Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Diet Analysis
2.3. Milk
2.4. Statistical Analysis
3. Results and Discussion
3.1. Animals and Diet
3.2. Milk Productive Traits
3.3. Economic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lotito, D.; Pacifico, E.; Matuozzo, S.; Musco, N.; Iommelli, P.; Zicarelli, F.; Tudisco, R.; Infascelli, F.; Lombardi, P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Vet. Sci. 2023, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- ISTAT. Istituto Nazionale di Statistica. Available online: https://www.istat.it/dati/banche-dati/ (accessed on 20 February 2024).
- Infascelli, F.; Gigli, S.; Campanile, G. Buffalo Meat Production: Performance Infra Vitam and Quality of Meat. Vet. Res. Commun. 2004, 28, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Emakpor, O.L.; Edo, G.I.; Jikah, A.N.; Ikpekoro, V.O.; Agbo, J.J.; Ainyanbhor, I.E.; Essaghah, A.E.A.; Ekokotu, H.A.; Oghroro, E.E.A.; Akpoghelie, P.O. Buffalo Milk: An Essential Natural Adjuvant. Discov. Food 2024, 4, 38. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. A Comprehensive Review on the Composition and Properties of Buffalo Milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Restitrisnani, V.; Sholihah, L.M.; Mukminah, N.; Ryanuari, R.G.; Luthfi, N.; Prawoto, J.A.; Rianto, E.; Purnomoadi, A. Buffalo Is More Environmentally Friendly than Cattle Based on N Excretion. IOP Conf. Ser. Earth Environ. Sci. 2019, 247, 012050. [Google Scholar] [CrossRef]
- Wanapat, M. Comparative Aspects of Digestive Physiology and Nutrition in Buffaloes and Cattle. In Ruminant Physiology and Nutrition in Asia, Proceedings of the Satellite Symposium on Ruminant Physiology and Nutrition in Asia, VII International Symposium on Ruminant Physiology, Sendai, Japan, 28 August–1 September 1989; Devendra, C., Imaizumi, E., Eds.; Japanese Society of Zootechnical Science: Sendai, Japan, 1989; pp. 27–43. [Google Scholar]
- Franzolin, M.H.T.; Silveira, A.C.; Franzolin, R. Efeitos de Dietas com Diferentes Níveis de Fibra em Detergente Neutro e do Tamanho de Poros de Sacos de Náilon Incubados no Rúmen sobre a Fauna Ruminal em Bubalinos e Bovinos. R. Bras. Zootec. 2002, 31, 716–723. [Google Scholar] [CrossRef]
- Bai, R.; Wen, S.; Li, H.; Chen, S.; Chen, Y.; Huang, Y.; Guan, H. Effect of Roughage-to-Concentrate Ratio and Lactic Acid Bacteria Additive on Quality, Aerobic Stability, and In Vitro Digestibility of Fermented Total Mixed Ration. Agriculture 2024, 14, 2230. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, B.; Lo Presti, V.; Morittu, V.M.; Moniello, G.; Grossi, M.; Infascelli, F. Influence of Feeding Linseed on SCD Activity in Grazing Goat Mammary Glands. Animals 2019, 9, 786. [Google Scholar] [CrossRef]
- Infascelli, L.; Tudisco, R.; Iommelli, P.; Capitanio, F. Milk Quality and Animal Welfare as a Possible Marketing Lever for the Economic Development of Rural Areas in Southern Italy. Animals 2021, 11, 1059. [Google Scholar] [CrossRef]
- United Nations (ONU). Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 20 February 2024).
