Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (933)

Search Parameters:
Keywords = quenching rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2314 KB  
Article
Influence of Mo and Ni Alloying on Recrystallization Kinetics and Phase Transformation in Quenched and Tempered Thick Steel Plates
by Xabier Azpeitia, Unai Mayo, Nerea Isasti, Eric Detemple, Hardy Mohrbacher and Pello Uranga
Materials 2026, 19(2), 290; https://doi.org/10.3390/ma19020290 - 10 Jan 2026
Viewed by 161
Abstract
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase [...] Read more.
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase transformation kinetics. This study investigates the effect of Mo (0.25–0.50 wt%) and Ni (0–1.00 wt%) additions on static recrystallization and transformation behavior using laboratory thermomechanical simulations representative of thick plate rolling conditions. Multipass and double-hit torsion tests were performed to determine the non-recrystallization temperature (Tnr) and quantify softening kinetics, while dilatometry was employed to construct Continuous Cooling Transformation (CCT) diagrams and assess hardenability. Results indicate that Mo significantly increases Tnr and delays recrystallization through a solute drag mechanism, whereas Ni exerts a minor but measurable effect, likely associated with stacking fault energy rather than classical solute drag. Both elements reduce ferrite and bainite transformation temperatures, enhancing hardenability; however, Mo alone cannot suppress ferrite formation at practical cooling rates, requiring combined Mo–Ni additions to achieve fully martensitic microstructures. These findings provide insight into alloy design for thick plate applications and highlight the limitations of existing predictive models for Ni-containing steels. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 2766 KB  
Article
Regulatory Effects of Exogenous Trehalose on the Growth and Photosynthetic Characteristics of Celery (Apium graveolens L.) Under Salt Stress
by Yanqiang Gao, Liangmei Zhang, Wenjing Rui, Miao Zhang, Zixiao Liang, Kaiguo Pu, Youlin Chang, Yongwei Ma, Jingwen Huo, Jiongjie Zhang, Jing Li and Jianming Xie
Plants 2026, 15(2), 212; https://doi.org/10.3390/plants15020212 - 9 Jan 2026
Viewed by 121
Abstract
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the [...] Read more.
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the potential regulatory role of exogenous trehalose application in mitigating the stress-induced effects. The results indicated that an increase in NaCl concentration from 50 to 200 mM markedly inhibited the growth of celery plants compared to that under control conditions. The application of different concentrations of trehalose mitigated the inhibitory effects of salt stress (100 mM NaCl) on celery growth and photosynthesis. Among the different trehalose treatments, T3 (10 mM trehalose) exhibited the most significant effects, increasing the aboveground biomass, belowground biomass, plant height, chlorophyll a, chlorophyll b, total chlorophyll, and net photosynthetic rate compared to that of salt stress alone, respectively. Furthermore, trehalose treatments enhanced the various fluorescence parameters, including the maximum efficiency of PSII photochemistry (Fv/Fm), coefficient of photochemical quenching (qP), fluorescence intensity, and photosynthetic performance index (PIabs) under salt stress. Meanwhile, trehalose reduced intercellular carbon dioxide concentration, excess excitation energy (1-qP)/NPQ, heat dissipation per unit area (DIo/CSm), and energy dissipated per reaction center (DIo/RC). Additionally, the results of principal component analysis (PCA) and membership function comprehensive evaluation indicate that an appropriate concentration of trehalose positively alleviates the salnitiy-induced effects in celery. Overall, the T3 demonstrated the most promising effects on mitigating the effects of salt stress by decreasing the excess excitation energy of PSII in celery leaves through the heat dissipation pathway. This reduction lowers the excitation pressure on the reaction centers, enhances the activity of PSII reaction centers per unit cross-section, and improves photosynthesis activity, thereby improving the growth of celery plants under salt stress. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 7995 KB  
Article
Study on Degradation of Sulfamethoxazole in Water by Activated Persulfate of Molybdenite Supported on Biochar
by Xuemei Li, Jian Wang, Xinglin Chen, Shengnan Li and Hai Lu
Molecules 2026, 31(2), 211; https://doi.org/10.3390/molecules31020211 - 7 Jan 2026
Viewed by 246
Abstract
In this study, the advanced oxidation system of peroxymonosulfate (PMS) was activated by molybdenite supported on biochar (Molybdenite@BC), and the degradation efficiency, influencing factors and degradation mechanism of sulfamethoxazole (SMX) were explored through experiments. Molybdenite@BC, a composite material used in the study, was [...] Read more.
In this study, the advanced oxidation system of peroxymonosulfate (PMS) was activated by molybdenite supported on biochar (Molybdenite@BC), and the degradation efficiency, influencing factors and degradation mechanism of sulfamethoxazole (SMX) were explored through experiments. Molybdenite@BC, a composite material used in the study, was prepared by pyrolysis at high temperature. The optimum pyrolysis temperature was 700 °C, and the mass ratio of molybdenite to biochar (BC) was 1:3. By changing dosage of Molybdenite@BC, pH value, initial concentration of PMS, and the types and concentration of inorganic anions, the effects of various factors on SMX degradation were systematically studied. The optimum reaction conditions of the Molybdenite@BC/PMS process were as follows: Molybdenite@BC dosage was 100 mg/L, PMS concentration was 0.2 mM, pH value was 6.9 ± 0.2, and initial SMX concentration was 6 mg/L. Under these conditions, the degradation rate of SMX was 97.87% after 60 min and 99.06% after 120 min. The material characterization analysis showed that Molybdenite@BC had a porous structure and rich active sites, which was beneficial to the degradation of pollutants. After the composite material was used, the peaks of MoO2 and MoS2 became weaker, which indicated that there was some loss of molybdenum from the material structure. Electron paramagnetic resonance (EPR) and radical quenching experiments revealed that Molybdenite@BC effectively catalyzed PMS to generate various reactive oxygen radicals and non-free radicals, including singlet oxygen (1O2), hydroxyl radical (OH), sulfate radical (SO4•−) and superoxide radical (O2). 1O2 played a leading role in the degradation of SMX, while OH and SO4•− had little influence. The intermediate products of the degradation of SMX in Molybdenite@BC/PMS system were analyzed by liquid chromatography–tandem mass spectrometry (LC–MS). The results showed that there were nine main intermediate products in the process of degradation, and the overall toxicity tended to decrease during the degradation of SMX. The degradation path analysis showed that with the gradual ring opening and bond breaking of SMX, small molecular compounds were generated, which were finally mineralized into H2O, CO2, CO32−, H2SO4 and other substances. The research results confirmed that the Molybdenite@BC/PMS process provided a feasible new method for the degradation of SMX in water. Full article
Show Figures

