Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (281)

Search Parameters:
Keywords = quantum theory of ‘atoms-in-molecules’

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4949 KB  
Article
Mechanistic Evaluation of Radical Scavenging Pathways in Ginger Phenolics: A DFT Study of 6-Gingerol, 6-Shogaol, and 6-Paradol
by Hassane Lgaz, Mouslim Messali and Han-seung Lee
Int. J. Mol. Sci. 2025, 26(22), 11217; https://doi.org/10.3390/ijms262211217 - 20 Nov 2025
Viewed by 496
Abstract
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using [...] Read more.
Understanding the molecular determinants of antioxidant activity in natural phenolic compounds is essential for explaining their biological performance and designing new radical scavengers. In this work, the radical-scavenging mechanisms of three major ginger phenolics—6-gingerol (GIN), 6-shogaol (SHO), and 6-paradol (PAR)—were systematically investigated using density functional theory (DFT) thermochemistry at the M06-2X/6-31+G(d,p) level in the gas phase, benzene, and water. Three canonical pathways—hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET–PT), and sequential proton loss–electron transfer (SPLET)—were evaluated through full optimization and frequency calculations at 298.15 K, combined with the SMD solvation model. Frontier molecular orbital (FMO), molecular electrostatic potential (MEP), and quantum theory of atoms in molecules (QTAIM) analyses were employed to correlate electronic structure with reactivity. The results reveal a distinct solvent-dependent mechanistic crossover. In the gas phase and benzene, the low dielectric constant suppresses charge separation, making HAT the thermodynamically dominant pathway. In water, strong stabilization of ionic species lowers both the ionization and deprotonation barriers, allowing SPLET and SET–PT to become competitive or even preferred. Across all media, the phenolic O–H group is the principal reactive site, while the aliphatic O–H of GIN remains inactive. SHO exhibits the most versatile redox profile, combining a highly conjugated α,β-unsaturated chain with favorable charge delocalization; PAR is somewhat less redox-active, while GIN shows intermediate performance governed by intramolecular hydrogen bonding. The assembled thermodynamics for HOO• scavenging confirm that all three phenolics are thermodynamically competent antioxidants (ΔG° ≈ −4 kcal mol−1 in water), with comparable driving forces; electronic descriptors indicate SHO is the most redox-flexible, GIN(phenolic) is moderately and PAR is somewhat less charge-transfer-prone, while GIN(aliphatic) remains inactive. These findings provide a comprehensive structure-to-mechanism correlation for ginger phenolics and establish a predictive framework for solvent-controlled antioxidant behavior in phenolic systems. Full article
Show Figures

Figure 1

22 pages, 1471 KB  
Article
Interacting Quantum Atoms Analysis of Covalent and Collective Interactions in Single Elongated Carbon–Carbon Bonds
by Antonio Bonesana-Espinoza, José Manuel Guevara-Vela, Evelio Francisco, Tomás Rocha-Rinza and Ángel Martín Pendás
Molecules 2025, 30(21), 4316; https://doi.org/10.3390/molecules30214316 - 6 Nov 2025
Viewed by 513
Abstract
Chemical bonds among carbon atoms are central to chemistry. A general working principle regarding these interactions is that these contacts become stronger as the carbon atoms become closer to each other. Nevertheless, there are long, yet strong single C–C bonds that challenge this [...] Read more.
Chemical bonds among carbon atoms are central to chemistry. A general working principle regarding these interactions is that these contacts become stronger as the carbon atoms become closer to each other. Nevertheless, there are long, yet strong single C–C bonds that challenge this interpretation. Herein, we perform a quantitative thorough decomposition of the electronic energy of hexaphenylethane and several derivatives of this molecule with increasingly bulkier substituents. For this purpose, we exploit state-of-the-art methods of wave function analysis for the examination of the chemical bonding scenario in the examined systems, namely, the quantum theory of atoms in molecules (QTAIM) and the interacting quantum atoms (IQA) electronic energy partition. Our results reveal the predominance of collective non-covalent interactions over the central, covalent one in the chemical bonding of the examined molecules, in particular for those that have been synthesized in the laboratory. The QTAIM and IQA methods also showed that, besides London dispersion, electron sharing comprises an important contribution to the abovementioned collective interactions. Overall, our results give valuable insights about the importance of collective interactions in the investigated systems and they aid in the understanding of the nature of long, yet stable single C–C bonds. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding—2nd Edition)
Show Figures

