Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = quantum neural network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3939 KiB  
Article
Quantum Particle Swarm Optimization (QPSO)-Based Enhanced Dynamic Model Parameters Identification for an Industrial Robotic Arm
by Mehdi Fazilat and Nadjet Zioui
Mathematics 2025, 13(16), 2631; https://doi.org/10.3390/math13162631 (registering DOI) - 16 Aug 2025
Abstract
Accurate parameter identification in dynamic models of robotic arms is essential for performing high-performance control and energy-efficient procedures. However, classic methods often encounter difficulties when modeling nonlinear, high-dimensional systems, particularly in the presence of real-world uncertainties. To address these challenges, this study focuses [...] Read more.
Accurate parameter identification in dynamic models of robotic arms is essential for performing high-performance control and energy-efficient procedures. However, classic methods often encounter difficulties when modeling nonlinear, high-dimensional systems, particularly in the presence of real-world uncertainties. To address these challenges, this study focuses on identifying mass center positions and inertia matrix elements in a six-jointed industrial robotic arm and comparing the influence of optimized algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum-behaved Particle Swarm Optimization (QPSO). The robot’s kinematic model was validated by comparing it with actual motion data, utilizing a high-precision neural network to ensure accuracy before conducting a dynamic analysis. A comprehensive dynamic model was created using Computer-Aided Optimization (CAO) in SolidWorks Premium 2023 to simulate realistic mass parameters, thereby validating the model’s reliability in a practical setting. The real (Referenced) and optimized dynamic models of the robot arm were validated using trajectory tracking simulations under sliding mode control (SMC) to assess the impact of the optimized model on the robot’s performance metrics. Results indicate that QPSO estimates inertia and mass center parameters with Mean Absolute Percentage Errors (MAPE) of 0.76% and 0.43%, outperforming PSO significantly and delivering smoother torque profiles and greater resilience to external disturbances. Full article
Show Figures

Figure 1

17 pages, 1720 KiB  
Article
A Hybrid Quantum–Classical Network for Eye-Written Digit Recognition
by Kimsay Pov, Tara Kit, Myeongseong Go, Won-Du Chang and Youngsun Han
Electronics 2025, 14(16), 3220; https://doi.org/10.3390/electronics14163220 - 13 Aug 2025
Viewed by 158
Abstract
Eye-written digit recognition presents a promising alternative communication method for individuals affected by amyotrophic lateral sclerosis. However, the development of robust models in this field is limited by the availability of datasets, due to the complex and unstable procedure of collecting eye-written samples. [...] Read more.
Eye-written digit recognition presents a promising alternative communication method for individuals affected by amyotrophic lateral sclerosis. However, the development of robust models in this field is limited by the availability of datasets, due to the complex and unstable procedure of collecting eye-written samples. Previous work has proposed both conventional techniques and deep neural networks to classify eye-written digits, achieving moderate to high accuracy with variability across runs. In this study, we explore the potential of quantum machine learning by presenting a hybrid quantum–classical model that integrates a variational quantum circuit into a classical deep neural network architecture. While classical models already achieve strong performance, this work examines the potential of quantum-enhanced models to achieve such performance with fewer parameters and greater expressive capacity. To further improve robustness and stability, we employ an ensemble strategy that aggregates predictions from multiple trained instances of the hybrid model. This study serves as a proof-of-concept to evaluate the feasibility of incorporating a compact 4-qubit quantum circuit within a lightweight hybrid model. The proposed model achieves 98.52% accuracy with a standard deviation of 1.99, supporting the potential of combining quantum and classical computing for assistive communication technologies and encouraging further research in quantum biosignal interpretation and human–computer interaction. Full article
Show Figures

