Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = quality forage yield

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2898 KiB  
Article
Genetic Variability and Trait Correlations in Lotus corniculatus L. as a Basis for Sustainable Forage Breeding
by Cristian Bostan, Nicolae Marinel Horablaga, Marius Boldea, Emilian Onișan, Christianna Istrate-Schiller, Dorin Rechitean, Luminita Cojocariu, Alina Laura Agapie, Adina Horablaga, Ioan Sarac, Sorina Popescu, Petru Rain and Ionel Samfira
Sustainability 2025, 17(15), 7007; https://doi.org/10.3390/su17157007 - 1 Aug 2025
Viewed by 131
Abstract
Lotus corniculatus L. is a valuable fodder legume, recognized for its ecological adaptability and high potential for production and fodder quality. In this study, 18 genotypes collected from wild flora were analyzed to highlight genetic variability and facilitate the selection of genotypes with [...] Read more.
Lotus corniculatus L. is a valuable fodder legume, recognized for its ecological adaptability and high potential for production and fodder quality. In this study, 18 genotypes collected from wild flora were analyzed to highlight genetic variability and facilitate the selection of genotypes with superior potential. The collection area was in the western part of Romania and featured a diverse topography, including parts of the Banat Plain, the Banat Hills, and the Southern and Western Carpathians. The genotypes selected from the wild flora were cultivated and evaluated for morpho-productive and forage quality traits, including pod weight, average number of seeds/pods, green mass production, and protein percentage. PCA highlighted the main components explaining the variability, and K-means clustering allowed for the identification of groups of genotypes with similar performances. ANOVA showed statistically significant differences (p < 0.001) for all traits analyzed. According to the results, genotypes LV-LC-3, LV-LC-4, LV-LC-6, and LV-LC-16 showed high productive potential and were highlighted as the most valuable for advancing in the breeding program. The moderate relationships between traits confirm the importance of integrated selection. The identified genetic variability and selected genotypes support the implementation of effective breeding strategies to obtain high-performance Lotus corniculatus L., adapted to local soil and climate conditions and with a superior forage yield. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Optimizing Row Spacing and Seeding Rate for Yield and Quality of Alfalfa in Saline–Alkali Soils
by Jiaqi Shi, Nan Xie, Lifeng Zhang, Xuan Pan, Yanling Wang, Zhongkuan Liu, Zhenyu Liu, Jianfei Zhi, Wenli Qin, Wei Feng, Guotong Sun and Hexing Yu
Agronomy 2025, 15(8), 1828; https://doi.org/10.3390/agronomy15081828 - 28 Jul 2025
Viewed by 241
Abstract
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, [...] Read more.
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, S4, S5) combinations on chlorophyll content (ChlM), nitrogen flavonol index (NFI), chlorophyll fluorescence parameters, forage quality, and hay yield were systematically analyzed. Results showed that alfalfa under R1S3 treatment achieved peak values for ChIM, NFI, EE, and hay yield, whereas R1S4 treatment yielded the highest Fv/Fm and CP content. Redundancy analysis further indicated that yield was most strongly associated with ChlM, NFI, Y (II), and qP. Y (II), and qP significantly influenced alfalfa forage quality, exerting negative effects on ADF and NDF, while demonstrating positive effects on CP and EE. In conclusion, narrow row spacing (15 cm) with moderate seeding rates (22.5–30 kg·hm−2) optimizes photosynthetic performance while concurrently enhancing both productivity and forage quality in alfalfa cultivated, establishing a theoretical foundation for photosynthetic regulation in high-quality and high-yield alfalfa cultivation. Full article
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 186
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

