Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles
Abstract
:1. Introduction
- (a)
- Dynamic Magnetospheric Coupling: Geomagnetic activity indices (AE/SYM-H) are incorporated as dynamic drivers into the deep learning architecture to explicitly characterize the control mechanisms of magnetospheric energy injection on ionospheric Ne abrupt changes.
- (b)
- Adaptive Spatial Encoding: Longitude periodicity encoding (sine and cosine transformations) and a logarithmic Ne output layer are introduced to enhance the model’s adaptability to ionospheric longitudinal–latitudinal variation patterns and Ne magnitudes spanning multiple orders.
- (c)
- Full-Profile Real-Time Inversion: A vertically decomposed network covering 60–800 km altitudes enables real-time global Ne profile retrieval using single-input TEC data.
2. Materials and Methods
2.1. Data Sources and Preprocessing
- (a)
- IGS-TEC
- (b)
- AE, SYM-H, and F10.7
- (c)
- COSMIC-1
- (d)
- COSMIC-2
- Missing Value Removal: Rows containing placeholder values (−999) were discarded.
- Physical Validity Filtering: Observations with Ne < 0 (non-physical values) were excluded.
- Altitude Thresholding: Data below 60 km were truncated to align with the training data range.
- (e)
- IRI-2020
2.2. Deep Learning MLP Methodology
3. Results
3.1. Test Set Comparison
3.2. Comparison with COSMIC-2 Satellite Observations
- Equation (4) represents the absolute error for individual data points.
- Equations (5) and (6) correspond to the mean absolute error (MAE) and mean squared error (MSE), respectively.
- : Predicted values from either the decomposition model or IRI-2020.
- : Observed values from COSMIC-2.
4. Discussion
- (1)
- Model Performance
- (2)
- Application Value and Limitations
- A common limitation of purely data-driven AI models in geophysical applications, including the present study, is their limited physical interpretability. The absence of explicit ionospheric dynamical equations (e.g., continuity and momentum equations) in such frameworks restricts direct insight into underlying physical processes.
- Extreme Space Weather Generalization: This study does not focus on the generalization performance of extreme space weather periods, which is worthy of further verification in the following.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakowski, N.; Mayer, C.; Hoque, M.M.; Wilken, V. Total Electron Content Models and Their Use in Ionosphere Monitoring. Radio Sci. 2011, 46, RS0D18. [Google Scholar] [CrossRef]
- Köhnlein, W. Electron Density Models of the Ionosphere. Rev. Geophys. 1978, 16, 341–354. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, Y.; Liu, Y.; Zhang, H.; Zhang, T.; Wang, Y.; Dai, Z. Evaluation of GNSS-TEC Data-Driven IRI-2016 Model for Electron Density. Atmosphere 2024, 15, 958. [Google Scholar] [CrossRef]
- Patel, K.; Chaurasiya, S.K. Geomagnetic Storms and Their Effect on Global Positioning System: A Supplication of Global Navigation Satellite System Receivers. In GNSS Applications in Earth and Space Observations; CRC Press: Boca Raton, FL, USA, 2025; pp. 265–279. [Google Scholar]
- Bothmer, V.; Daglis, I.A.; Arbesser-Rastburg, B.; Jakowski, N. Effects on Satellite Navigation. In Space Weather—Physics and Effects; Bothmer, V., Daglis, I.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 383–402. [Google Scholar]