Figure 1

20 pages, 5393 KiB  
Article
Resource-Efficient Decoding of Topological Color Codes via Neural-Guided Union-Find Optimization
by Minghao Fu, Cewen Tian, Zaixu Fan and Hongyang Ma
Appl. Sci. 2025, 15(16), 8937; https://doi.org/10.3390/app15168937 - 13 Aug 2025
Viewed by 147
Abstract
Quantum error correction (QEC) is crucial for achieving reliable quantum computation. Among topological QEC codes, color codes can correct bit-flip and phase-flip errors simultaneously, enabling efficient resource utilization. However, existing decoders such as the Union–Find (UF) algorithm exhibit limited accuracy under high noise [...] Read more.
Quantum error correction (QEC) is crucial for achieving reliable quantum computation. Among topological QEC codes, color codes can correct bit-flip and phase-flip errors simultaneously, enabling efficient resource utilization. However, existing decoders such as the Union–Find (UF) algorithm exhibit limited accuracy under high noise levels. We propose a hybrid decoding framework that augments a modified UF algorithm—enhanced with a secondary growth strategy—with a lightweight recurrent neural network (RNN). The RNN refines the error chains identified by UF, improving resolution without significantly increasing computational overhead. The simulation results show that our method achieves notable accuracy gains over baseline UF decoding, particularly in high-error regimes, while preserving the near-linear runtime scaling and low memory footprint of UF. At higher physical error rates, RNN-based path optimization improves UF decoding accuracy by approximately 4.7%. The decoding threshold of the color code reaches 0.1365, representing an increase of about 2% compared to UF without RNN optimization. With its simple data structure and low space complexity, the proposed method is well suited for low-latency, resource-constrained quantum computing environments. Full article
(This article belongs to the Topic Quantum Information and Quantum Computing, 2nd Volume)
Show Figures

Figure 1

12 pages, 4710 KiB  
Article
Generation of Higher-Order Hermite–Gaussian Modes Based on Physical Model and Deep Learning
by Tai Chen, Chengcai Jiang, Jia Tao, Long Ma and Longzhou Cao
Photonics 2025, 12(8), 801; https://doi.org/10.3390/photonics12080801 - 10 Aug 2025
Viewed by 230
Abstract
The higher-order Hermite–Gaussian (HG) modes exhibit complex spatial distributions and find a wide range of applications in fields such as quantum information processing, optical communications, and precision measurements. In recent years, the advancement of deep learning has emerged as an effective approach for [...] Read more.
The higher-order Hermite–Gaussian (HG) modes exhibit complex spatial distributions and find a wide range of applications in fields such as quantum information processing, optical communications, and precision measurements. In recent years, the advancement of deep learning has emerged as an effective approach for generating higher-order HG modes. However, the traditional data-driven deep learning method necessitates a substantial amount of labeled data for training, entails a lengthy data acquisition process, and imposes stringent requirements on system stability. In practical applications, these methods are confronted with challenges such as the high cost of data labeling. This paper proposes a method that integrates a physical model with deep learning. By utilizing only a single intensity distribution of the target optical field and incorporating the physical model, the training of the neural network can be accomplished, thereby eliminating the dependency of traditional data-driven deep learning methods on large datasets. Experimental results demonstrate that, compared with the traditional data-driven deep learning method, the method proposed in this paper yields a smaller root mean squared error between the generated higher-order HG modes. The quality of the generated modes is higher, while the training time of the neural network is shorter, indicating greater efficiency. By incorporating the physical model into deep learning, this approach overcomes the limitations of traditional deep learning methods, offering a novel solution for applying deep learning in light field manipulation, quantum physics, and other related fields. Full article
(This article belongs to the Section Data-Science Based Techniques in Photonics)
Show Figures

Figure 1

24 pages, 1681 KiB  
Article
A Hybrid Quantum–Classical Architecture with Data Re-Uploading and Genetic Algorithm Optimization for Enhanced Image Classification
by Aksultan Mukhanbet and Beimbet Daribayev
Computation 2025, 13(8), 185; https://doi.org/10.3390/computation13080185 - 1 Aug 2025
Viewed by 557
Abstract
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and [...] Read more.
Quantum machine learning (QML) has emerged as a promising approach for enhancing image classification by exploiting quantum computational principles such as superposition and entanglement. However, practical applications on complex datasets like CIFAR-100 remain limited due to the low expressivity of shallow circuits and challenges in circuit optimization. In this study, we propose HQCNN–REGA—a novel hybrid quantum–classical convolutional neural network architecture that integrates data re-uploading and genetic algorithm optimization for improved performance. The data re-uploading mechanism allows classical inputs to be encoded multiple times into quantum states, enhancing the model’s capacity to learn complex visual features. In parallel, a genetic algorithm is employed to evolve the quantum circuit architecture by optimizing gate sequences, entanglement patterns, and layer configurations. This combination enables automatic discovery of efficient parameterized quantum circuits without manual tuning. Experiments on the MNIST and CIFAR-100 datasets demonstrate state-of-the-art performance for quantum models, with HQCNN–REGA outperforming existing quantum neural networks and approaching the accuracy of advanced classical architectures. In particular, we compare our model with classical convolutional baselines such as ResNet-18 to validate its effectiveness in real-world image classification tasks. Our results demonstrate the feasibility of scalable, high-performing quantum–classical systems and offer a viable path toward practical deployment of QML in computer vision applications, especially on noisy intermediate-scale quantum (NISQ) hardware. Full article
Show Figures

