Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,661)

Search Parameters:
Keywords = quantum measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2479 KiB  
Article
Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
by Bojana Nedić Vasiljević, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang and Danica Bajuk-Bogdanović
Molecules 2025, 30(15), 3267; https://doi.org/10.3390/molecules30153267 - 4 Aug 2025
Abstract
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, [...] Read more.
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (−2.2 eV), with thiamethoxam having a lower binding energy of −1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids’ adsorption and can help with the design of future adsorbents. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

8 pages, 4923 KiB  
Proceeding Paper
A Hardware Measurement Platform for Quantum Current Sensors
by Frederik Hoffmann, Ann-Sophie Bülter, Ludwig Horsthemke, Dennis Stiegekötter, Jens Pogorzelski, Markus Gregor and Peter Glösekötter
Eng. Proc. 2025, 101(1), 11; https://doi.org/10.3390/engproc2025101011 - 4 Aug 2025
Abstract
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, [...] Read more.
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, which are usually based on optically detected magnetic resonance (ODMR). The idea is to have a hardware that tracks up to four resonances simultaneously for the detection of the three-axis magnetic field components and the temperature. Normally, expensive scientific instruments are used for the measurement setup. In this work, we present an electronic device that is based on a Zynq 7010 FPGA (Red Pitaya) with an add-on board, which has been developed to control the excitation laser, the generation of the microwaves, and interfacing the photodiode, and which provides additional fast digital outputs. The T1 measurement was chosen to demonstrate the ability to read out the spin of the system. Full article
Show Figures

Figure 1

15 pages, 628 KiB  
Article
Accurate Nonrelativistic Energy Calculations for Helium 1snp1,3P (n = 2 to 27) States via Correlated B-Spline Basis Functions
by Jing Chi, Hao Fang, Yong-Hui Zhang, Xiao-Qiu Qi, Li-Yan Tang and Ting-Yun Shi
Atoms 2025, 13(8), 72; https://doi.org/10.3390/atoms13080072 - 4 Aug 2025
Abstract
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses [...] Read more.
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses significant challenges for theoretical calculations, since the accuracy of variational energy calculations decreases rapidly with increasing principal quantum number n. Recently the complex “triple” Hylleraas basis was employed to attain the ionization energy of helium 24P1 state with high accuracy. Different from it, we extended the correlated B-spline basis functions (C-BSBFs) to calculate the Rydberg states of helium. The nonrelativistic energies of 1snpP1,3 states up to n=27 achieve at least 14 significant digits using a unified basis set, thereby greatly reducing the complexity of the optimization process. Results of geometric structure parameters and cusp conditions were presented as well. Both the global operator and direct calculation methods are employed and cross-checked for contact potentials. This C-BSBF method not only obtains high-accuracy energies across all studied levels but also confirms the effectiveness of the C-BSBFs in depicting long-range and short-range correlation effects, laying a solid foundation for future high-accuracy Rydberg-state calculations with relativistic and QED corrections included in helium atom and low-Z helium-like ions. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

15 pages, 712 KiB  
Article
Extracting Correlations in Arbitrary Diagonal Quantum States via Weak Couplings and Auxiliary Systems
by Hui Li, Chao Zheng, Yansong Li and Xian Lu
Symmetry 2025, 17(8), 1233; https://doi.org/10.3390/sym17081233 - 4 Aug 2025
Abstract
In this work, we introduce a novel method to extract correlations in diagonal quantum states in multi-particle quantum systems, addressing a significant limitation of traditional approaches that require prior knowledge of the density matrices of quantum states. Instead of relying on classical information [...] Read more.
In this work, we introduce a novel method to extract correlations in diagonal quantum states in multi-particle quantum systems, addressing a significant limitation of traditional approaches that require prior knowledge of the density matrices of quantum states. Instead of relying on classical information processing, our method is based on weak couplings and ancillary systems, eliminating the need for classical communication, optimization, and complex calculations. The concept of mutually unbiased bases is intrinsically linked to symmetry, as it entails the uniform distribution of quantum states across distinct bases. Within the framework of our theoretical model, mutually unbiased bases are employed to facilitate weak measurements and to function as the post-selected states. To quantify the correlations in the initial state, we employ the trace distance between the initial state and the product of its marginal states, and illustrate the feasibility and effectiveness of our approach. We generalize the approach to accommodate high-dimensional multi-particle systems for potential applications in quantum information processing and quantum networks. Full article
(This article belongs to the Topic Quantum Systems and Their Applications)
Show Figures