19 pages, 2238 KiB  
Article
Productivity, Biodiversity and Forage Value of Meadow Sward Depending on Management Intensity and Silicon Application
by Barbara Borawska-Jarmułowicz and Grażyna Mastalerczuk
Sustainability 2025, 17(15), 6717; https://doi.org/10.3390/su17156717 - 24 Jul 2025
Viewed by 213
Abstract
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and [...] Read more.
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and legumes were sown. During the next three years, the sward was fertilized and cut 3-times per year, and then, for five years, was mown twice a year, without fertilization. On the sward formed at that time, in 2023, an experiment was established to evaluate how management intensity (2- or 3-cuts and rate of fertilizer) and silicon application (Si or 0Si) affect botanical composition, yield, and nutrient content in perennial meadow swards under variable precipitation over two years. Species richness rose in the sward in the second year, especially under 3-cut management (from 15 to 21 species). The share of species sown earlier in the mixtures Dactylis glomerata, Festulolium braunii, and Medicago x varia was very high at both management intensities (66–87% DM). Yield and the content of crude protein and nutrients were higher in the 3-cut system in the second and third regrowths. Silicon supplementation increased plant diversity and yield resilience during drought, with more intensive management supporting sustainable forage production. Moreover, the sward contained more nutrients with 3-cuttings in the second and third regrowths. These findings indicate that intensive meadow management and silicon application enhance productivity, forage value, and biodiversity, providing valuable insights for sustainable meadow management strategies. Full article
Show Figures

Figure 1

19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 279
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 225
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