- Huang, X.; Reinisch, B.W. Vertical Electron Density Profiles from the Digisonde Network. Adv. Space Res. 1996, 18, 121–129. [Google Scholar] [CrossRef]
- Nava, B.; Radicella, S.M.; Leitinger, R.; Coïsson, P. Use of Total Electron Content Data to Analyze Ionosphere Electron Density Gradients. Adv. Space Res. 2007, 39, 1292–1297. [Google Scholar] [CrossRef]
- Mengist, C.K.; Yadav, S.; Kotulak, K.; Bahar, A.; Zhang, S.R.; Seo, K.H. Validation of International Reference Ionosphere Model (IRI-2016) for F-Region Peak Electron Density Height (hmF2): Comparison with Incoherent Scatter Radar (ISR) and Ionosonde Measurements at Millstone Hill. Adv. Space Res. 2020, 65, 2773–2781. [Google Scholar] [CrossRef]
- Reinisch, B. Ionosphere and Plasmasphere Electron Density Profiles. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–2. [Google Scholar]
- Ma, Q.; Xu, W.; Sanchez, E.R.; Marshall, R.A.; Bortnik, J.; Reyes, P.M.; Tam, S.Y. Analysis of Electron Precipitation and Ionospheric Density Enhancements Due to Hiss Using Incoherent Scatter Radar and Arase Observations. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030545. [Google Scholar] [CrossRef]
- Liu, J.Y.; Lin, C.H.; Rajesh, P.K.; Lin, C.Y.; Chang, F.Y.; Lee, I.T.; Chen, S.P. Advances in Ionospheric Space Weather by Using FORMOSAT-7/COSMIC-2 GNSS Radio Occultations. Atmosphere 2022, 13, 858. [Google Scholar] [CrossRef]
- Jiang, C.; An, Q.; Wang, S.; Nie, W.; Zhu, H.; Liu, G. Accuracy Assessment of the Ionospheric Total Electron Content Derived from COSMIC-2 Radio Occultation Based on Multi-Source Data. Adv. Space Res. 2024, 73, 5157–5170. [Google Scholar] [CrossRef]
- World Meteorological Organization. COSMIC-2. WMO OSCAR—Details for Instrument TGRS (COSMIC-2). Available online: https://space.oscar.wmo.int/satellites/view/cosmic_2 (accessed on 6 May 2025).
- Seemala, G.K. Estimation of Ionospheric Total Electron Content (TEC) from GNSS Observations. In Atmospheric Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 63–84. [Google Scholar]
- Jakowski, N.; Hoque, M.M. Estimation of Spatial Gradients and Temporal Variations of the Total Electron Content Using Ground-Based GNSS Measurements. Space Weather 2019, 17, 339–356. [Google Scholar] [CrossRef]
- She, C.; Yue, X.; Hu, L.; Zhang, F. Estimation of Ionospheric Total Electron Content from a Multi-GNSS Station in China. IEEE Trans. Geosci. Remote Sens. 2019, 58, 852–860. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, W.; Li, H.; Wang, J.; Deng, X.; Hong, S. Prediction of Global Ionosphere TEC Based on Deep Learning. Space Weather 2022, 20, e2021SW002854. [Google Scholar] [CrossRef]
- Liu, L.; Zou, S.; Yao, Y.; Wang, Z. Forecasting Global Ionospheric TEC Using Deep Learning Approach. Space Weather 2020, 18, e2020SW002501. [Google Scholar] [CrossRef]
- Wen, Z.; Li, S.; Li, L.; Wu, B.; Fu, J. Ionospheric TEC Prediction Using Long Short-Term Memory Deep Learning Network. Astrophys. Space Sci. 2021, 366, 3. [Google Scholar] [CrossRef]
- Ruwali, A.; Kumar, A.S.; Prakash, K.B.; Sivavaraprasad, G.; Ratnam, D.V. Implementation of Hybrid Deep Learning Model (LSTM-CNN) for Ionospheric TEC Forecasting Using GPS Data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1004–1008. [Google Scholar] [CrossRef]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; López-Urías, C.; Trejo-Soto, M.E.; Vidal-Vega, A.I. Evaluating Ionospheric Total Electron Content (TEC) Variations as Precursors to Seismic Activity: Insights from the 2024 Noto Peninsula and Nichinan Earthquakes of Japan. Atmosphere 2024, 15, 1492. [Google Scholar] [CrossRef]