Graphical abstract

20 pages, 4378 KB  
Article
Structural and Magneto-Optical Study on the Tetrahedrally Configured [CoCl2(1-allylimidazole)2] and Molecular Docking to Hypoxia-Inducible Factor-1α
by Hela Ferjani, Bruno Poti e Silva, Faizul Azam, Yasmeen G. Abou El-Reash, Tarek Yousef, Nahal Rouzbeh, Leonhard Rochels, Sabrina Disch, Sascha A. Schäfer and Axel Klein
Inorganics 2025, 13(11), 344; https://doi.org/10.3390/inorganics13110344 - 23 Oct 2025
Viewed by 636
Abstract
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π [...] Read more.
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π interactions are the primary forces in the crystal structure, while H⋯H interactions dominate the surface of the molecule, making it rather hydrophobic in keeping with a low solubility in water. A Quantum Theory of Atoms in Molecules (QTAIM)/Non-Covalent Interactions (NCI)-Reduced Density Gradient (RDG) analysis on a dimeric model showed that the energies V(r) of the classical H⋯Cl hydrogen bonds range from −3.64 kcal/mol to −0.75 kcal/mol and were augmented by hydrophobic H⋯C interactions of >1 kcal/mol. T-dependent magnetization measurements reveal paramagnetic behavior with an effective magnetic moment of µeff = 4.66(2) µB. UV-vis absorption spectra in solution showed intense absorptions peaking at 240 nm, corresponding to intraligand π→π* transitions within the 1-allylimidazole moiety and a structured absorption around 600 nm, which is attributed to the spin-allowed d→d transitions of the high-spin Co(II) d7 ion in a distorted tetrahedral geometry. Both assignments were confirmed through TD-DFT calculations on the electronic transitions and agree with the DFT-calculated compositions of the frontier molecular orbitals. Molecular docking to hypoxia-inducible factor-1 alpha (HIF-1α) gave a docking score of −5.48 kcal/mol and showed hydrophobic⋯hydrophobic π-stacking interactions with the Ile233, Leu243, Val338, and Leu262 residues. A higher docking score of −6.11 kcal/mol and predominant hydrophobic⋯hydrophobic interactions with Trp296, His279, and Ile281 were found for HIF-1 inhibiting factor (FIH-1). Full article
Show Figures

Figure 1

12 pages, 4827 KB  
Article
DFT Insights into the Adsorption of Organophosphate Pollutants on Mercaptobenzothiazole Disulfide-Modified Graphene Surfaces
by Kayim Pineda-Urbina, Gururaj Kudur Jayaprakash, Juan Pablo Mojica-Sánchez, Andrés Aparicio-Victorino, Zeferino Gómez-Sandoval, José Manuel Flores-Álvarez and Ulises Guadalupe Reyes-Leaño
Compounds 2025, 5(4), 43; https://doi.org/10.3390/compounds5040043 - 22 Oct 2025
Viewed by 376
Abstract
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, [...] Read more.
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, parathion-methyl, disulfoton, tokuthion, and ethoprophos) on mercaptobenzothiazole disulfide (MBTS) and MBTS-functionalized graphene (G–MBTS). All simulations were performed in aqueous solution using the SMD solvation model with dispersion corrections and counterpoise correction for basis set superposition error. MBTS alone displayed a range of affinities, suggesting potential selectivity across the organophosphates, with adsorption energies ranging from 0.27 to 1.05 eV, malathion being the strongest binder and glyphosate the weakest. Anchoring of MBTS to graphene was found to be highly favorable (1.26 eV), but the key advantage is producing stable adsorption platforms that promote planar orientations and ππ/dispersive interactions. But the key advantage is not stronger binding but the tuning of interfacial electronic properties: all G–MBTS–OP complexes show uniform, narrow HOMO-LUMO gaps (∼0.79 eV) and systematically larger charge redistribution. These features are expected to enhance electrochemical readout even when adsorption strength was comparable or slightly lower (0.47–0.88 eV) relative to MBTS alone. A Quantum Theory of Atoms in Molecules (QTAIM) analysis of the G–MBTS–malathion complex revealed a dual stabilization mechanism: multiple weak C–H⋯π interactions with graphene combined with stronger S⋯O and hydrogen-bonding interactions with MBTS. These results advance the molecular-level understanding of pesticide–surface interactions and highlight MBTS-functionalized graphene as a promising platform for the selective detection of organophosphates in water. Full article
Show Figures