13 pages, 261 KiB  
Article
Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding
by Lorenzo Infascelli, Nadia Musco, Piera Iommelli, Giuseppe Vassalotti, Francesco Capezzuto, Fabio Zicarelli, Valeria Maria Morittu, Anna Antonella Spina, Federico Infascelli and Raffaella Tudisco
Animals 2025, 15(14), 2050; https://doi.org/10.3390/ani15142050 - 11 Jul 2025
Viewed by 324
Abstract
The present study aimed to evaluate the impact of two dietary regimens, characterized by different forage-to-concentrate ratios, on feed intake, milk yield and composition, as well as economic and environmental sustainability in lactating buffalo cows. Group H was fed a high-forage diet, while [...] Read more.
The present study aimed to evaluate the impact of two dietary regimens, characterized by different forage-to-concentrate ratios, on feed intake, milk yield and composition, as well as economic and environmental sustainability in lactating buffalo cows. Group H was fed a high-forage diet, while Group L was fed a diet with a lower forage-to-concentrate ratio. Despite a lower energy value (Unit for Feed Lactation: UFL 0.89 vs. 0.91), the diet of group H met the animals’ nutritional requirements, with similar dry matter intake (DMI) and body condition scores observed in both groups. While there was no significant difference in milk yield, protein, and lactose, group H exhibited significantly higher milk fat content and an enhanced fatty acid profile, characterized by increased oleic acid, conjugated linoleic acids (CLAs), and omega-3 polyunsaturated fatty acids. These fatty acids have been linked to potential health benefits in humans, including anti-inflammatory, cardioprotective, and anticarcinogenic effects. From an economic perspective, the H group’s diet was found to be more cost-effective, resulting in EUR 0.46 savings per head per day and a higher yield of mozzarella cheese. From an environmental perspective, the high-forage diet reduced reliance on imported concentrates and irrigation-dependent crops, aligning with sustainable development goals. In conclusion, increasing the forage content in buffalo diets has been demonstrated to support animal performance, improve milk quality, reduce environmental impact, and enhance economic returns for producers. Full article
(This article belongs to the Special Issue Buffalo Farming as a Tool for Sustainability)
22 pages, 2762 KiB  
Article
Assessing the Impact of Environmental and Management Variables on Mountain Meadow Yield and Feed Quality Using a Random Forest Model
by Adrián Jarne, Asunción Usón and Ramón Reiné
Plants 2025, 14(14), 2150; https://doi.org/10.3390/plants14142150 - 11 Jul 2025
Viewed by 354
Abstract
Seasonal climate variability and agronomic management profoundly influence both the productivity and nutritive value of temperate hay meadows. We analyzed five years of data (2019, 2020, 2022–2024) from 15 meadows in the central Spanish Pyrenees to quantify how environmental variables (January–June minimum temperatures, [...] Read more.
Seasonal climate variability and agronomic management profoundly influence both the productivity and nutritive value of temperate hay meadows. We analyzed five years of data (2019, 2020, 2022–2024) from 15 meadows in the central Spanish Pyrenees to quantify how environmental variables (January–June minimum temperatures, rainfall), management variables (fertilization rates (N, P, K), livestock load, cutting date), and vegetation (plant biodiversity (Shannon index)) drive total biomass yield (kg ha−1), protein content (%), and Relative Feed Value (RFV). Using Random Forest regression with rigorous cross-validation, our yield model achieved an R2 of 0.802 (RMSE = 983.8 kg ha−1), the protein model an R2 of 0.786 (RMSE = 1.71%), and the RFV model an R2 of 0.718 (RMSE = 13.86). Variable importance analyses revealed that March rainfall was the dominant predictor of yield (importance = 0.430), reflecting the critical role of early-spring moisture in tiller establishment and canopy development. In contrast, cutting date exerted the greatest influence on protein (importance = 0.366) and RFV (importance = 0.344), underscoring the sensitivity of forage quality to harvest timing. Lower minimum temperatures—particularly in March and May—and moderate livestock densities (up to 1 LU) were also positively associated with enhanced protein and RFV, whereas higher biodiversity (Shannon ≥ 3) produced modest gains in feed quality without substantial yield penalties. These findings suggest that adaptive management—prioritizing soil moisture conservation in early spring, timely harvesting, balanced grazing intensity, and maintenance of plant diversity—can optimize both the quantity and quality of hay meadow biomass under variable climatic conditions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 3651 KiB  
Article
Moss Biochar Facilitates Root Colonization of Halotolerant Halomonas salifodinae for Promoting Plant Growth Under Saline–Alkali Stress
by Wenyue Wang, Yunlong Liu, Zirun Zhao, Rou Liu, Fang Wang, Zhuo Zhang and Qilin Yu
Soil Syst. 2025, 9(3), 73; https://doi.org/10.3390/soilsystems9030073 - 11 Jul 2025
Viewed by 198
Abstract
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, [...] Read more.
The utilization of the widely distributed saline–alkali lands by planting forage grasses is a hot topic. However, the promotion of plant growth remains a great challenge during the exploration of this stressful soil. While halotolerant bacteria are beneficial for plants against saline–alkali stress, their stable colonization on plant roots should be further strengthened. In this study, we investigated the effect of moss biochar on the root colonization of the exogenous halotolerant Halomonas salifodinae isolated from saline lake sediments. During the incubation with the bacteria, the biochar strongly bound the bacterium and induced biofilm formation on the biochar surface. When the biochar and the bacterium were added into the culturing soil of the forage grass Medicago sativa, the biochar remarkably assisted the root binding and biofilm formation of this bacterium on the plant roots. Under the biochar–bacterium combined treatment, the numbers of total bacteria, halotolerant bacteria, and nitrogen-fixing bacteria increased from 105.5 CFU/g soil to 107.2 CFU/g soil, from 104.5 CFU/g soil to 106.1 CFU/g soil, and from 104.7 CFU/g soil to 106.3 CFU/g soil, respectively. After 30 days of culturing, the biochar and the bacterium in combination increased the plant height from 10.3 cm to 36 cm, and enhanced the accumulation of chlorophyll a, reducing sugars, soluble proteins, and superoxide dismutase in the leaves. Moreover, the combined treatment increased the activity of soil enzymes, including peroxidase, alkaline phosphatase, and urease. Meanwhile, the levels of various cations in the rhizosphere soil were reduced by the combined treatment, e.g., Na+, Cu2+, Fe2+, Mg2+, Mn2+, etc., indicating an improvement in the soil quality. This study developed the biochar–halotolerant bacterium joint strategy to improve the yield of forage grasses in saline–alkali soil. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Figure 1