Figure 1

15 pages, 6356 KB  
Article
Hexagonal Microsphere/Cubic Particle ZnIn2S4 Heterojunctions: A Robust Photocatalyst for Visible-Light-Driven Conversion of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Under Ambient Air Conditions
by Lin-Yu Jiao, Ze-Long Sun, Wen-Yu Luo, Fei Wen, Jun-Bo Ye, Kang-Lai Chen, Long Xu, Bin Tian and Shan-Shan Liu
Catalysts 2026, 16(1), 69; https://doi.org/10.3390/catal16010069 - 7 Jan 2026
Viewed by 216
Abstract
In recent years, biomass utilization has attracted extensive attention. Herein, hexagonal/cubic ZnIn2S4 (ZIS) heterojunction catalysts were synthesized via a solvothermal method for the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). The results demonstrated that the constructed heterojunctions effectively promoted [...] Read more.
In recent years, biomass utilization has attracted extensive attention. Herein, hexagonal/cubic ZnIn2S4 (ZIS) heterojunction catalysts were synthesized via a solvothermal method for the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). The results demonstrated that the constructed heterojunctions effectively promoted carrier separation. The optimal catalyst achieved an HMF conversion rate of 88.8% and a DFF yield of 86.6% within 1 h in the open air. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterizations confirmed the successful fabrication of the composite phase structure and revealed a porous spherical morphology. Equivalent circuit fitting of electrochemical impedance spectroscopy (EIS) data indicated that the hexagonal/cubic heterojunctions possessed the lowest charge transfer resistance (Rct = 5825 Ω), which effectively reduced interfacial charge transfer resistance and accelerated the transport of photoinduced carriers. Radical quenching experiments and electron paramagnetic resonance (EPR) spectroscopy identified superoxide radicals (·O2) as the primary reactive species. Meanwhile, density functional theory (DFT) calculations elucidated the formation of the built-in electric field and the charge transfer mechanism. This work’s construction of Type-II ZIS heterojunctions effectively addressed the issue of rapid carrier recombination in pristine ZIS materials, providing a feasible strategy for biomass valorization. Full article
Show Figures

