ocean regions. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 7965 KiB  
Article
A COSMIC-2-Based Global Mean TEC Model and Its Application to Calibrating IRI-2020 Global Ionospheric Maps
by Yuxiao Lei, Weitang Wang, Yibin Yao and Liang Zhang
Remote Sens. 2025, 17(13), 2322; https://doi.org/10.3390/rs17132322 - 7 Jul 2025
Viewed by 285
Abstract
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices [...] Read more.
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices for calibrating empirical ionospheric models such as IRI-2020. The COSMIC-2 constellation enables continuous, all-weather global ionospheric monitoring via radio occultation, unimpeded by land–sea distribution constraints, with over 8000 daily occultation events suitable for GMEC modeling. This study developed two lightweight GMEC models using COSMIC-2 data: (1) a POD GMEC model based on slant TEC (STEC) extracted from Level 1b podTc2 products and (2) a PROF GMEC model derived from vertical TEC (VTEC) calculated from electron density profiles (EDPs) in Level 2 ionPrf products. Both backpropagation neural network (BPNN)-based models generate hourly GMEC outputs as global spatial averages. Critically, GMEC serves as an essential intermediate step that addresses the challenges of utilizing spatially irregular occultation data by compressing COSMIC-2’s ionospheric information into an integrated metric. Building on this compressed representation, we implemented a convolutional neural network (CNN) that incorporates GMEC as an auxiliary feature to calibrate IRI-2020’s global ionospheric maps. This approach enables computationally efficient correction of systemic IRI TEC errors. Experimental results demonstrate (i) 48.5% higher accuracy in POD/PROF GMEC relative to IRI-2020 GMEC estimates, and (ii) the calibrated global IRI TEC model (designated GCIRI TEC) reduces errors by 50.15% during geomagnetically quiet periods and 28.5% during geomagnetic storms compared to the original IRI model. Full article
Show Figures

Figure 1

16 pages, 9897 KiB  
Article
Combination of High-Rate Ionosonde Measurements with COSMIC-2 Radio Occultation Observations for Reference Ionosphere Applications
by Iurii Cherniak, David Altadill, Irina Zakharenkova, Víctor de Paula, Víctor Navas-Portella, Douglas Hunt, Antoni Segarra and Ivan Galkin
Atmosphere 2025, 16(7), 804; https://doi.org/10.3390/atmos16070804 - 1 Jul 2025
Viewed by 315
Abstract
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric [...] Read more.
Knowledge of ionospheric plasma altitudinal distribution is crucial for the effective operation of radio wave propagation, communication, and navigation systems. High-frequency sounding radars—ionosondes—provide unbiased benchmark measurements of ionospheric plasma density due to a direct relationship between the frequency of sound waves and ionospheric electron density. But ground-based ionosonde observations are limited by the F2 layer peak height and cannot probe the topside ionosphere. GNSS Radio Occultation (RO) onboard Low-Earth-Orbiting satellites can provide measurements of plasma distribution from the lower ionosphere up to satellite orbit altitudes (~500–600 km). The main goal of this study is to investigate opportunities to obtain full observation-based ionospheric electron density profiles (EDPs) by combining advantages of ground-based ionosondes and GNSS RO. We utilized the high-rate Ebre and El Arenosillo ionosonde observations and COSMIC-2 RO EDPs colocated over the ionosonde’s area of operation. Using two types of ionospheric remote sensing techniques, we demonstrated how to create the combined ionospheric EDPs based solely on real high-quality observations from both the bottomside and topside parts of the ionosphere. Such combined EDPs can serve as an analogy for incoherent scatter radar-derived “full profiles”, providing a reference for the altitudinal distribution of ionospheric plasma density. Using the combined reference EDPs, we analyzed the performance of the International Reference Ionosphere model to evaluate model–data discrepancies. Hence, these new profiles can play a significant role in validating empirical models of the ionosphere towards their further improvements. Full article
Show Figures