Figure 1

10 pages, 1588 KiB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 (registering DOI) - 3 Aug 2025
Viewed by 51
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

20 pages, 619 KiB  
Article
A Complexity-Based Approach to Quantum Observable Equilibration
by Marcos G. Alpino, Tiago Debarba, Reinaldo O. Vianna and André T. Cesário
Entropy 2025, 27(8), 824; https://doi.org/10.3390/e27080824 (registering DOI) - 3 Aug 2025
Viewed by 54
Abstract
We investigate the role of a statistical complexity measure to assign equilibration in isolated quantum systems. While unitary dynamics preserve global purity, expectation values of observables often exhibit equilibration-like behavior, raising the question of whether a measure of complexity can track this process. [...] Read more.
We investigate the role of a statistical complexity measure to assign equilibration in isolated quantum systems. While unitary dynamics preserve global purity, expectation values of observables often exhibit equilibration-like behavior, raising the question of whether a measure of complexity can track this process. In addition to examining observable equilibration, we extend our analysis to study how the complexity of the quantum states evolves, providing insight into the transition from initial coherence to equilibrium. We define a classical statistical complexity measure based on observable entropy and deviation from equilibrium, which captures the dynamical progression towards equilibration and effectively distinguishes between complex and non-complex trajectories. In particular, our measure is sensitive to non-complex dynamics. Such dynamics include the quasi-periodic behavior exhibited by low-dimensional initial states, where the system explores a limited region of Hilbert space while preserving coherence. Numerical simulations of an Ising-like non-integrable Hamiltonian spin-chain model support these findings. Our work provides new insight into the emergence of equilibrium behavior from unitary dynamics and advances complexity as a meaningful tool in the study of the emergence of classicality in microscopic systems. Full article
(This article belongs to the Special Issue Quantum Nonstationary Systems—Second Edition)
Show Figures

Figure 1

20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 250
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

10 pages, 1977 KiB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 185
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

14 pages, 3968 KiB  
Article
Investigating the Coherence Between Motor Cortex During Rhythmic Finger Tapping Using OPM-MEG
by Hao Lu, Yong Li, Yang Gao, Ying Liu and Xiaolin Ning
Photonics 2025, 12(8), 766; https://doi.org/10.3390/photonics12080766 - 29 Jul 2025
Viewed by 138
Abstract
Optically pumped magnetometer OPM-MEG has the potential to replace the traditional low-temperature superconducting quantum interference device SQUID-MEG. Coherence analysis can be used to evaluate the functional connectivity and reflect the information transfer process between brain regions. In this paper, a finger tapping movement [...] Read more.
Optically pumped magnetometer OPM-MEG has the potential to replace the traditional low-temperature superconducting quantum interference device SQUID-MEG. Coherence analysis can be used to evaluate the functional connectivity and reflect the information transfer process between brain regions. In this paper, a finger tapping movement paradigm based on auditory cues was used to measure the functional signals of the brain using OPM-MEG, and the coherence between the primary motor cortex (M1) and the primary motor area (PM) was calculated and analyzed. The results demonstrated that the coherence of the three frequency bands of Alpha (8–13 Hz), Beta (13–30 Hz), and low Gamma (30–45 Hz) and the selected reference signal showed roughly the same position, the coherence strength and coherence range decreased from Alpha to low Gamma, and the coherence coefficient changed with time. It was inferred that the change in coherence indicated different neural patterns in the contralateral motor cortex, and these neural patterns also changed with time, thus reflecting the changes in the connection between different functional areas in the time-frequency domain. In summary, OPM-MEG has the ability to measure brain coherence during finger movements and can characterize connectivity between brain regions. Full article
Show Figures