Figure 1

31 pages, 2007 KiB  
Review
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines
by Ripesh Bhujel, Viktoria Enkmann, Hannes Burgstaller and Ravi Maharjan
Pharmaceutics 2025, 17(8), 992; https://doi.org/10.3390/pharmaceutics17080992 - 30 Jul 2025
Cited by 1 | Viewed by 1042
Abstract
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the [...] Read more.
The convergence of artificial intelligence (AI) and nanomedicine has transformed cancer vaccine development, particularly in optimizing RNA-loaded lipid nanoparticles (LNPs). Stability and targeted delivery are major obstacles to the clinical translation of promising RNA-LNP vaccines for cancer immunotherapy. This systematic review analyzes the AI’s impact on LNP engineering through machine learning-driven predictive models, generative adversarial networks (GANs) for novel lipid design, and neural network-enhanced biodistribution prediction. AI reduces the therapeutic development timeline through accelerated virtual screening of millions of lipid combinations, compared to conventional high-throughput screening. Furthermore, AI-optimized LNPs demonstrate improved tumor targeting. GAN-generated lipids show structural novelty while maintaining higher encapsulation efficiency; graph neural networks predict RNA-LNP binding affinity with high accuracy vs. experimental data; digital twins reduce lyophilization optimization from years to months; and federated learning models enable multi-institutional data sharing. We propose a framework to address key technical challenges: training data quality (min. 15,000 lipid structures), model interpretability (SHAP > 0.65), and regulatory compliance (21CFR Part 11). AI integration reduces manufacturing costs and makes personalized cancer vaccine affordable. Future directions need to prioritize quantum machine learning for stability prediction and edge computing for real-time formulation modifications. Full article
Show Figures

Figure 1

18 pages, 1687 KiB  
Article
Beyond Classical AI: Detecting Fake News with Hybrid Quantum Neural Networks
by Volkan Altıntaş
Appl. Sci. 2025, 15(15), 8300; https://doi.org/10.3390/app15158300 - 25 Jul 2025
Viewed by 301
Abstract
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully [...] Read more.
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully connected neural layers with a parameterized quantum circuit, enabling the processing of textual data within both classical and quantum computational domains. To assess its effectiveness, we conducted experiments on the widely used LIAR dataset utilizing Term Frequency–Inverse Document Frequency (TF-IDF) features, as well as transformer-based DistilBERT embeddings. The experimental results demonstrate that the HQDNN achieves a superior recall performance—92.58% with TF-IDF and 94.40% with DistilBERT—surpassing traditional machine learning models such as Logistic Regression, Linear SVM, and Multilayer Perceptron. Additionally, we compare the HQDNN with SetFit, a recent CPU-efficient few-shot transformer model, and show that while SetFit achieves higher precision, the HQDNN significantly outperforms it in recall. Furthermore, an ablation experiment confirms the critical contribution of the quantum component, revealing a substantial drop in performance when the quantum layer is removed. These findings highlight the potential of hybrid quantum–classical models as effective and compact alternatives for high-sensitivity classification tasks, particularly in domains such as fake news detection. Full article
Show Figures

Figure 1

17 pages, 6827 KiB  
Article
Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation
by Xiaomin Guo, Wenhe Zhou, Yue Luo, Xiangyu Meng, Jiamin Li, Yaoxing Bian, Yanqiang Guo and Liantuan Xiao
Entropy 2025, 27(8), 786; https://doi.org/10.3390/e27080786 - 24 Jul 2025
Viewed by 208
Abstract
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase [...] Read more.
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude–phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 1020, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