Figure 1

19 pages, 7410 KiB  
Article
Atmospheric Boundary Layer and Tropopause Retrievals from FY-3/GNOS-II Radio Occultation Profiles
by Shaocheng Zhang, Youlin He, Sheng Guo and Tao Yu
Remote Sens. 2025, 17(13), 2126; https://doi.org/10.3390/rs17132126 - 21 Jun 2025
Viewed by 366
Abstract
The atmospheric boundary layer (ABL) and tropopause play critical roles in weather formation and climate change. This study initially focuses on the ABL height (ABLH), tropopause height (TPH), and temperature (TPT) retrieved from the integrated radio occultation (RO) profiles from FY-3E, FY-3F, and [...] Read more.
The atmospheric boundary layer (ABL) and tropopause play critical roles in weather formation and climate change. This study initially focuses on the ABL height (ABLH), tropopause height (TPH), and temperature (TPT) retrieved from the integrated radio occultation (RO) profiles from FY-3E, FY-3F, and FY-3G satellites during September 2022 to August 2024. All three FY-3 series satellites are equipped with the RO payload of Global Navigation Satellite System Radio Occultation Sounder-II (GNOS-II), which includes open-loop tracking RO observations from the BeiDou navigation satellite system (BDS) and the Global Positioning System (GPS). The wavelet covariance transform method was used to determine the ABL top, and the temperature lapse rate was applied to judge the tropopause. Results show that the maximum ABL detection rate of FY-3/GNOS-II RO can reach up to 76% in the subtropical eastern Pacific, southern hemisphere Atlantic, and eastern Indian Ocean. The ABLH is highly consistent with the collocated radiosonde observations and presents distinct seasonal variations. The TPH retrieved from FY-3/GNOS-II RO profiles is in agreement with the radiosonde-derived TPH, and both TPH and TPT from RO profiles display well-defined spatial structures. From 45°S to 45°N and south of 55°S, the annual cycle of the TPT is negatively correlated with the TPH. This study substantiates the promising performance of FY-3/GNOS-II RO measurements in observing the ABL and tropopause, which can be incorporated into the weather and climate systems. Full article
Show Figures

Figure 1

22 pages, 14296 KiB  
Article
An Investigation of GNSS Radio Occultation Data Pattern for Temperature Monitoring and Analysis over Africa
by Usman Sa’i Ibrahim, Kamorudeen Aleem, Tajul Ariffin Musa, Terwase Tosin Youngu, Yusuf Yakubu Obadaki, Wan Anom Wan Aris and Kelvin Tang Kang Wee
NDT 2025, 3(2), 15; https://doi.org/10.3390/ndt3020015 - 18 Jun 2025
Viewed by 1484
Abstract
Climate change monitoring and analysis is a critical task that involves the consideration of both spatial and temporal dimensions. Theimproved spatial distribution of the global navigation satellite system (GNSS) ground-based Continuous Operating Reference (COR) stations can lead to enhanced results when coupled with [...] Read more.
Climate change monitoring and analysis is a critical task that involves the consideration of both spatial and temporal dimensions. Theimproved spatial distribution of the global navigation satellite system (GNSS) ground-based Continuous Operating Reference (COR) stations can lead to enhanced results when coupled with a continuous flow of data over time. In Africa, a significant number of COR stations do not operate continuously and lack collocation with meteorological sensors essential for climate studies. Consequently, Africa faces challenges related to inadequate spatial distribution and temporal data flow from GNSS ground-based stations, impacting climate change monitoring and analysis. This research delves into the pattern of GNSS radio occultation (RO) data across Africa, addressing the limitations of the GNSS ground-based data for climate change research. The spatial analysis employed Ripley’s F-, G-, K-, and L-functions, along with calculations of nearest neighbour and Kernel density. The analysis yielded a Moran’s p-value of 0.001 and a Moran’s I-value approaching 1.0. For temporal analysis, the study investigated the data availability period of selected GNSS RO missions. Additionally, it examined seasonal temperature variations from May 2001 to May 2023, showcasing alignment with findings from other researchers worldwide. Hence, this study suggests the utilisation of GNSS RO missions/campaigns like METOP and COSMIC owing to their superior spatial and temporal resolution. Full article
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 625
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