Figure 1

8 pages, 306 KiB  
Proceeding Paper
Constraints on the Equation of State of Quark Stars from Compact Object Observations
by Shu-Peng Wang, Zhi-Jun Ma, Jian-Feng Xu and Zhen-Yan Lu
Proceedings 2025, 123(1), 3; https://doi.org/10.3390/proceedings2025123003 - 29 Jul 2025
Viewed by 209
Abstract
Introducing an additional term into the thermodynamic potential density of the quark matter system, as required for thermodynamic consistency, resolves the inconsistency that arises in the conventional perturbative quantum chromodynamics (QCD) model. In this work, we use a revised, thermodynamically consistent perturbative QCD [...] Read more.
Introducing an additional term into the thermodynamic potential density of the quark matter system, as required for thermodynamic consistency, resolves the inconsistency that arises in the conventional perturbative quantum chromodynamics (QCD) model. In this work, we use a revised, thermodynamically consistent perturbative QCD model to compute the stability window and equation of state of up-down (ud) quark matter at zero temperature. Our results indicate that the measured tidal deformability for GW170817 places an upper limit on the maximum mass of ud quark stars, but does not rule out the possibility of such stars with a mass of about two solar masses. However, when the maximum mass of ud quark stars significantly exceeds two solar masses, such as the compact object with a mass in the range of 2.50–2.67 M observed in the GW190814 event, it cannot be identified as a ud quark star according to the revised perturbative QCD model. Full article
(This article belongs to the Proceedings of The 5th International Conference on Symmetry (Symmetry 2025))
Show Figures