- Esposito, G.; Iommelli, P.; Infascelli, L.; Raffrenato, E. Traditional Sources of Ingredients for the Food Industry: Animal Sources. In Sustainable Food Science—A Comprehensive Approach: Volumes 1–4; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1–4, pp. V1-7–V1-20. [Google Scholar]
- Acosta Balcazar, I.C.; Granados Rivera, L.D.; Salinas Chavira, J.; Estrada Drouaillet, B.; Albarrán, M.R.; Bautista Martínez, Y. Relationship Between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review. Animals 2022, 12, 1621. [Google Scholar] [CrossRef]
- Anitha, A.; Rao, K.S.; Suresh, J.; Moorthy, P.S.; Reddy, Y.K. A Body Condition Score (BCS) System in Murrah Buffaloes. Buffalo Bull. 2011, 30, 79–96. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- ISO 6493:2000; Animal Feeding Stuffs. Determination of Starch Content. Polarimetric Method. 1st ed. Available online: https://www.iso.org/obp/ui/#iso:std:iso:6493:ed-1:v1:en (accessed on 6 May 2023).
- INRA. Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; Available online: https://www.wageningenacademic.com/doi/book/10.3920/978-90-8686-292-4 (accessed on 20 December 2023).
- Folch, J.; Lees, M.; Sloane, G.H. A Simple Method for Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In Advances in Lipid Methodology; Oily Press: Bridgwater, UK, 1993; Volume 2, pp. 69–111. [Google Scholar]
- Hara, A.; Radin, N.S. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Christie, W.W. A Simple Procedure of Rapid Transmethylation of Glycerolipids and Cholesteryl Esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, P.Y.; Corneau, L.; Barbano, D.M.; Metzger, L.E.; Bauman, D.E. Conjugated Linoleic Acids Alter Milk Fatty Acid Composition and Inhibit Milk Fat Secretion in Dairy Cows. J. Nutr. 1999, 129, 1579–1584. [Google Scholar] [CrossRef]
- Altiero, V.; Moio, L.; Addeo, F. Previsione della Resa in Mozzarella sulla Base del Contenuto in Grasso e Proteine del Latte di Bufala. Sci. Tecn. Latt. Casearia 1989, 40, 425–433. [Google Scholar]
- Terramoccia, S.; Bartocci, S.; Amici, A.; Martillotti, F. Protein and protein-free dry matter rumen degradability in buffalo, cattle and sheep fed diets with different forage to concentrate ratios. Livest. Prod. Sci. 2000, 65, 185–195. [Google Scholar] [CrossRef]
- Gomez Azevêdo, J.A.; de Campos Valadares Filho, S.; Lobato Menezes, G.; Silva, L.F.C.E.; Gionbelli, M.P.; Rotta, P.P.; Marcondes, M.I.; Chizzotti, M.L.; Prados, L.F. Regulation and Prediction of Dry Matter Intake. In Nutrient Requirements of Zebu and Crossbred Cattle, BR-CORTE, 4th ed.; Suprema Gráfica LTDA: Visconde do Rio Branco, Brazil, 2023; pp. 15–42. [Google Scholar]
- Bhatia, S.K.; Pradhan, K.; Sangwan, D.C.; Singh, S.; Sagar, V. Effect of Fibrous Diets on Feeding Pattern, Digestibility and Physiological Reactions in Cattle and Buffalo. Indian J. Anim. Sci. 1994, 64, 1259–1263. [Google Scholar]
- Kennedy, P.M. Intake and Digestion in Swamp Buffaloes and Cattle. 4. Particle Size and Buoyancy in Relation to Voluntary Intake. J. Agric. Sci. 1995, 124, 277–287. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Bovera, F.; Piccolo, G.; Infascelli, F. In Vitro Fermentation Kinetics of Carbohydrate Fractions of Fresh Forage, Silage and Hay of Avena sativa. J. Sci. Food Agric. 2005, 85, 1838–1844. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Zicarelli, F.; Gazaneo, M.P.; Infascelli, F. In Vitro Fermentation Kinetics of Fresh and Dried Silage. Anim. Feed Sci. Technol. 2005, 123, 129–137. [Google Scholar] [CrossRef]
- Iommelli, P.; Zicarelli, F.; Musco, N.; Sarubbi, F.; Grossi, M.; Lotito, D.; Lombardi, P.; Infascelli, F.; Tudisco, R. Effect of Cereals and Legumes Processing on In Situ Rumen Protein Degradability: A Review. Fermentation 2022, 8, 363. [Google Scholar] [CrossRef]