25 pages, 44682 KiB  
Article
Data-Driven Solutions and Parameters Discovery of the Chiral Nonlinear Schrödinger Equation via Deep Learning
by Zekang Wu, Lijun Zhang, Xuwen Huo and Chaudry Masood Khalique
Mathematics 2025, 13(15), 2344; https://doi.org/10.3390/math13152344 - 23 Jul 2025
Viewed by 216
Abstract
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse [...] Read more.
The chiral nonlinear Schrödinger equation (CNLSE) serves as a simplified model for characterizing edge states in the fractional quantum Hall effect. In this paper, we leverage the generalization and parameter inversion capabilities of physics-informed neural networks (PINNs) to investigate both forward and inverse problems of 1D and 2D CNLSEs. Specifically, a hybrid optimization strategy incorporating exponential learning rate decay is proposed to reconstruct data-driven solutions, including bright soliton for the 1D case and bright, dark soliton as well as periodic solutions for the 2D case. Moreover, we conduct a comprehensive discussion on varying parameter configurations derived from the equations and their corresponding solutions to evaluate the adaptability of the PINNs framework. The effects of residual points, network architectures, and weight settings are additionally examined. For the inverse problems, the coefficients of 1D and 2D CNLSEs are successfully identified using soliton solution data, and several factors that can impact the robustness of the proposed model, such as noise interference, time range, and observation moment are explored as well. Numerical experiments highlight the remarkable efficacy of PINNs in solution reconstruction and coefficient identification while revealing that observational noise exerts a more pronounced influence on accuracy compared to boundary perturbations. Our research offers new insights into simulating dynamics and discovering parameters of nonlinear chiral systems with deep learning. Full article
(This article belongs to the Special Issue Applied Mathematics, Computing and Machine Learning)
Show Figures

Figure 1

27 pages, 4136 KiB  
Article
Quantum-Enhanced Attention Neural Networks for PM2.5 Concentration Prediction
by Tichen Huang, Yuyan Jiang, Rumeijiang Gan and Fuyu Wang
Modelling 2025, 6(3), 69; https://doi.org/10.3390/modelling6030069 - 21 Jul 2025
Viewed by 306
Abstract
As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging due to its nonlinear and complex temporal dynamics, limiting the accuracy and robustness of traditional machine learning models. To enhance prediction accuracy, [...] Read more.
As industrialization and economic growth accelerate, PM2.5 pollution has become a critical environmental concern. Predicting PM2.5 concentration is challenging due to its nonlinear and complex temporal dynamics, limiting the accuracy and robustness of traditional machine learning models. To enhance prediction accuracy, this study focuses on Ma’anshan City, China and proposes a novel hybrid model (QMEWOA-QCAM-BiTCN-BiLSTM) based on an “optimization first, prediction later” approach. Feature selection using Pearson correlation and RFECV reduces model complexity, while the Whale Optimization Algorithm (WOA) optimizes model parameters. To address the local optima and premature convergence issues of WOA, we introduce a quantum-enhanced multi-strategy improved WOA (QMEWOA) for global optimization. A Quantum Causal Attention Mechanism (QCAM) is incorporated, leveraging Quantum State Mapping (QSM) for higher-order feature extraction. The experimental results show that our model achieves a MedAE of 1.997, MAE of 3.173, MAPE of 10.56%, and RMSE of 5.218, outperforming comparison models. Furthermore, generalization experiments confirm its superior performance across diverse datasets, demonstrating its robustness and effectiveness in PM2.5 concentration prediction. Full article
Show Figures