Figure 1

20 pages, 3567 KB  
Article
Molecular Modelling of the Adsorption and Delivery of α-Pinene and Similar Terpenes of Essential Oils on Montmorillonite Surfaces
by Shamsa Kanwal, Alfonso Hernández-Laguna and C. Ignacio Sainz-Díaz
Nanomaterials 2025, 15(20), 1573; https://doi.org/10.3390/nano15201573 - 16 Oct 2025
Viewed by 520
Abstract
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. [...] Read more.
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. This work explores some properties of the crystal structure of α-pinene and the adsorption and desorption of five terpenoid components of essential oils, such as α-pinene, limonene, β-ocimene, β-caryophyllene, and β-elemene, in the confined surfaces provided by natural clay minerals, particularly montmorillonite (MNT). These terpenoids have a methyl-ethenyl group as their common structural feature. Molecular modelling calculations have been applied at the atomic scale, including force fields, quantum mechanical methods, and molecular dynamics simulations. We calculated the crystallographic and spectroscopic properties of the α-pinene crystal via density functional theory (DFT)-level calculations, which were very close to the known experimental data. Moreover, this work explored the adsorption and desorption of these molecules in confined surfaces provided by MNT. Molecular dynamics simulations also showed the adsorption of these organics in the confined interlayer space of MNT at room temperature and allowed us to know the diffusion coefficient of these adsorbates in this material. The direct adsorption process of these molecules in the vapour phase is not energetically favourable, suggesting the use of non-aqueous solvents and kinetics and thermodynamic conditions for this process. However, the release of these molecules into aqueous media are energetically favourable, predicting that MNT–essential oil can be an excellent pharmaceutical formulation to be delivered in skin as a bioactive preparation with anti-inflammatory or cosmetic power. This research was performed to predict possible therapeutic applications for future experimental works. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Figure 1

22 pages, 3702 KB  
Article
QTAIM Based Computational Assessment of Cleavage Prone Bonds in Highly Hazardous Pesticides
by Andrés Aracena, Sebastián Elgueta, Sebastián Pizarro and César Zúñiga
Toxics 2025, 13(10), 839; https://doi.org/10.3390/toxics13100839 - 1 Oct 2025
Viewed by 578
Abstract
Highly Hazardous Pesticides (HHPs) pose severe risks to human health and the environment, making it essential to understand their molecular stability and degradation pathways. In this study, the Quantum Theory of Atoms in Molecules (QTAIM) was applied to four representative organophosphate pesticides, allowing [...] Read more.
Highly Hazardous Pesticides (HHPs) pose severe risks to human health and the environment, making it essential to understand their molecular stability and degradation pathways. In this study, the Quantum Theory of Atoms in Molecules (QTAIM) was applied to four representative organophosphate pesticides, allowing the identification of electronically weak bonds as intrinsic sites of lability. These findings are consistent with reported hydrolytic, oxidative, enzymatic, and microbial degradation routes. Importantly, QTAIM descriptors proved largely insensitive to solvation, confirming their intrinsic character within the molecular electronic structure. To complement QTAIM, conceptual DFT (Density Functional Theory) reactivity indices were analyzed, revealing that solvent effects induce more noticeable variations in global and local descriptors than in topological parameters. In addition, a Topological Analysis of the Fukui Function (TAFF) was performed, which mapped nucleophilic, electrophilic, and radical susceptibilities directly onto QTAIM basins. The TAFF analysis confirmed that bonds identified as weak by QTAIM (notably P–O, P–S, and P–N linkages) also coincide with the most reactive sites, thereby reinforcing their mechanistic role in degradation pathways. This integrated framework highlights the robustness of QTAIM, the sensitivity of global and local reactivity descriptors to solvation revealed by conceptual DFT, and the complementary insights provided by TAFF, contributing to risk assessment, remediation strategies, and the rational design of safer pesticides. Full article
(This article belongs to the Special Issue Computational Toxicology: Exposure and Assessment)
Show Figures