15 pages, 4164 KiB  
Article
Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles
by Jialiang Zhang, Jianxiang Zhang, Zhou Chen, Jingsong Wang, Cunqun Fan and Yan Guo
Atmosphere 2025, 16(5), 598; https://doi.org/10.3390/atmos16050598 - 15 May 2025
Viewed by 520
Abstract
This study proposes a deep learning-based vertical decomposition model for ionospheric Total Electron Content (TEC), which establishes a nonlinear mapping from macroscale TEC data to vertically layered electron density (Ne) spanning 60–800 km by integrating geomagnetic indices (AE, SYM-H) and solar activity parameters [...] Read more.
This study proposes a deep learning-based vertical decomposition model for ionospheric Total Electron Content (TEC), which establishes a nonlinear mapping from macroscale TEC data to vertically layered electron density (Ne) spanning 60–800 km by integrating geomagnetic indices (AE, SYM-H) and solar activity parameters (F10.7). Utilizing global TEC grid data (spatiotemporal resolution: 1 h/5.625° × 2.8125°) provided by the International GNSS Service (IGS), a Multilayer Perceptron (MLP) model was developed, taking spatiotemporal coordinates, altitude, and space environment parameters as inputs to predict logarithmic electron density ln(Ne). Experimental validation against COSMIC-2 radio occultation observations in 2019 demonstrates the model’s capability to capture ionospheric vertical structures, with a prediction performance significantly outperforming the International Reference Ionosphere model IRI-2020: root mean square error (RMSE) decreased by 34.16%, and the coefficient of determination (R2) increased by 28.45%. This method overcomes the reliance of traditional electron density inversion on costly radar or satellite observations, enabling high-spatiotemporal-resolution global ionospheric profile reconstruction using widely available GNSS-TEC data. It provides a novel tool for space weather warning and shortwave communication optimization. Current limitations include insufficient physical interpretability and prediction uncertainty in GNSS-sparse regions, which could be mitigated in future work through the integration of physical constraints and multi-source data assimilation. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

26 pages, 6392 KiB  
Article
Atmospheric Rivers in Africa Observed with GNSS-RO and Reanalysis Data
by Linda Martina Maier, Bahareh Rahimi and Ulrich Foelsche
Remote Sens. 2025, 17(7), 1273; https://doi.org/10.3390/rs17071273 - 3 Apr 2025
Viewed by 512
Abstract
Atmospheric Rivers (ARs) transport significant amounts of moisture and cause extreme precipitation events, yet their behavior over Africa is not well understood. This study addresses this gap by analyzing the occurrence, seasonal variability, and spatial dynamics of ARs across the continent from 2009 [...] Read more.
Atmospheric Rivers (ARs) transport significant amounts of moisture and cause extreme precipitation events, yet their behavior over Africa is not well understood. This study addresses this gap by analyzing the occurrence, seasonal variability, and spatial dynamics of ARs across the continent from 2009 to 2019. Utilizing ERA5 reanalysis data, Global Navigation Satellite Systems Radio Occultation (GNSS RO) measurements, and the Image-Processing-based Atmospheric River Tracking (IPART) method, distinct seasonal AR patterns are identified. Southern Africa experiences peak activity during austral summer, while AR occurrence in Northern Africa peaks in boreal winter and spring, aligning with regional rainy seasons. Moisture sources include the Atlantic Ocean, the Arabian Sea, and the Red Sea. A comparison of ERA5 Integrated Water Vapor (IWV) estimates with high-resolution GNSS RO data shows that both datasets effectively capture broad-scale moisture patterns. However, ERA5 consistently delivers higher IWV values compared to GNSS RO, which is likely due to underrepresentation of GNSS RO IWV values, since profiles generally do not reach all the way down to the surface—but also due to an overrepresentation of humidity in the ERA5 reanalyses. Understanding AR dynamics in Africa is essential to improve climate resilience, water management and understanding extreme precipitation events. Full article
Show Figures