- Zicarelli, F.; Calabrò, S.; Piccolo, V.; d’Urso, S.; Tudisco, R.; Bovera, F.; Cutrignelli, M.I.; Infascelli, F. Diets with Different Forage/Concentrate Ratios for the Mediterranean Italian Buffalo: In Vivo and In Vitro Digestibility. Asian-Australas. J. Anim. Sci. 2008, 21, 75–82. [Google Scholar] [CrossRef]
- Petrocchi Jasinski, F.; Evangelista, C.; Basiricò, L.; Bernabucci, U. Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals 2023, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Di Palo, R. Produzione Lattea nella Bufala con Diete Tradizionali e con l’Impiego di Acidi Grassi. Ph.D. Thesis, University of Naples, Naples, Italy, 1992. [Google Scholar]
- Samad, F.A.A.; Azmi, A.F.M.; Azid, M.A.A.; Zalazilah, H.M.; Zulkifli, S.; Jasmi, I.E.M.; Affandi, M.B.I.R.; Saad, M.Z.; Bakar, M.Z.A.; Irawan, A.; et al. Effects of Equaling Either Concentrate and Nutrient Intake on Milk Production of Dairy Buffaloes: A Meta-Analysis. Adv. Anim. Vet. Sci. 2023, 11, 1124–1134. [Google Scholar]
- Habib, M.R.; Islam, M.Z.; Bari, M.S.; Sarker, M.A.H.; Rashid, M.H.; Islam, M.A. Effect of Concentrate Supplementation During Transition Period on Production and Reproduction of Indigenous Buffalo. Bangladesh J. Anim. Sci. 2020, 49, 83–90. [Google Scholar] [CrossRef]
- Purcell, P.J. Effect of Concentrate Feeding Method on the Performance of Dairy Cows in Early to Mid-Lactation. J. Dairy Sci. 2016, 99, 2811–2824. [Google Scholar] [CrossRef]
- Yoder, P.S.; St-Pierre, N.R.; Daniels, K.M.; O’Diam, K.M.; Weiss, W.P. Effects of short-term variation in forage quality and forage to concentrate ratio on lactating dairy cows. J. Dairy Sci. 2013, 96, 6596–6609. [Google Scholar] [CrossRef]
- Shi, R.; Dong, S.; Mao, J.; Wang, J.; Cao, Z.; Wang, Y.; Li, S.; Zhao, G. Dietary Neutral Detergent Fiber Levels Impacting Dairy Cows’ Feeding Behavior, Rumen Fermentation, and Production Performance During the Period of Peak-Lactation. Animals 2023, 13, 2876. [Google Scholar] [CrossRef]
- Kanjanapruthipong, J.; Buatong, N.; Buaphan, S. Effects of Roughage Neutral Detergent Fiber on Dairy Performance Under Tropical Conditions. Asian-Australas. J. Anim. Sci. 2001, 14, 1400–1404. [Google Scholar] [CrossRef]
- Jiang, F.; Lin, X.; Yan, Z.; Hu, Z.; Liu, G.; Sun, Y.; Liu, X.; Wang, Z. Effect of dietary roughage level on chewing activity, ruminal pH, and saliva secretion in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; et al. Milk from Cow Fed with High Forage/Concentrate Ratio Diet: Beneficial Effect on Rat Skeletal Muscle Inflammatory State and Oxidative Stress Through Modulation of Mitochondrial Functions and AMPK Activity. Front. Physiol. 2019, 9, 1969. [Google Scholar] [CrossRef] [PubMed]
- Le Doux, M.; Rouzeau, A.; Bas, P.; Sauvant, D. Occurrence of trans-C18:1 fatty acid isomers in goat milk: Effect of two dietary regimens. J. Dairy Sci. 2002, 85, 190–197. [Google Scholar] [CrossRef]
- Shekhar, N.; Tyagi, S.; Rani, S.; Thakur, A.K. Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem. Res. 2023, 48, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.J.; Griffin, C.; Hennessy, D.; O’Callaghan, T.F.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Effect of bovine feeding system (pasture or concentrate) on the oxidative and sensory shelf life of whole milk powder. J. Dairy Sci. 2021, 104, 10654–10668. [Google Scholar] [CrossRef]