Graphical abstract

15 pages, 2896 KB  
Article
Platinum Atom-Functionalized Carbon Nanotubes as Efficient Sensors for CO and CO2: A Theoretical Investigation
by Natalia P. Boroznina, Sergey V. Boroznin, Irina V. Zaporotskova, Pavel A. Zaporotskov, Dmitry F. Sergeev, Govindhasamy Murugadoss, Nachimuthu Venkatesh and Shaik Gouse Peera
Inventions 2025, 10(5), 86; https://doi.org/10.3390/inventions10050086 - 26 Sep 2025
Viewed by 518
Abstract
This study presents a theoretical investigation of platinum-modified single-wall carbon nanotubes (SWCNTs) of types (6.0) and (6.6) for their potential application as gas sensor materials. Quantum chemical calculations using density functional theory (DFT) were performed to evaluate the interaction mechanisms with carbon monoxide [...] Read more.
This study presents a theoretical investigation of platinum-modified single-wall carbon nanotubes (SWCNTs) of types (6.0) and (6.6) for their potential application as gas sensor materials. Quantum chemical calculations using density functional theory (DFT) were performed to evaluate the interaction mechanisms with carbon monoxide (CO) and carbon dioxide (CO2) molecules. The results revealed that pristine SWCNTs exhibit weak and unstable interactions with CO and CO2, indicating limited sensing capabilities. However, the modification with platinum atoms significantly enhanced their adsorption properties. The most energetically favorable configuration was found when the platinum atom was located at the center of a C–C bond on the SWCNT surface, ensuring the stability of the metal-functionalized system. The Pt-modified SWCNTs exhibited stable sorption interactions with CO and CO2, characterized by weak van der Waals forces, enabling the reusability of the sensor without contamination. Additionally, the adsorption of these gas molecules induced changes in the band gap of the nanocomposite system, indicating a variation in conductivity upon gas exposure. The distinct band gap changes for the CO and CO2 adsorption suggest the selectivity of the sensor towards each gas. Overall, the results demonstrate that platinum modification effectively enhances the sensing performance of SWCNTs, paving the way for the development of highly sensitive and selective nanosensors for CO and CO2 detection based on changes in electronic properties upon gas adsorption. Full article
Show Figures

Figure 1

11 pages, 1849 KB  
Article
Theoretical Study on the Electronic Structure of Fe(0)–, Pd(0)–, and Pt(0)–Phosphine–Carbon Dioxide Complexes
by Tímea R. Kégl and Tamás Kégl
Chemistry 2025, 7(5), 152; https://doi.org/10.3390/chemistry7050152 - 22 Sep 2025
Viewed by 721
Abstract
The activation of carbon dioxide by transition metal complexes is a fundamental process in catalysis and carbon capture. In this study, density functional theory (DFT) calculations, combined with Quantum Theory of Atoms in Molecules (QTAIM) and Natural Orbitals for Chemical Valency (NOCV) analyses, [...] Read more.
The activation of carbon dioxide by transition metal complexes is a fundamental process in catalysis and carbon capture. In this study, density functional theory (DFT) calculations, combined with Quantum Theory of Atoms in Molecules (QTAIM) and Natural Orbitals for Chemical Valency (NOCV) analyses, were employed to investigate the bonding characteristics and electronic structure of Fe(0)–, Pd(0)–, and Pt(0)–phosphine complexes with CO2. The Fe(0) complexes exhibited the strongest CO2 activation, characterized by substantial C=O bond elongation, significant charge transfer, and strong π-backdonation. In contrast, Pd(0) complexes showed minimal CO2 activation, while Pt(0) complexes displayed intermediate behavior. The electronic effects of phosphine ligands were also analyzed, revealing that electron-donating phosphines enhance CO2 activation, whereas electron-withdrawing phosphines weaken metal–CO2 interactions. These findings provide key insights into the design of transition-metal-based catalysts for CO2 conversion and utilization. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