Figure 1

24 pages, 48751 KiB  
Article
Effects of the Mother’s Day Superstorm (10–11 May 2024) over the Global Ionosphere
by Krishnendu Sekhar Paul, Mefe Moses, Haris Haralambous and Christina Oikonomou
Remote Sens. 2025, 17(5), 859; https://doi.org/10.3390/rs17050859 - 28 Feb 2025
Cited by 2 | Viewed by 1129
Abstract
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio [...] Read more.
The present study examines the global ionospheric response to the “Mother’s Day Superstorm” (10–11 May 2024), one of the most intense geomagnetic storms since 1957, with a minimum SYM-H index of −436 nT. Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) Radio Occultation (RO) data indicated an increase in the F2 layer maximum critical frequency (foF2) over midlatitude dayside regions, which was accompanied by a significant F-region uplift (hmF2 increase) on a global scale, even on the nightside during the main and recovery phases. At the same time, a decrease in foF2 was observed on the nightside. High southeastward and vertical drift velocities were observed in the nightside sector of the northern hemisphere with the dayside sector exhibiting upward and southwestward-to-northwestward drifts during the main and recovery phases of the storm. An intense upward drift (~170 m/s) in the southern hemisphere was registered with the poleward expansion of the Equatorial Ionization Anomaly (EIA) during the main phase. Swarm A data highlighted the EIA expansion from ~45°N to 60°S during the dayside main phase and from ~30°N to 40°S on the nightside during recovery. Full article
(This article belongs to the Special Issue Application of GNSS Remote Sensing in Ionosphere Monitoring)
Show Figures

Graphical abstract

14 pages, 4030 KiB  
Article
Analysis of Radio Science Data from the KaT Instrument of the 3GM Experiment During JUICE’s Early Cruise Phase
by Paolo Cappuccio, Andrea Sesta, Mauro Di Benedetto, Daniele Durante, Umberto De Filippis, Ivan di Stefano, Luciano Iess, Ruaraidh Mackenzie and Bernard Godard
Aerospace 2025, 12(1), 56; https://doi.org/10.3390/aerospace12010056 - 16 Jan 2025
Viewed by 862
Abstract
The JUpiter Icy Moon Explorer (JUICE) mission, launched on 14 April 2023, aims to explore Jupiter and its Galilean moons, with arrival in the Jovian system planned for mid-2031. One of the scientific investigations is the Geodesy and Geophysics of Jupiter and the [...] Read more.
The JUpiter Icy Moon Explorer (JUICE) mission, launched on 14 April 2023, aims to explore Jupiter and its Galilean moons, with arrival in the Jovian system planned for mid-2031. One of the scientific investigations is the Geodesy and Geophysics of Jupiter and the Galilean Moons (3GM) radio science experiment, designed to study the interior structures of Europa, Callisto, and Ganymede and the atmospheres of Jupiter and the Galilean moons. The 3GM experiment employs a Ka-band Transponder (KaT) to enable two-way coherent range and Doppler measurements used for the gravity experiment and an Ultra Stable Oscillator (USO) for one-way downlink occultation experiments. This paper analyzes KaT data collected at the ESA/ESTRACK ground station in Malargüe, Argentina, during the Near-Earth Commissioning Phase (NECP) in May 2023 and the first in-cruise payload checkout (PC01) in January 2024. The radiometric data were fitted using both NASA’s Mission Analysis, Operations, and Navigation Toolkit Environment (MONTE) and ESA’s General Orbit Determination and Optimization Toolkit (GODOT) software. The comparison of the orbital solutions showed an excellent agreement. In addition, the Doppler and range residuals allowed a preliminary assessment of the quality of the radiometric measurements. During the NECP pass, the radio link data showed a range-rate noise of 0.012 mm/s at 1000 s integration time, while the root mean square of the range residuals sampled at 1 s was 8.4 mm. During the first payload checkout, the signal power at the KaT input closely matched the value expected at Jupiter, due to a specific ground station setup. This provided early indications of the 3GM’s performance during the Jovian phase. In this test, the accuracy of range data at an integration time of 1s, particularly sensitive to the link signal-to-noise ratio, degraded to 13.6 cm, whilst the range-rate accuracy turned out to be better than 0.003 mm/s at 1000 s, thanks to the accurate tropospheric delay calibration system (TDCS) available at the Malargue station (inactive during NECP). Full article
Show Figures