Figure 1

17 pages, 1843 KB  
Article
Characterization of a Salt-Tolerant Plant Growth-Promoting Bacterial Isolate and Its Effects on Oat Seedlings Under Salt Stress
by Yincui Zhang, Changning Li and Yue Wang
Agronomy 2026, 16(1), 135; https://doi.org/10.3390/agronomy16010135 - 5 Jan 2026
Viewed by 178
Abstract
Oats (Avena sativa L.) are a staple grain and forage crop with substantial market demand. In China, they are the second most-imported forage grass, only after alfalfa (Medicago sativa L.). Enhancing the salt tolerance of oats to facilitate their cultivation in [...] Read more.
Oats (Avena sativa L.) are a staple grain and forage crop with substantial market demand. In China, they are the second most-imported forage grass, only after alfalfa (Medicago sativa L.). Enhancing the salt tolerance of oats to facilitate their cultivation in saline areas can thereby increase forage yield and promote the utilization of saline land, which constitutes an important reserve land resource in China. This study aimed to identify the bacterial strain Bacillus sp. LrM2 (hereafter referred to as strain LrM2) to determine its precise species-level classification and evaluate its effects on oat photosynthesis and growth under salt stress through indoor pot experiments. The results indicated that strain LrM2, capable of urease production and citrate utilization, was identified as Bacillus mojavensis. The strain LrM2 had a positive effect on shoot and root growth of oats under 100 mM NaCl stress conditions. Strain LrM2 inoculation modulated osmotic stress in oats under 100 mM NaCl stress by significantly increasing soluble sugar and decreasing proline content in leaves. It inhibited Na+ uptake and promoted K+ absorption in the roots, thereby reducing Na+ translocation to the leaves and mitigating ionic toxicity. Inoculation with strain LrM2 significantly increased photosynthetic pigment content (chlorophyll a, carotenoids), improved gas exchange parameters (stomatal conductance, transpiration rate, net rate of photosynthesis), enhanced PSII photochemical efficiency (maximum quantum yield, coefficient of photochemical quenching, actual photosynthetic efficiency of PSII, electron transfer rate), and reduced the quantum yield of non-regulated energy dissipation. These improvements, coupled with increased relative water content and instantaneous water use efficiency, thereby collectively enhanced the overall photosynthetic performance. In conclusion, strain LrM2 represents a promising bio-resource for mitigating salt stress and promoting growth in oats, with direct applications for developing novel biofertilizers and sustainable agricultural strategies. Full article
Show Figures

Figure 1

18 pages, 3419 KB  
Article
A Phosphorus–Nitrogen Synergistic Flame Retardant for Enhanced Fire Safety of Polybutadiene
by Hongwu Zhang, Huafeng Wei, Heng Yue and Mingdong Yu
Polymers 2026, 18(1), 127; https://doi.org/10.3390/polym18010127 - 31 Dec 2025
Viewed by 363
Abstract
Polybutadiene has excellent mechanical properties and flexibility. It is widely used in elastomers and industrial fields. However, it has the characteristic of high flammability. The low LOI and rapid heat release upon ignition pose significant fire hazards. This results in a significant fire [...] Read more.
Polybutadiene has excellent mechanical properties and flexibility. It is widely used in elastomers and industrial fields. However, it has the characteristic of high flammability. The low LOI and rapid heat release upon ignition pose significant fire hazards. This results in a significant fire safety risk during service. Therefore, its application in some key fields has been restricted. In this study, polybutadiene with high-performance flame-retardant properties was developed by adding phosphorus–nitrogen synergistic flame retardants to address this challenge. This flame retardant mainly enhances its flame retardancy through the synergistic gas-phase and condensed-phase mechanisms. Dense and continuous carbon layers could be promoted by flame retardants during combustion. It provides an effective thermal barrier and oxygen barrier. In addition, phosphorus-containing volatiles can function by suppressing flame propagation via radical quenching in the gas phase. The modified polybutadiene reached UL-94 V-1 grade at the optimal load of 1.0 wt%. Meanwhile, its LOI increased to 27%. The cone calorimeter test further confirms a high reduction in peak heat release rate (pHRR). This work provides a feasible strategy for developing advanced polybutadiene materials. It can effectively enhance its fire safety. At the same time, it maintains a balance between flame retardancy and the overall material performance. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites, 3rd Edition)
Show Figures