19 pages, 2580 KB  
Article
Manganese(I) and Rhenium(I) Chelate Complexes with 2-Azabutadienes (RS)2C=C(H)-N=CPh2: Topological AIM Bonding Analysis and Molecular Structure of fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2]
by Marek M. Kubicki, Abderrahim Khatyr and Michael Knorr
Chemistry 2025, 7(5), 145; https://doi.org/10.3390/chemistry7050145 - 9 Sep 2025
Viewed by 814
Abstract
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L1 ligates to Mn(CO)5Br to form the five-membered chelate compound fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2] MnPropBr, whose crystal structure has been determined from X-ray diffraction [...] Read more.
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L1 ligates to Mn(CO)5Br to form the five-membered chelate compound fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2] MnPropBr, whose crystal structure has been determined from X-ray diffraction data. In the crystal, different secondary intermolecular interactions, such as BrHC and ππ, give rise to a supramolecular network. The electronic properties of the metal–ligand bonds in MnPropBr are similar to those of complex MnPhBr (with R = SPh instead of iPrS); this also applies to a series of structurally analogous fac-ReX(CO)3[(RS)2C=C(H)-N=CPh2] (X = Cl, Br and I; R = SiPr, SPh and StBu) rhenium complexes and are discussed on the basis of QT-AIM (Quantum Theory of Atoms in Molecules) calculations. New bond length/electron density relationships are proposed for the metal–halide bonds, including, for the first time, complexes of one given metal and all three corresponding halides. In order to obtain a set of coherent data, three manganese complexes that belong to the family fac-MnX(CO)3[N∩N] (X = Cl, Br and I; N∩N is a chelating ligand with two coordinating N atoms) were included in this study. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 5387 KB  
Article
Cu@Phosphorene as a Promising Catalyst for CO2 to Formic Acid Conversion: A Mechanistic DFT Approach
by Zonia Bibi, Muhammad Ajmal, Shahaab Jilani, Aqsa Kamran, Fatima Yaseen, Muhammad Abid Zia, Ahmed Lakhani and Muhammad Ali Hashmi
Reactions 2025, 6(3), 45; https://doi.org/10.3390/reactions6030045 - 23 Aug 2025
Viewed by 1368
Abstract
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. [...] Read more.
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. Today, CO2 is the most prevalent greenhouse gas; as its concentration rises, significant climate change occurs. Therefore, there is a need to utilize anthropogenically released carbon dioxide in valuable fuels, such as formic acid (HCOOH). Single-atom catalysts are widely used, where a single metal atom is anchored on a surface to catalyze chemical reactions. In this study, we investigated the potential of Cu@Phosphorene as a single-atom catalyst (SAC) for CO2 reduction using quantum chemical calculations. All computations for Cu@Phosphorene were performed using density functional theory (DFT). Mechanistic studies were conducted for both bimolecular and termolecular pathways. The bimolecular mechanism involves one CO2 and one H2 molecule adsorbing on the surface, while the termolecular mechanism involves two CO2 molecules adsorbing first, followed by H2. Results indicate that the termolecular mechanism is preferred for formic acid formation due to its lower activation energy. Further analysis included charge transfer assessment via NBO, and interactions between the substrate, phosphorene, and the Cu atom were confirmed using quantum theory of atoms in molecules (QTAIM) and non-covalent interactions (NCI) analysis. Ab initio molecular dynamics (AIMD) calculations examined the temperature stability of the catalytic complex. Overall, Cu@Phosphorene appears to be an effective catalyst for converting CO2 to formic acid and remains stable at higher temperatures, supporting efforts to mitigate climate change. Full article
Show Figures