Figure 1

27 pages, 12707 KiB  
Review
Review of Assimilating Spaceborne Global Navigation Satellite System Remote Sensing Data for Tropical Cyclone Forecasting
by Weihua Bai, Guanyi Wang, Feixiong Huang, Yueqiang Sun, Qifei Du, Junming Xia, Xianyi Wang, Xiangguang Meng, Peng Hu, Cong Yin, Guangyuan Tan and Ruhan Wu
Remote Sens. 2025, 17(1), 118; https://doi.org/10.3390/rs17010118 - 1 Jan 2025
Cited by 4 | Viewed by 1720
Abstract
Global Navigation Satellite System (GNSS) Radio Occultation (RO) and GNSS Reflectometry (GNSS-R) are the two major spaceborne GNSS remote sensing (GNSS-RS) techniques, providing observations of atmospheric profiles and the Earth’s surface. With the rapid development of GNSS-RS techniques and spaceborne missions, many experiments [...] Read more.
Global Navigation Satellite System (GNSS) Radio Occultation (RO) and GNSS Reflectometry (GNSS-R) are the two major spaceborne GNSS remote sensing (GNSS-RS) techniques, providing observations of atmospheric profiles and the Earth’s surface. With the rapid development of GNSS-RS techniques and spaceborne missions, many experiments and studies were conducted to assimilate those observational data into numerical weather-prediction models for tropical cyclone (TC) forecasts. GNSS RO data, known for its high precision and all-weather observation capability, is particularly effective in forecasting mid-to-upper atmospheric levels. GNSS-R, on the other hand, plays a significant role in improving TC track and intensity predictions by observing ocean surface winds under high precipitation in the inner core of TCs. Different methods were developed to assimilate these remote sensing data. This review summarizes the results of assimilation studies using GNSS-RS data for TC forecasting. It concludes that assimilating GNSS RO data mainly enhances the prediction of precipitation and humidity, while assimilating GNSS-R data improves forecasts of the TC track and intensity. In the future, it is promising to combine GNSS RO and GNSS-R data for joint retrieval and assimilation, exploring better effects for TC forecasting. Full article
(This article belongs to the Special Issue Latest Advances and Application in the GNSS-R Field)
Show Figures

Figure 1

15 pages, 6823 KiB  
Technical Note
Investigating Tropical Cyclone Warm Core and Boundary Layer Structures with Constellation Observing System for Meteorology, Ionosphere, and Climate 2 Radio Occultation Data
by Xiaoxu Qi, Shengpeng Yang and Li He
Remote Sens. 2024, 16(22), 4257; https://doi.org/10.3390/rs16224257 - 15 Nov 2024
Viewed by 876
Abstract
The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) collects data covering latitudes primarily between 40 degrees north and south, providing abundant data for tropical cyclone (TC) research. The radio occultation data provide valuable information on the boundary layer. However, quality [...] Read more.
The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) collects data covering latitudes primarily between 40 degrees north and south, providing abundant data for tropical cyclone (TC) research. The radio occultation data provide valuable information on the boundary layer. However, quality control of the data within the boundary layer remains a challenging issue. The aim of this study is to obtain a more accurate COSMIC-2 radio occultation (RO) dataset through quality control (QC) and use this dataset to validate warm core structures and explore the planetary boundary layer (PBL) structures of TCs. In this study, COSMIC-2 data are used to analyze the distribution of the relative local spectral width (LSW) and the confidence parameter characterizing the random error of the bending angle. An LSW less than 20% is set as a data QC threshold, and the warm core and PBL composite structures of TCs at three intensities in the Northwest Pacific Ocean are investigated. We reproduce the warm core intensity and warm core height characteristics of TCs. In the radial direction of the typhoon eyewall, the impact height of the PBL increases from 3.45 km to 4 km, with the tropopause ranging from 160 hPa to 100 hPa. At the bottom of the troposphere, the variations in the positive and negative bias between the RO-detected and background field bending angles correspond well to the PBL heights, and the variations in the positive bias between the RO-detected and background field refractivity reach 14%. This research provides an effective QC method and reveals that the bending angle is sensitive to the PBL height. Full article
Show Figures