Graphical abstract

42 pages, 6729 KB  
Article
The Interplay Between Combustion and Component Thermal Loading in Next-Generation Marine Engines Employing Reactivity-Controlled Compression Ignition
by Alireza Kakoee, Kian Golbaghi, Alberto Cafari, Aneesh Vasudev, Sadegh Mehranfar, Amin Mahmoudzadeh Andwari, Ben Smulter, Jari Hyvönen and Maciej Mikulski
Energies 2026, 19(1), 83; https://doi.org/10.3390/en19010083 - 23 Dec 2025
Viewed by 195
Abstract
Energy transition demands cleaner and more efficient marine engines, accelerating the development of reactivity-controlled compression ignition (RCCI) concepts with multi-fuel capability. However, the coupling between combustion behavior and thermal loading in RCCI engines remains insufficiently understood due to limited experimental capabilities and the [...] Read more.
Energy transition demands cleaner and more efficient marine engines, accelerating the development of reactivity-controlled compression ignition (RCCI) concepts with multi-fuel capability. However, the coupling between combustion behavior and thermal loading in RCCI engines remains insufficiently understood due to limited experimental capabilities and the absence of integrated modeling tools. This study develops a rapid predictive framework that dynamically couples an in-house chemical-kinetics solver with a GT-Suite engine model and a finite-element wall thermal solver. The framework was calibrated against measurements from a single-cylinder research engine representative of the Wärtsilä 31DF medium-speed NG/LFO RCCI engine. It accurately captured component temperatures and combustion/performance parameters with RMS errors below 5% and cycle times under four minutes. The results show that RCCI operation introduces pronounced component temperature variations across the load range, creating challenges for thermal management and combustion control. Low-load combustion inefficiencies were linked to cylinder head thermal design rather than the conventional flame-quenching explanation. At high load, excessive pressure-rise rates amplified heat transfer demands, with exhaust-valve temperatures exceeding 780 K and posing pre-ignition risks. Increasing coolant temperature by 40 K reduced methane slip by 10% and advanced combustion by nearly 2 CAD, improving efficiency at low load, while coordinated lambda/fuel-blend control lowered peak combustion temperature by ~200 K at high load, mitigating thermal-induced pre-ignition without compromising performance or emissions. Full article
Show Figures