Graphical abstract

17 pages, 382 KiB  
Review
Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing
by Zhiyuan Ren, Shijie Zhou, Dong Liu and Qihe Liu
Appl. Sci. 2025, 15(14), 8092; https://doi.org/10.3390/app15148092 - 21 Jul 2025
Viewed by 1613
Abstract
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the [...] Read more.
Physics-informed neural networks (PINNs) have emerged as a transformative methodology integrating deep learning with scientific computing. This review establishes a three-dimensional analytical framework to systematically decode PINNs’ development through methodological innovation, theoretical breakthroughs, and cross-disciplinary convergence. The contributions include threefold: First, identifying the co-evolutionary path of algorithmic architectures from adaptive optimization (neural tangent kernel-guided weighting achieving 230% convergence acceleration in Navier-Stokes solutions) to hybrid numerical-deep learning integration (5× speedup via domain decomposition) and second, constructing bidirectional theory-application mappings where convergence analysis (operator approximation theory) and generalization guarantees (Bayesian-physical hybrid frameworks) directly inform engineering implementations, as validated by 72% cost reduction compared to FEM in high-dimensional spaces (p<0.01,n=15 benchmarks). Third, pioneering cross-domain knowledge transfer through application-specific architectures: TFE-PINN for turbulent flows (5.12±0.87% error in NASA hypersonic tests), ReconPINN for medical imaging (SSIM=+0.18±0.04 on multi-institutional MRI), and SeisPINN for seismic systems (0.52±0.18 km localization accuracy). We further present a technological roadmap highlighting three critical directions for PINN 2.0: neuro-symbolic, federated physics learning, and quantum-accelerated optimization. This work provides methodological guidelines and theoretical foundations for next-generation scientific machine learning systems. Full article
Show Figures

Figure 1

23 pages, 5885 KiB  
Article
Binary and Multi-Class Classification of Colorectal Polyps Using CRP-ViT: A Comparative Study Between CNNs and QNNs
by Jothiraj Selvaraj, Fadhiyah Almutairi, Shabnam M. Aslam and Snekhalatha Umapathy
Life 2025, 15(7), 1124; https://doi.org/10.3390/life15071124 - 17 Jul 2025
Viewed by 479
Abstract
Background: Colorectal cancer (CRC) is a major contributor to cancer mortality on a global scale, with polyps being critical precursors. The accurate classification of colorectal polyps (CRPs) from colonoscopy images is essential for the timely diagnosis and treatment of CRC. Method: This research [...] Read more.
Background: Colorectal cancer (CRC) is a major contributor to cancer mortality on a global scale, with polyps being critical precursors. The accurate classification of colorectal polyps (CRPs) from colonoscopy images is essential for the timely diagnosis and treatment of CRC. Method: This research proposes a novel hybrid model, CRP-ViT, integrating ResNet50 with Vision Transformers (ViTs) to enhance feature extraction and improve classification performance. This study conducted a comprehensive comparison of the CRP-ViT model against traditional convolutional neural networks (CNNs) and emerging quantum neural networks (QNNs). Experiments were conducted for binary classification to predict the presence of polyps and multi-classification to predict specific polyp types (hyperplastic, adenomatous, and serrated). Results: The results demonstrate that CRPQNN-ViT achieved superior classification performance while maintaining computational efficiency. CRPQNN-ViT achieved an accuracy of 98.18% for training and 97.73% for validation on binary classification and 98.13% during training and 97.92% for validation on multi-classification tasks. In addition to the key metrics, computational parameters were compared, where CRPQNN-ViT excelled in computational time. Conclusions: This comparative analysis reveals the potential of integrating quantum computing into medical image analysis and underscores the effectiveness of transformer-based architectures for CRP classification. Full article
(This article belongs to the Special Issue Current Progress in Medical Image Segmentation)
Show Figures