Graphical abstract

46 pages, 19002 KiB  
Article
3Cat-8 Mission: A 6-Unit CubeSat for Ionospheric Multisensing and Technology Demonstration Test-Bed
by Luis Contreras-Benito, Ksenia Osipova, Jeimmy Nataly Buitrago-Leiva, Guillem Gracia-Sola, Francesco Coppa, Pau Climent-Salazar, Paula Sopena-Coello, Diego Garcín, Juan Ramos-Castro and Adriano Camps
Remote Sens. 2024, 16(22), 4199; https://doi.org/10.3390/rs16224199 - 11 Nov 2024
Viewed by 3275
Abstract
This paper presents the mission analysis of 3Cat-8, a 6-Unit CubeSat mission being developed by the UPC NanoSat Lab for ionospheric research. The primary objective of the mission is to monitor the ionospheric scintillation of the aurora, and to perform several technological [...] Read more.
This paper presents the mission analysis of 3Cat-8, a 6-Unit CubeSat mission being developed by the UPC NanoSat Lab for ionospheric research. The primary objective of the mission is to monitor the ionospheric scintillation of the aurora, and to perform several technological demonstrations. The satellite incorporates several novel systems, including a deployable Fresnel Zone Plate Antenna (FZPA), an integrated PocketQube deployer, a dual-receiver GNSS board for radio occultation and reflectometry experiments, and a polarimetric multi-spectral imager for auroral emission observations. The mission design, the suite of payloads, and the concept of operations are described in detail. This paper discusses the current development status of 3Cat-8, with several subsystems already developed and others in the final design phase. It is expected that the data gathered by 3Cat-8 will contribute to a better understanding of ionospheric effects on radio wave propagation and demonstrate the feasibility of compact remote sensors in a CubeSat platform. Full article
(This article belongs to the Special Issue Advances in CubeSats for Earth Observation)
Show Figures

Figure 1

13 pages, 1100 KiB  
Article
Non-Palpable Breast Cancer: A Targeting Challenge–Comparison of Radio-Guided vs. Wire-Guided Localization Techniques
by András Drozgyik, Dániel Kollár, Levente Dankházi, István Á. Harmati, Krisztina Szalay and Tamás F. Molnár
Biomedicines 2024, 12(11), 2466; https://doi.org/10.3390/biomedicines12112466 - 27 Oct 2024
Cited by 1 | Viewed by 1564
Abstract
Background: The incidence of non-palpable breast cancer is increasing due to widespread screening and neo-adjuvant therapies. Among the available tumor localization techniques, radio-guided occult lesion localization (ROLL) has largely replaced wire-guided localization (WGL). The aim of this study was to compare the ROLL [...] Read more.
Background: The incidence of non-palpable breast cancer is increasing due to widespread screening and neo-adjuvant therapies. Among the available tumor localization techniques, radio-guided occult lesion localization (ROLL) has largely replaced wire-guided localization (WGL). The aim of this study was to compare the ROLL and WGL techniques in terms of the effectiveness of isotopic marking of axillary sentinel lymph nodes and to assess patient perspectives along with surgeon and radiologist preferences. Methods: A single-center, prospective, randomized study enrolled 110 patients with non-palpable breast lesions (56 ROLL, 54 WGL). Breast type, tumor volume, location, histological and radiological features, and localization/surgical duration were evaluated in the context of sentinel lymph node marking using isotope (technetium-99m-labeled human serum albumin) and blue dye. Statistical analysis was performed with significance set at p < 0.05 and strong significance at p < 0.01. Results: A single-center, prospective, randomized study enrolled 110 patients with non-palpable breast lesions (56 ROLL, 54 WGL). Breast type, tumor volume, location, histological and radiological features, and localization/surgical duration were evaluated in the context of sentinel lymph node marking using isotope (technetium-99m-labeled human serum albumin) and blue dye. Statistical analysis was performed with significance set at p < 0.05 and strong significance at p < 0.01. Conclusions: While ROLL provided advantages in terms of patient comfort and logistical simplicity, WGL was superior for axillary sentinel lymph node marking, particularly in inner quadrant tumors, suggesting that WGL may be preferred in these cases. Full article
(This article belongs to the Special Issue Breast Cancer: New Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

Back to TopTop