18 pages, 10178 KiB  
Article
Effects of Legume–Grass Mixture Combinations and Planting Ratios on Forage Productivity and Nutritional Quality in Typical Sand-Fixing Vegetation Areas of the Mu Us Sandy Land
by Yuqing Mi, Hongbin Xu, Lei Zhang, Ruihua Pan, Shengnan Zhang, Haiyan Gao, Haibing Wang and Chunying Wang
Agriculture 2025, 15(14), 1474; https://doi.org/10.3390/agriculture15141474 - 9 Jul 2025
Viewed by 364
Abstract
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of [...] Read more.
Monoculture and legume–grass mixed cropping are the two most common planting methods, with mixed cropping generally demonstrating higher hay yield and superior nutritional quality compared to monoculture. However, research on legume–grass mixed cropping for establishing cultivated pastures in typical sand-fixing vegetation areas of the Mu Us Sandy Land remains scarce. These knowledge gaps have hindered the synergistic integration of forage production and ecological restoration in the region. This study conducted mixed cropping trials in the sand-fixing vegetation zone of the Mu Us Sandy Land using Dahurian wildrye (Elymus dahuricus), Mongolian wheatgrass (Agropyron mongolicum), and Standing milkvetch (Astragalus adsurgens) to investigate the effects of species combinations and planting ratios on forage productivity and nutritional quality, aiming to determine the optimal planting strategy. Results showed that in the first establishment year, the yield of all mixed cropping systems significantly exceeded that of monocultured Dahurian wildrye and Mongolian wheatgrass. All mixed cropping combinations exhibited land equivalent ratios (LER) and relative yield totals (RYT) below 1, indicating varying degrees of interspecific competition during the first year, with grass species generally demonstrating stronger competitive abilities than legumes. Mixed-cropped forages showed higher crude protein, crude fat, and crude ash content compared to monocultures, alongside lower neutral detergent fiber (NDF) and acid detergent fiber (ADF) levels, suggesting improved relative feed value (RFV). Among the combinations, E5A5 and E6A4 (5:5 and 6:4 ratio of Dahurian wildrye to Standing milkvetch) achieved higher RFV, with RFV gradually declining as the legume proportion decreased. In conclusion, both monoculture and legume–grass mixed cropping are viable in the Mu Us Sandy Land’s sand-fixing vegetation areas and the E5A5 combination (5:5 ratio of Dahurian wildrye to Standing milkvetch) as having the highest overall score, demonstrating that this mixed cropping ratio optimally balances yield and nutritional quality, making it the recommended planting protocol for the region. This mixed cropping system offers a theoretical foundation for efficiently establishing artificial pastures in the Mu Us Sandy Land, supporting regional pastoral industry development and desertification mitigation. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

12 pages, 429 KiB  
Article
What Is the Maximum Nitrogen Dose for the Fertilization of BRS Tamani?
by Anna Beatriz Oliveira Moura, Lucas Gimenes Mota, Luis Carlos Oliveira Borges, Eduarda Caroline Kichel Cuff, Sidney dos Santos Silva, Camila Fernandes Domingues Duarte, Carla Heloisa Avelino Cabral and Carlos Eduardo Avelino Cabral
Nitrogen 2025, 6(3), 53; https://doi.org/10.3390/nitrogen6030053 - 1 Jul 2025
Viewed by 295
Abstract
This study aimed to determine the optimal nitrogen (N) fertilization rate per regrowth cycle for Megathyrsus maximus cv. BRS Tamani by evaluating its effects on forage production, nutrient uptake, bromatological composition, and in vitro degradation kinetics. A randomized complete block design with five [...] Read more.
This study aimed to determine the optimal nitrogen (N) fertilization rate per regrowth cycle for Megathyrsus maximus cv. BRS Tamani by evaluating its effects on forage production, nutrient uptake, bromatological composition, and in vitro degradation kinetics. A randomized complete block design with five N doses (0, 40, 80, 120, and 160 kg N ha−1) and seven replications was conducted over two rainy seasons. From December 2019 to April 2020, canopy height and light interception were measured weekly. When canopy height reached 95% of light interception the grass was harvest and productive and morphological structure were measured. Nitrogen fertilization increased forage mass and yield up to the dose of 40 kg N ha−1, resulting in 1959 and 9798 kg DM ha−1, respectively, while nitrogen use efficiency declined at higher doses. Weed mass was decreased at 0 kg ha−1, and chlorophyll index increased with the N dose. Nitrogen and potassium were the most extracted nutrients, with nitrogen uptake being highest at 80 kg ha−1. Fertilization elevated the levels of crude protein, NDIP, cell content, and cell wall-bound protein, while ash content decreased. In vitro fermentation showed a reduced gas volume at higher N doses and improved degradation and digestibility up to 40 kg ha−1. Nitrogen fertilization enhanced the forage yield and quality of BRS Tamani, with 40 kg ha−1 maximizing efficiency and digestibility. Full article
Show Figures