Figure 1

16 pages, 2334 KB  
Article
La-Doped ZnO/SBA-15 for Rapid and Recyclable Photodegradation of Rhodamine B Under Visible Light
by Ziyang Zhou, Weiye Yang, Jiuming Zhong, Hongyan Peng and Shihua Zhao
Molecules 2025, 30(24), 4800; https://doi.org/10.3390/molecules30244800 - 16 Dec 2025
Viewed by 359
Abstract
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 [...] Read more.
La-doped ZnO nanoclusters confined within mesoporous SBA-15 were synthesized using an impregnation–calcination method and evaluated for their visible-light-driven photocatalytic degradation of Rhodamine B (RhB). Small-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the preservation of the 2D hexagonal mesostructure of SBA-15 post-loading. In contrast, wide-angle XRD and Fourier-transform infrared spectroscopy (FT-IR) analyses revealed that the incorporated ZnO existed predominantly as highly dispersed amorphous or ultrafine clusters within the mesopores. N2 adsorption–desorption measurements exhibited Type IV isotherms with H1 hysteresis loops. Compared to pristine SBA-15, the specific surface area and pore volume of the composites decreased from 729.35 m2 g−1 to 521.32 m2 g−1 and from 1.09 cm3 g−1 to 0.85 cm3 g−1, respectively, accompanied by an apparent increase in the average pore diameter from 5.99 nm to 6.55 nm, attributed to non-uniform pore occupation. Under visible-light irradiation, the photocatalytic performance was highly dependent on the La doping level. Notably, the 5% La-ZnO/SBA-15 sample exhibited superior activity, achieving over 99% RhB removal within 40 min and demonstrating the highest apparent rate constant (k = 0.1152 min−1), surpassing both undoped ZnO/SBA-15 (k = 0.0467 min−1) and other doping levels. Reusability tests over four consecutive cycles showed a consistent degradation efficiency exceeding 93%, with only a ~7 percentage-point decline, indicating excellent structural stability and recyclability. Radical scavenging experiments identified h+, ·OH, and ·O2 as the primary reactive species. Furthermore, photoluminescence (PL) quenching observed at the optimal 5% La doping level suggested suppressed radiative recombination and enhanced charge carrier separation. Collectively, these results underscore the synergistic effect of La doping and mesoporous confinement in achieving fast, efficient, and recyclable photocatalytic degradation of organic pollutants. Full article
Show Figures

Figure 1

13 pages, 1540 KB  
Article
Nonlinear Adaptive Control of Bipolar Mood Disorder: A New Approach for Quenching the Mood Swing
by Ugur Hasirci
Biomedicines 2025, 13(12), 3090; https://doi.org/10.3390/biomedicines13123090 - 15 Dec 2025
Viewed by 292
Abstract
Background/Objectives: Mood disorders are described by marked disruptions in emotions. Generally speaking, mood disorders are classified into two main categories: unipolar mood disorder, also known as unipolar depression, and bipolar mood disorder, also called manic-depressive illness. It is estimated that 40 million [...] Read more.
Background/Objectives: Mood disorders are described by marked disruptions in emotions. Generally speaking, mood disorders are classified into two main categories: unipolar mood disorder, also known as unipolar depression, and bipolar mood disorder, also called manic-depressive illness. It is estimated that 40 million people live with bipolar disorder worldwide. Mathematical modeling of the dynamics of bipolar disorder may help to both better understand and treat the illness. This is especially important for bipolar disorder since, unlike unipolar disorder, there is an oscillation to be quenched between hypomanic and depressive episodes. Methods: By using a nonlinear dynamical model of bipolar disorder, this study offers two different control (treatment) approaches for the disorder. The first one is a nonlinear exact model knowledge controller assuming that all the parameters of the patient model are known. The second one is a nonlinear adaptive controller assuming that all the parameters are unknown. Results: Both controllers aim to drive both emotional mood and the change rate to a stable state. The Backstepping Technique is utilized as a nonlinear controller design tool. For both controllers, Lyapunov-type arguments are used to design the controller and to prove the stability of the designed controllers. Numerical simulation results are also provided to show the performance and feasibility of the proposed controllers. Conclusions: It has been shown that a nonlinear controller is capable of driving the emotional mood to its equilibrium point, zero, by quenching the mood swing. Full article
(This article belongs to the Special Issue Advanced Research on Psychiatric Disorders)
Show Figures