Figure 1

20 pages, 1523 KB  
Article
Structural and Vibrational Characterizations of Alizarin Red S
by César A. N. Catalán, Licínia L. G. Justino, Rui Fausto, Gulce O. Ildiz and Silvia Antonia Brandán
Molecules 2025, 30(15), 3286; https://doi.org/10.3390/molecules30153286 - 5 Aug 2025
Cited by 1 | Viewed by 1293
Abstract
In this work, the structures of the isolated anion and anhydrous and monohydrated sodium salts of alizarin red S (ARS) have been theoretically investigated within the density functional theory framework (B3LYP/6-311++G** calculations). The combination of calculations with the scaled quantum mechanics force field [...] Read more.
In this work, the structures of the isolated anion and anhydrous and monohydrated sodium salts of alizarin red S (ARS) have been theoretically investigated within the density functional theory framework (B3LYP/6-311++G** calculations). The combination of calculations with the scaled quantum mechanics force field (SQMFF) methodology has allowed the assignment of the experimental infrared spectrum of ARS in the solid phase and the determination of the corresponding force constants. The structural analysis also included the investigation of the NMR and UV-visible spectra of the compound in solution in light of the undertaken quantum chemical calculations, the obtained theoretical data being in good agreement with the corresponding experimental ones. The impact of the presence of the Na+ counterion and hydration water on the properties of the organic ARS fragment was evaluated. Atoms in molecules theory (AIM) analysis was also undertaken to obtain further details on the electronic structure of the investigated species, and the HOMO-LUMO gap was determined to evaluate their relative reactivity. Globally, the results obtained in this work extend the available information on alizarin red S and may also be used for the fast identification of the three studied species of the compound investigated (anhydrous and monohydrated sodium salts and isolated anion). Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

19 pages, 4231 KB  
Article
Design and Synthesis of a New Photoluminescent 2D Coordination Polymer Employing a Ligand Derived from Quinoline and Pyridine
by Andrzej Kochel, Małgorzata Hołyńska, Aneta Jezierska and Jarosław J. Panek
Crystals 2025, 15(8), 691; https://doi.org/10.3390/cryst15080691 - 30 Jul 2025
Viewed by 1134
Abstract
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied [...] Read more.
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied ligand promotes the formation of coordination polymers rather than mononuclear species. The obtained 2D coordination polymer is photoluminescent with bathochromic/hypsochromic shifts in ligand absorption bands leading to a single absorption band at 465 nm. Density Functional Theory was employed to provide a theoretical description of the possible conformational changes within the ligand, with emphasis on the difference between the ligand conformation in its hydrochloride salt and in the polymer. Two models of polymer fragments were constructed to describe the electronic structure and non-covalent interactions. The Quantum Theory of Atoms in Molecules (QTAIM) was applied for this purpose. Using the obtained results, we were able to develop potential energy profiles for various conformations of the ligand. For the set of the studied systems, we detected non-covalent interactions, which are responsible for the spatial conformation. Concerning the models of polymers, electron spin density distribution has been visualized and discussed. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

19 pages, 1941 KB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 1315
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

20 pages, 4322 KB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Cited by 1 | Viewed by 1149
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

30 pages, 5633 KB  
Article
New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling
by Piotr Świątek, Teresa Glomb, Benita Wiatrak, Paulina Nowotarska, Tomasz Gębarowski, Kamil Wojtkowiak, Aneta Jezierska and Małgorzata Strzelecka
Int. J. Mol. Sci. 2025, 26(14), 6572; https://doi.org/10.3390/ijms26146572 - 8 Jul 2025
Cited by 1 | Viewed by 1189
Abstract
A series of novel N-Mannich bases derived from a dimethylpyridine–1,2,4-triazole hybrid was synthesized and evaluated in vitro for cytotoxic activity on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, and HT-29). Compound 6 bearing a phenyl group at the N-4 position [...] Read more.
A series of novel N-Mannich bases derived from a dimethylpyridine–1,2,4-triazole hybrid was synthesized and evaluated in vitro for cytotoxic activity on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, and HT-29). Compound 6 bearing a phenyl group at the N-4 position and a 4-methylphenyl piperazine moiety at the N-2 position of the 1,2,4-triazole-3-thione scaffold exerted good cytotoxic activities on EPG and Caco-2 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal colonic epithelial cells (CCD 841 CoTr). Further evaluation revealed the good ability of compound 6 to inhibit the efflux function of P-glycoprotein in P-gp-expressing cell lines (HT-29, LoVo, and LoVo/Dx). Moreover, compound 6 induced apoptotic cell death through a significant increase in the caspase-3 and p53 protein levels in HT-29 cells. Finally, the molecular docking method was applied to explain our experimental findings. The molecular modeling study based on Density Functional Theory (DFT) and the Quantum Theory of Atoms in Molecules (QTAIM) analysis provided insight into the geometric and electronic structure properties of the compounds. Full article
Show Figures

Figure 1

Back to TopTop