Figure 1

25 pages, 1306 KiB  
Article
Comparative Study on Production Performance of Different Oat (Avena sativa) Varieties and Soil Physicochemical Properties in Qaidam Basin
by Wenqi Wu, Ronglin Ge, Jie Wang, Xiaoli Wei, Yuanyuan Zhao, Xiaojian Pu and Chengti Xu
Plants 2025, 14(13), 1978; https://doi.org/10.3390/plants14131978 - 28 Jun 2025
Viewed by 376
Abstract
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of [...] Read more.
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of the main agronomic traits, quality, and soil physical and chemical properties of different oat varieties at the harvest stage. The hay yield of Molasses (17,933.33 kg·hm−2) was the highest (p < 0.05), the plant height (113.59 cm) and crude fat (3.02%) of Qinghai 444 were the highest (p < 0.05), the fresh-dry ratio (2.62), crude protein (7.43%), and total salt content in plants (68.33 g·kg−1) of Qingtian No. 1 were the highest (p < 0.05), and the Relative forage value (RFV) of Baler (122.96) was the highest (p < 0.05). In the 0–15 cm and 15–30 cm soil layers of different oat varieties, the contents of pH, EC, total salt, Ca2+, Mg2+, and HCO3 showed a decreasing trend at the harvest stage compared to the seedling stage, while the contents of organic matter, total nitrogen, Cl, and SO42− showed an increasing trend. The contents of K+ and Na+ maintained a relatively balanced relationship between the seedling stage and the harvest stage in the two soil layers. Qingtian No. 1, Qingyin No. 1, and Molasses all rank among the top three in terms of production performance and soil physical and chemical properties, and they are the oat varieties suitable for cultivation in the research area. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

18 pages, 2835 KiB  
Article
Rhizosphere Growth-Promoting Bacteria Enhance Oat Growth by Improving Microbial Stability and Soil Organic Matter in the Saline Soil of the Qaidam Basin
by Xin Jin, Xinyue Liu, Jie Wang, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1926; https://doi.org/10.3390/plants14131926 - 23 Jun 2025
Cited by 1 | Viewed by 512
Abstract
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, [...] Read more.
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, can expand winter feed reserves and partly alleviate grazing pressure on native rangelands. However, genetic improvement alone has not been sufficient to address the environmental challenges. This issue is particularly severe in the Qaidam Basin, where soil salinization, characterized by high pH, poor soil structure, and low nutrient availability, significantly limits crop performance. Rhizosphere growth-promoting bacteria (PGPR) are environmentally friendly biofertilizers known to enhance crop growth, yield, and soil quality, but their application in the saline soil of the Qaidam Basin remains limited. We evaluated two PGPR application rates (B1 = 75 kg hm−2 and B2 = 150 kg hm−2) on ‘Qingtian No. 1’ oat, assessing plant growth, soil physicochemical properties, and rhizosphere microbial communities. The results indicated that both treatments significantly increased oat productivity, raised the comprehensive growth index, augmented soil organic matter, and lowered soil pH; B1 chiefly enhanced above-ground biomass and fungal community stability, whereas B2 more strongly promoted root development and bacterial community stability. Structural equation modeling showed that PGPR exerted direct effects on the comprehensive growth index and indirect effects through soil and microbial pathways, with soil properties contributing slightly more than microbial factors. Notably, rhizosphere organic matter, fungal β-diversity, and overall microbial community stability emerged as positive key drivers of the comprehensive growth index. These findings provide a theoretical basis for optimizing PGPR dosage in alpine forage systems and support the sustainable deployment of microbial fertilizers under saline soil conditions in the Qaidam Basin. Full article
Show Figures