Figure 1

21 pages, 3350 KB  
Article
Catalytic Degradation of Ciprofloxacin Using CuO Persulfate Oxidation System—Kinetics and Mechanisms
by Mohammadreza Khalaj, M. Elisabete V. Costa, Jonas Deuermeier and Isabel Capela
Water 2025, 17(24), 3550; https://doi.org/10.3390/w17243550 - 15 Dec 2025
Viewed by 484
Abstract
In this study, CuO nanoparticles were synthesised by chemical precipitation assisted by ultrasonic irradiation (UI), a rapid and environmentally friendly procedure without high temperature that enhances the sustainability of the synthesis process. They were also employed as a catalyst to activate peroxydisulfate (PDS) [...] Read more.
In this study, CuO nanoparticles were synthesised by chemical precipitation assisted by ultrasonic irradiation (UI), a rapid and environmentally friendly procedure without high temperature that enhances the sustainability of the synthesis process. They were also employed as a catalyst to activate peroxydisulfate (PDS) in the removal of ciprofloxacin (CIP) from a polluted solution. The effects of various factors, such as CIP concentration, catalyst dosage, PDS concentration, and initial pH, on the efficiency of this contaminant treatment were investigated. Under optimal conditions, CIP and TOC removal reached 100% and 49%, respectively, after only 30 min of reaction time and using high initial concentrations of CIP (20 mg/L), PDS (0.5 mM), and CuO (0.5 g/L) in pH (10). For the best set of processing conditions, pseudo-first-order reaction rate kinetics can be assumed and characterised. The possible degradation pathway of CIP is also suggested. Furthermore, by quenching experiment, the presence of O2*, *OH, and SO4* were identified, with O2* being a radical species with great impact on CIP removal. This study demonstrates that, in alkaline environments, ultrasonically synthesised CuO can effectively activate PDS for the degradation of CIP, achieving total removal within 30 min. The results indicate that UI-synthesised CuO is a very promising catalyst for the removal of emerging organic pollutants. Full article
Show Figures

Figure 1

35 pages, 17416 KB  
Article
Sunlight-Driven Photocatalysis in Hydrothermally Coupled ZnO/Fe3O4 Heterostructures from Bioengineered Nanoparticles
by Nayane O. Chaves, Michael D. S. Monteiro, Thayna M. Lira, Daniela B. Santos, Victor M. Del Aguila, Ștefan Țălu, Nilson S. Ferreira, Henrique Duarte da Fonseca Filho, Eliana M. Sussuchi, Rosane M. P. B. Oliveira and Robert S. Matos
Nanomaterials 2025, 15(24), 1864; https://doi.org/10.3390/nano15241864 - 11 Dec 2025
Viewed by 497
Abstract
We report a fully biogenic route to ZnO, Fe3O4, and their hydrothermally coupled ZnO/Fe3O4 heterostructure and establish a synthesis–structure–function link. Phase-pure, quasi-spherical wurtzite ZnO and finer inverse-spinel Fe3O4 nanoparticles assemble into a biphasic [...] Read more.
We report a fully biogenic route to ZnO, Fe3O4, and their hydrothermally coupled ZnO/Fe3O4 heterostructure and establish a synthesis–structure–function link. Phase-pure, quasi-spherical wurtzite ZnO and finer inverse-spinel Fe3O4 nanoparticles assemble into a biphasic interface without forming a solid solution; optical analysis yields Eg = 2.36 eV (ZnO), 1.46 eV (Fe3O4), and 1.45 eV (ZnO/Fe3O4), while PL shows near-band-edge quenching and green–yellow defect reweighting at 490–560 nm, consistent with interfacial band bending. Magnetically, ZnO/Fe3O4 is soft-ferrimagnetic with MS/MR/HC = 226 emu g−1/17 emu g−1/0.010 T (at 300 K), enabling rapid magnetic recovery. Under natural sunlight (572.6 ± 32 W m−2), adsorption-corrected methylene blue removal (10 mg L−1; 10 mg in 50 mL) gives real degradation rates RDR = 90% (ZnO), 65% (ZnO/Fe3O4), and 30% (Fe3O4) at 180 min, with pseudo–first-order constants k = 1.9 × 10−2, 0.7 × 10−2, and 0.4 × 10−2 min−1, respectively; dark adsorption baselines are 10%, 14%, and 49%. Reusability over four cycles preserves pseudo-first-order kinetics (ZnO/Fe3O4: 65% → 50%). Scavenger tests implicate OH as the dominant oxidant in ZnO and ZnO/Fe3O4, and O2 in Fe3O4. Taken together, the band alignment, photoluminescence quenching, radical-scavenger profiles, and kinetic synergy are consistent with a defect-rich S/Z-scheme-like ZnO/Fe3O4 heterojunction, delivering a green, sunlight-operable, and recyclable platform for affordable wastewater remediation. Full article
Show Figures