Figure 1

29 pages, 4763 KiB  
Review
Quantum-Empowered Fiber Sensing Metrology
by Xiaojie Zuo, Zhangguan Tang, Boyao Li, Xiaoyong Chen and Jinghua Sun
Photonics 2025, 12(8), 763; https://doi.org/10.3390/photonics12080763 - 29 Jul 2025
Viewed by 341
Abstract
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing [...] Read more.
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing installations and generating high-quality optical fiber quantum states. Following decades of comprehensive investigations and remarkable advances in optical fiber quantum sensing technology, this review systematically examines research achievements in this field through two complementary perspectives: one is the basic principle of generating optical fiber quantum states and their applications in sensing and the other is optical fiber quantum interferometers and their applications in sensing. Finally, examine current opportunities and challenges as well as the future development of optical fiber quantum sensing. Full article
(This article belongs to the Special Issue Quantum High Precision Measurement)
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 282
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Towards Relational Foundations for Spacetime Quantum Physics
by Pietro Dall’Olio and José A. Zapata
Universe 2025, 11(8), 250; https://doi.org/10.3390/universe11080250 - 29 Jul 2025
Viewed by 168
Abstract
Rovelli’s relational interpretation of quantum mechanics tells us that the description of a system in the formalism of quantum mechanics is not an absolute but is relative to the observer itself. The interpretation goes further and proposes a set of axioms. In standard [...] Read more.
Rovelli’s relational interpretation of quantum mechanics tells us that the description of a system in the formalism of quantum mechanics is not an absolute but is relative to the observer itself. The interpretation goes further and proposes a set of axioms. In standard non-relational language, one of them states that an observer can only retrieve a finite amount information from a system by means of measurement. Our contribution starts with the observation that quantum mechanics, i.e., quantum field theory (QFT) in dimension 1, radically differs from QFT in higher dimensions. In higher dimensions, boundary data (or initial data) cannot be characterized by finitely many measurements. This calls for a notion of measuring scale, which we provide. At a given measuring scale, the observer has partial information about the system. Our notion of measuring scale generalizes the one implicitly used in Wilsonian QFT. At each measuring scale, there are effective theories, which may be corrected, and if the theory turns out to be renormalizable, the mentioned corrections converge to determine a completely corrected (or renormalized) theory at the given measuring scale. The notion of a measuring scale is the cornerstone of Wilsonian QFT; this notion tells us that we are not describing a system from an absolute perspective. An effective theory at that scale describes the system with respect to the observer, which may retrieve information from the system by means of measurement in a specific way determined by our notion of measuring scale. We claim that a relational interpretation of quantum physics for spacetimes of dimensions greater than 1 is Wilsonian. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
15 pages, 4409 KiB  
Article
Performance of Dual-Layer Flat-Panel Detectors
by Dong Sik Kim and Dayeon Lee
Diagnostics 2025, 15(15), 1889; https://doi.org/10.3390/diagnostics15151889 - 28 Jul 2025
Viewed by 235
Abstract
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also [...] Read more.
Background/Objectives: In digital radiography imaging, dual-layer flat-panel detectors (DFDs), in which two flat-panel detector layers are stacked with a minimal distance between the layers and appropriate alignment, are commonly used in material decompositions as dual-energy applications with a single x-ray exposure. DFDs also enable more efficient use of incident photons, resulting in x-ray images with improved noise power spectrum (NPS) and detection quantum efficiency (DQE) performances as single-energy applications. Purpose: Although the development of DFD systems for material decomposition applications is actively underway, there is a lack of research on whether single-energy applications of DFD can achieve better performance than the single-layer case. In this paper, we experimentally observe the DFD performance in terms of the modulation transfer function (MTF), NPS, and DQE with discussions. Methods: Using prototypes of DFD, we experimentally measure the MTF, NPS, and DQE of the convex combination of the images acquired from the upper and lower detector layers of DFD. To optimize DFD performance, a two-step image registration is performed, where subpixel registration based on the maximum amplitude response to the transform based on the Fourier shift theorem and an affine transformation using cubic interpolation are adopted. The DFD performance is analyzed and discussed through extensive experiments for various scintillator thicknesses, x-ray beam conditions, and incident doses. Results: Under the RQA 9 beam conditions of 2.7 μGy dose, the DFD with the upper and lower scintillator thicknesses of 0.5 mm could achieve a zero-frequency DQE of 75%, compared to 56% when using a single-layer detector. This implies that the DFD using 75 % of the incident dose of a single-layer detector can provide the same signal-to-noise ratio as a single-layer detector. Conclusions: In single-energy radiography imaging, DFD can provide better NPS and DQE performances than the case of the single-layer detector, especially at relatively high x-ray energies, which enables low-dose imaging. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 305 KiB  
Article
Entropic Dynamics Approach to Relational Quantum Mechanics
by Ariel Caticha and Hassaan Saleem
Entropy 2025, 27(8), 797; https://doi.org/10.3390/e27080797 - 26 Jul 2025
Cited by 1 | Viewed by 364
Abstract
The general framework of Entropic Dynamics (ED) is used to construct non-relativistic models of relational Quantum Mechanics from well-known inference principles—probability, entropy and information geometry. Although only partially relational—the absolute structures of simultaneity and Euclidean geometry are still retained—these models provide a useful [...] Read more.
The general framework of Entropic Dynamics (ED) is used to construct non-relativistic models of relational Quantum Mechanics from well-known inference principles—probability, entropy and information geometry. Although only partially relational—the absolute structures of simultaneity and Euclidean geometry are still retained—these models provide a useful testing ground for ideas that will prove useful in the context of more realistic relativistic theories. The fact that in ED the positions of particles have definite values, just as in classical mechanics, has allowed us to adapt to the quantum case some intuitions from Barbour and Bertotti’s classical framework. Here, however, we propose a new measure of the mismatch between successive states that is adapted to the information metric and the symplectic structures of the quantum phase space. We make explicit that ED is temporally relational and we construct non-relativistic quantum models that are spatially relational with respect to rigid translations and rotations. The ED approach settles the longstanding question of what form the constraints of a classical theory should take after quantization: the quantum constraints that express relationality are to be imposed on expectation values. To highlight the potential impact of these developments, the non-relativistic quantum model is parametrized into a generally covariant form and we show that the ED approach evades the analogue of what in quantum gravity has been called the problem of time. Full article
(This article belongs to the Section Quantum Information)
Back to TopTop