Figure 1

23 pages, 1755 KiB  
Article
An Efficient Continuous-Variable Quantum Key Distribution with Parameter Optimization Using Elitist Elk Herd Random Immigrants Optimizer and Adaptive Depthwise Separable Convolutional Neural Network
by Vidhya Prakash Rajendran, Deepalakshmi Perumalsamy, Chinnasamy Ponnusamy and Ezhil Kalaimannan
Future Internet 2025, 17(7), 307; https://doi.org/10.3390/fi17070307 - 17 Jul 2025
Viewed by 353
Abstract
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key [...] Read more.
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key distribution method with parameter optimization utilizing the Elitist Elk Herd Random Immigrants Optimizer (2E-HRIO) technique. At the outset of transmission, the quantum device undergoes initialization and authentication via Compressed Hash-based Message Authentication Code with Encoded Post-Quantum Hash (CHMAC-EPQH). The settings are subsequently optimized from the authenticated device via 2E-HRIO, which mitigates the effects of decoherence by adaptively tuning system parameters. Subsequently, quantum bits are produced from the verified device, and pilot insertion is executed within the quantum bits. The pilot-inserted signal is thereafter subjected to pulse shaping using a Gaussian filter. The pulse-shaped signal undergoes modulation. Authenticated post-modulation, the prediction of link failure is conducted through an authenticated channel using Radial Density-Based Spatial Clustering of Applications with Noise. Subsequently, transmission occurs via a non-failure connection. The receiver performs channel equalization on the received signal with Recursive Regularized Least Mean Squares. Subsequently, a dataset for side-channel attack authentication is gathered and preprocessed, followed by feature extraction and classification using Adaptive Depthwise Separable Convolutional Neural Networks (ADS-CNNs), which enhances security against side-channel attacks. The quantum state is evaluated based on the signal received, and raw data are collected. Thereafter, a connection is established between the transmitter and receiver. Both the transmitter and receiver perform the scanning process. Thereafter, the calculation and correction of the error rate are performed based on the sifting results. Ultimately, privacy amplification and key authentication are performed using the repaired key via B-CHMAC-EPQH. The proposed system demonstrated improved resistance to decoherence and side-channel attacks, while achieving a reconciliation efficiency above 90% and increased key generation rate. Full article
Show Figures

Graphical abstract

22 pages, 868 KiB  
Article
Enhancing Security of Error Correction in Quantum Key Distribution Using Tree Parity Machine Update Rule Randomization
by Bartłomiej Gdowski, Miralem Mehic and Marcin Niemiec
Appl. Sci. 2025, 15(14), 7958; https://doi.org/10.3390/app15147958 - 17 Jul 2025
Viewed by 356
Abstract
This paper presents a novel approach to enhancing the security of error correction in quantum key distribution by introducing randomization into the update rule of Tree Parity Machines. Two dynamic update algorithms—dynamic_rows and dynamic_matrix—are proposed and tested. These algorithms select the update rule [...] Read more.
This paper presents a novel approach to enhancing the security of error correction in quantum key distribution by introducing randomization into the update rule of Tree Parity Machines. Two dynamic update algorithms—dynamic_rows and dynamic_matrix—are proposed and tested. These algorithms select the update rule quasi-randomly based on the input vector, reducing the effectiveness of synchronization-based attacks. A series of simulations were conducted to evaluate the security implications under various configurations, including different values of K, N, and L parameters of neural networks. The results demonstrate that the proposed dynamic algorithms can significantly reduce the attacker’s synchronization success rate without requiring additional communication overhead. Both proposed solutions outperformed hebbian, an update rule-based synchronization method utilizing the percentage of attackers synchronization. It has also been shown that when the attacker chooses their update rule randomly, the dynamic approaches work better compared to random walk rule-based synchronization, and that in most cases it is more profitable to use dynamic update rules when an attacker is using random walk. This study contributes to improving QKD’s robustness by introducing adaptive neural-based error correction mechanisms. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

24 pages, 1467 KiB  
Article
Introducing Machine Learning in Teaching Quantum Mechanics
by M. K. Pawelkiewicz, Filippo Gatti, Didier Clouteau, Viatcheslav Kokoouline and Mehdi Adrien Ayouz
Atoms 2025, 13(7), 66; https://doi.org/10.3390/atoms13070066 - 8 Jul 2025
Viewed by 344
Abstract
In this article, we describe an approach to teaching introductory quantum mechanics and machine learning techniques. This approach combines several key concepts from both fields. Specifically, it demonstrates solving the Schrödinger equation using the discrete-variable representation (DVR) technique, as well as the architecture [...] Read more.
In this article, we describe an approach to teaching introductory quantum mechanics and machine learning techniques. This approach combines several key concepts from both fields. Specifically, it demonstrates solving the Schrödinger equation using the discrete-variable representation (DVR) technique, as well as the architecture and training of neural network models. To illustrate this approach, a Python-based Jupyter notebook is developed. This notebook can be used for self-learning or for learning with an instructor. Furthermore, it can serve as a toolbox for demonstrating individual concepts in quantum mechanics and machine learning and for conducting small research projects in these areas. Full article
(This article belongs to the Special Issue Artificial Intelligence for Quantum Sciences)
Show Figures

Figure 1

Back to TopTop