Graphical abstract

20 pages, 4079 KB  
Article
Oxidative Stress and Negative Consequences on Photosystem II Occasioned by Lead Stress Are Mitigated by 24-Epibrassinolide and Dopamine in Tomato Plants
by Lohana Ribeiro Prestes, Sharon Graziela Alves da Silva, Madson Mateus Santos da Silva, Maria Andressa Fernandes Gonçalves, Elaine Maria Silva Guedes Lobato, Caroline Cristine Augusto, Bruno Lemos Batista and Allan Klynger da Silva Lobato
Plants 2025, 14(23), 3699; https://doi.org/10.3390/plants14233699 - 4 Dec 2025
Viewed by 509
Abstract
Food security and human health are directly related to the condition of agricultural soils. Soil contamination by heavy metals is a global environmental problem. Lead (Pb) is a toxic and non-biodegradable element posing a significant risk to ecosystems and human health. 24-Epibrassinolide (EBR) [...] Read more.
Food security and human health are directly related to the condition of agricultural soils. Soil contamination by heavy metals is a global environmental problem. Lead (Pb) is a toxic and non-biodegradable element posing a significant risk to ecosystems and human health. 24-Epibrassinolide (EBR) has multiple benefits in plant metabolism, including maximizing gas exchange. In plants, exogenous application of dopamine (DOP) confers tolerance to abiotic stresses, minimizing interferences on growth. This study aimed to investigate whether the exogenous application of EBR and DOP, administered independently or jointly, can contribute to mitigating the oxidative stress and impacts on photosystem II in Pb-stressed tomato, evaluating parameters related to nutritional status, photosystem II activity, gas exchange, antioxidant enzymes, and biomass. Better results were observed with the isolated EBR application, improving the photosynthetic efficiency, as evidenced by the increases in chlorophyll contents, effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, resulting in a higher net photosynthesis rate. Parallelly, treatment using both plant growth regulators (DOP and EBR) promoted significant increases of 14%, 18%, 13%, and 35% in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, contributing to the reduction in oxidative stress in photosystem II of Pb-stressed plants. Therefore, this research proves that the exogenous application of DOP and EBR, alone or in combination, attenuates the toxic effects generated by Pb in tomato plants. Full article
Show Figures

Figure 1

15 pages, 2919 KB  
Article
Coherent-Phase Optical Time Domain Reflectometry for Monitoring High-Temperature Superconducting Magnet Systems
by Matthew Leoschke, William Lo, Victor Yartsev, Steven Derek Rountree, Steve Cole and Federico Scurti
Sensors 2025, 25(23), 7368; https://doi.org/10.3390/s25237368 - 3 Dec 2025
Viewed by 563
Abstract
High-temperature superconductor (HTS) magnet systems, especially those designed for fusion reactors, require effective and reliable monitoring to avoid damaging anomalies. In tokamaks, some of the magnetic coils are time-dependent, which causes strain and large inductive voltages within the magnet, rendering detection of incipient [...] Read more.
High-temperature superconductor (HTS) magnet systems, especially those designed for fusion reactors, require effective and reliable monitoring to avoid damaging anomalies. In tokamaks, some of the magnetic coils are time-dependent, which causes strain and large inductive voltages within the magnet, rendering detection of incipient quench challenging. Ionizing radiation can also create material defects and lead to non-uniform degradation of conductors. The resulting decrease in critical current uniformity across the magnet, along with manufacturing defects, such as failure of structural materials or cooling systems, can all potentially initiate a quench. HTS magnets have a lower normal zone propagation velocity than low-temperature superconductors, and this causes normal zones to be localized, increasing the risk of permanent damage. Fiber optic sensors have several qualities that are essential in fusion systems. Unlike traditional voltage-based sensors, fiber optic cables are immune to the large electromagnetic fields present. This study presents and validates a fiber optic interrogation technique for monitoring magnetic confinement fusion and other high-temperature superconducting magnet systems. Coherent-phase optical time domain reflectometry (OTDR) allows for the high sampling rates (tens of kHz) necessary to quickly detect and mitigate quench events over the long distances required to monitor fusion magnet systems. This technique was demonstrated to successfully detect localized thermal transients at cryogenic temperatures as low as 6 K. These outcomes were also demonstrated using fibers embedded in HTS magnet coils at 77 K, verifying the potential for this interrogation technique’s use for failure detection in HTS coils. Full article
(This article belongs to the Special Issue Advances and Innovations in Optical Fiber Sensors)
Show Figures