Figure 1

23 pages, 1348 KiB  
Review
The Genome Era of Forage Selection: Current Status and Future Directions for Perennial Ryegrass Breeding and Evaluation
by Jiashuai Zhu, Kevin F. Smith, Noel O. Cogan, Khageswor Giri and Joe L. Jacobs
Agronomy 2025, 15(6), 1494; https://doi.org/10.3390/agronomy15061494 - 19 Jun 2025
Viewed by 597
Abstract
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter [...] Read more.
Perennial ryegrass (Lolium perenne L.) is a cornerstone forage species in temperate dairy systems worldwide, valued for its high yield potential, nutritive quality, and grazing recovery. However, current regional evaluation systems face challenges in accurately assessing complex traits like seasonal dry matter yield due to polygenic nature, environmental variability, and lengthy evaluation cycles. This review examines the evolution of perennial ryegrass evaluation systems, from regional frameworks—like Australia’s Forage Value Index (AU-FVI), New Zealand’s Forage Value Index (NZ-FVI), and Ireland’s Pasture Profit Index (PPI)—to advanced genomic prediction (GP) approaches. We discuss prominent breeding frameworks—F2 family, Half-sib family, and Synthetic Population—and their integration with high-throughput genotyping technologies. Statistical models for GP are compared, including marker-based, kernel-based, and non-parametric approaches, highlighting their strengths in capturing genetic complexity. Key research efforts include representative genotyping approaches for heterozygous populations, disentangling endophyte–host interactions, extending prediction to additional economically important traits, and modeling genotype-by-environment (G × E) interactions. The integration of multi-omics data, advanced phenotyping technologies, and environmental modeling offers promising avenues for enhancing prediction accuracy under changing environmental conditions. By discussing the combination of regional evaluation systems with GP, this review provides comprehensive insights for enhancing perennial ryegrass breeding and evaluation programs, ultimately supporting sustainable productivity of the dairy industry in the face of climate challenges. Full article
Show Figures

Graphical abstract

16 pages, 475 KiB  
Article
Effects of Dried Distillers Grains in Supplements for Beef Cows During Late Gestation on Cow–Calf Performance and Metabolic Status
by Johnnatan Castro Cabral Gonçalves, Jean Marcelo Albuquerque, Edinael Rodrigues de Almeida, Luanna Carla Coelho, José Augusto Moura Godinho, Lilian Yukie Pacheco Toma, Matheus Fellipe de Lana Ferreira, Luciana Navajas Rennó, Cláudia Batista Sampaio, Edenio Detmann and Sidnei Antônio Lopes
Animals 2025, 15(12), 1698; https://doi.org/10.3390/ani15121698 - 8 Jun 2025
Viewed by 737
Abstract
Forty multiparous Nellore cows, with an average body weight, body condition score, and gestation days of 533 ± 32 kg, 5.7 ± 0.4 points, and 198 days, respectively, were managed under continuous grazing on a Urochloa decumbens pasture and either received or did [...] Read more.
Forty multiparous Nellore cows, with an average body weight, body condition score, and gestation days of 533 ± 32 kg, 5.7 ± 0.4 points, and 198 days, respectively, were managed under continuous grazing on a Urochloa decumbens pasture and either received or did not receive 1 kg/day of supplement varying in the levels of inclusion of dried distillers grains (DDG) (Control, 0% DDG, 42% DDG, or 84% DDG) during the last trimester of gestation. The objective was to evaluate the effects of prepartum DDG supplementation on performance, reproduction, fetal development, and calf performance. A quadratic effect of supplementation on BW variation pre- and postpartum was observed (p < 0.05), with cows treated with 42% DDG showing higher BW gain prepartum and low BW loss postpartum. Cows supplemented with 42% DDG had lower levels of non-esterified fatty acids and β-hydroxybutyrate prepartum (p < 0.05). However, body weight-related metrics, such as condition score, carcass traits, and metabolic indicators, varied only by measurement day (p < 0.05). No effect of supplementation was observed on fetal development, calf metabolic profile, milk yield, or postnatal calf performance (p > 0.05). It is recommended to include up to 42% DDG in supplements for beef cows during late gestation grazing on low-quality tropical forage conditions. Full article
Show Figures

Figure 1

Back to TopTop