- Nayak, K.; Romero-Andrade, R.; Sharma, G.; Zavala, J.L.C.; Urias, C.L.; Trejo-Soto, M.E.; Aggarwal, S.P. A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw, Mexico. Acta Geodaet. Geophys. 2023, 58, 515–538. [Google Scholar] [CrossRef]
- Gao, S.; Cai, H.; Zhan, W.; Wan, X.; Xiong, C.; Zhang, H.; Xu, C. Characterization of Local Time Dependence of Equatorial Spread F Responses to Substorms in the American Sector. J. Space Weather Space Clim. 2023, 13, 2. [Google Scholar] [CrossRef]
- Swarnalingam, N.; Wu, D.L.; Gopalswamy, N. Interhemispheric Asymmetries in Ionospheric Electron Density Responses During Geomagnetic Storms: A Study Using Space-Based and Ground-Based GNSS and AMPERE Observations. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030247. [Google Scholar] [CrossRef]
- Liou, Y.A.; Pavelyev, A.G.; Liu, S.F.; Pavelyev, A.A.; Yen, N.; Huang, C.Y.; Fong, C.J. FORMOSAT-3/COSMIC GPS Radio Occultation Mission: Preliminary Results. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3813–3826. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Zeng, Z. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Hirooka, S.; Hattori, K.; Takeda, T. Numerical Validations of Neural-Network-Based Ionospheric Tomography for Disturbed Ionospheric Conditions and Sparse Data. Radio Sci. 2011, 46, RS5011. [Google Scholar] [CrossRef]
- Ma, X.F.; Maruyama, T.; Ma, G.; Takeda, T. Three-Dimensional Ionospheric Tomography Using Observation Data of GPS Ground Receivers and Ionosonde by Neural Network. J. Geophys. Res. 2005, 110, A05308. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Y. Ionospheric VTEC Maps Forecasting Based on Graph Neural Network With Transformers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1802–1816. [Google Scholar] [CrossRef]
Feature | Label | ||
---|---|---|---|
Channel Name | Unit | Channel Name | Unit |
TEC | TECU | Ne | ln(m−3) |
Latitude | rad | - | - |
sin(Longitude) | - | - | - |
cos(Longitude) | - | - | - |
Altitude | km | - | - |
AE | nT | - | - |
SYM-H | nT | - | - |
F10.7 | SFU | - | - |
Hour | - | - | - |
Statistics and Metrics | COSMIC-2 | Decomposition Model | IRI-2020 |
---|---|---|---|
Mean | 11.3987 | 11.2849 | 11.4355 |
Std | 0.9806 | 1.1236 | 1.1418 |
Max | 13.3330 | 13.4746 | 13.6078 |
Min | 9.0494 | 9.2830 | 8.2590 |
MSE | - | 0.1389 | 0.3202 |
RMSE | - | 0.3726 | 0.5659 |
MAE | - | 0.3037 | 0.4269 |
Std of Abs Error | - | 0.2159 | 0.3714 |
R2 | - | 0.8574 | 0.6675 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, J.; Chen, Z.; Wang, J.; Fan, C.; Guo, Y. Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles. Atmosphere 2025, 16, 598. https://doi.org/10.3390/atmos16050598
Zhang J, Zhang J, Chen Z, Wang J, Fan C, Guo Y. Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles. Atmosphere. 2025; 16(5):598. https://doi.org/10.3390/atmos16050598
Chicago/Turabian StyleZhang, Jialiang, Jianxiang Zhang, Zhou Chen, Jingsong Wang, Cunqun Fan, and Yan Guo. 2025. "Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles" Atmosphere 16, no. 5: 598. https://doi.org/10.3390/atmos16050598
APA StyleZhang, J., Zhang, J., Chen, Z., Wang, J., Fan, C., & Guo, Y. (2025). Deep Learning-Based Vertical Decomposition of Ionospheric TEC into Layered Electron Density Profiles. Atmosphere, 16(5), 598. https://doi.org/10.3390/atmos16050598