Figure 1

15 pages, 1999 KB  
Article
Construction of an Internal Standard Ratiometric Al3+ Selective Fluorescent Probe Based on Rhodamine B-Modified Naphthalimide-Grafted Chitosan Polymer
by Mei Yang, Shaobai Wen, Jun Zhang, Xiangxiang Li and Chunwei Yu
Chemistry 2025, 7(6), 193; https://doi.org/10.3390/chemistry7060193 - 3 Dec 2025
Viewed by 480
Abstract
Most reported fluorescent Al3+ probes rely on fluorescence signal enhancement or quenching. Since the change in fluorescence intensity is the sole detection signal, various factors such as instrumental efficiency, environmental conditions, and probe concentration can interfere with the signal output. In contrast, [...] Read more.
Most reported fluorescent Al3+ probes rely on fluorescence signal enhancement or quenching. Since the change in fluorescence intensity is the sole detection signal, various factors such as instrumental efficiency, environmental conditions, and probe concentration can interfere with the signal output. In contrast, ratiometric probes, which utilize two emission bands for self-calibration, provide significant advantages by minimizing or eliminating these uncertainties. In this study, a naphthalimide-rhodamine based the transition between the cyclic and open-ring forms of rhodamine as an Al3+-selective ratiometric probe, in which chitosan was identified as an ideal bridge and biocompatibility. The design concept was that when the target metal ion was present, the fluorescence intensity of naphthalimide remained largely unchanged, serving as an internal standard. In contrast, rhodamine B was employed to label the target molecules, with its fluorescence intensity varying in accordance with the target concentration. A series of experiments were carried out to investigate the fluorometric properties of the grafted polymer P. The results demonstrated that P exhibited selective interaction with Al3+ among the various metals tested. Using the fluorescence intensity ratio (I603 nm/I538 nm) of P, a good linear relationship was achieved for Al3+ concentrations ranging from 1.0 to 35.0 μM with a detection limit of 0.33 μM was obtained. Meanwhile, we employed the standard addition method for the quantitative analysis and detection of Al3+ in commercially available bottled water and tap water, achieving an ideal recovery rate. Full article
(This article belongs to the Special Issue Fluorescent Chemosensors and Probes for Detection and Imaging)
Show Figures

Figure 1

12 pages, 3746 KB  
Article
Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range
by Svetlana Kalinichenko and Maksim Pudovkin
Condens. Matter 2025, 10(4), 62; https://doi.org/10.3390/condmat10040062 - 3 Dec 2025
Viewed by 314
Abstract
The studied Ce0.5Y0.5−XTbXF3 (X = 0, 0.001, 0.002, 0.005, 0.01, and 0.05) nanoparticles were synthesized via the water-based co-precipitation method. All the samples demonstrated diameters in the 17–20 nm range and a hexagonal phase corresponding to [...] Read more.
The studied Ce0.5Y0.5−XTbXF3 (X = 0, 0.001, 0.002, 0.005, 0.01, and 0.05) nanoparticles were synthesized via the water-based co-precipitation method. All the samples demonstrated diameters in the 17–20 nm range and a hexagonal phase corresponding to the phase of CeF3. Under 266 nm excitation (4f–5d absorption band of Ce3+), the luminescence spectrum shape was notably dependent on temperature. The integrated luminescence intensity ratio (LIR) of Ce3+ and Tb3+ (5D47F3) peaks was chosen as a temperature-dependent parameter. It was shown that the LIR functions linearly decay. The rate of decay decreases with the increase in Tb3+ concentration. This was explained by the fact that in the case of low Tb3+ concentrations, the spectral temperature dependence is mostly based on effective thermal quenching of Ce3+ luminescence. At higher Tb3+ concentrations, there is a higher probability of Ce3+ to Tb3+ energy transfer. Here, the efficiency of the temperature dependence of this process is lower, and the rate of LIR decay is lower as well. Full article
(This article belongs to the Section Spectroscopy and Imaging in Condensed Matter)
Show Figures

Figure 1

Back to TopTop