- Ediriweera, M.K.; Bao To, N.; Lim, Y.; Cho, S.K. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie 2021, 186, 147–156. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective effects of oleic acid and polyphenols in extra virgin olive oil on cardiovascular diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Chung, I.-M.; Kim, J.-K.; Lee, K.-J.; Son, N.-Y.; An, M.-J.; Lee, J.-H.; An, Y.-J.; Kim, S.-H. Discrimination of organic milk by stable isotope ratio, vitamin E, and fatty acid profiling combined with multivariate analysis: A case study of monthly and seasonal variation in Korea for 2016–2017. Food Chem. 2018, 261, 112–123. [Google Scholar] [CrossRef]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef]
- Kepler, C.R.; Hirons, K.P.; McNeill, J.J.; Tove, S.B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 1966, 241, 1350–1354. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, A.L.; Lo Presti, V.; Rao, R.; Calabrò, S.; Musco, N.; Grossi, M.; Cutrignelli, M.I.; Mastellone, V.; Lombardi, P.; et al. Effect of hydrogenated palm oil dietary supplementation on milk yield and composition, fatty acids profile and Stearoyl-CoA desaturase expression in goat milk. Small Rumin. Res. 2015, 132, 72–78. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Wattiaux, M.A.; Powell, J.M.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef]
- Angeles-Hernandez, J.C.; Vieyra, A.R.; Kebreab, E.; Appuhamy, A.D.J.R.N.; Dougherty, H.C.; Castelan-Ortega, O.; Gonzalez-Ronquillo, M. Effect of forage to concentrate ratio and fat supplementation on milk composition in dairy sheep: A meta-analysis. Livest. Sci. 2020, 238, 104069. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed. Sci. Technol. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of Nutritional Factors on Fat Content, Fatty Acid Composition, and Sensorial Properties of Meat and Milk from Domesticated Ruminants: An Overview. Animals 2024, 14, 840. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.; Scimeca, J.A.; Thompson, H.J. Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer 1994, 74, 1050–1054. [Google Scholar]
- Koba, K.; Yanagita, T. Health benefits of conjugated linoleic acid (CLA). Obes. Res. Clin. Pract. 2014, 8, e525–e532. [Google Scholar] [CrossRef]
- Shultz, T.D.; Chew, B.P.; Seaman, W.R.; Luedecke, L.O. Inhibitory effect of conjugated dienoic derivatives of linoleic acid and β-carotene on the in vitro growth of human cancer cells. Cancer Lett. 1992, 63, 125–133. [Google Scholar] [CrossRef]
- Blankson, H.; Stakkestad, J.A.; Fagertun, H.; Thom, E.; Wadstein, J.; Gudmundsen, O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 2000, 130, 2943–2948. [Google Scholar]
- Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P.; et al. Influence of pasture on stearoyl-CoA desaturase and miRNA 103 expression in goat milk: Preliminary results. Animals 2019, 9, 606. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Liponi, G.B.; Salari, F. Effect of forage:concentrate ratio on the quality of ewe’s milk, especially on milk fat globules characteristics and fatty acids composition. J. Dairy Res. 2010, 77, 239–244. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Kewalramani, N.; Dhiman, T.R.; Kaur, H.; Singhal, K.K.; Kanwajia, S.K. Enhancement of the conjugated linoleic acid content of buffalo milk and milk products through green fodder feeding. Anim. Feed Sci. Technol. 2007, 133, 351–358. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Chan, D.C. Mitochondria: Dynamic organelles in disease, aging, and development. Cell 2006, 125, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Pomar, C.; Chiquette, J. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Can. J. Anim. Sci. 2001, 81, 563–574. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Chagas, J.C.; Pang, D.; Cabezas-Garcia, E.H. Sustainability aspects of milk production in Sweden. Grass Forage Sci. 2021, 76, 205–214. [Google Scholar] [CrossRef]
H | L | |
---|---|---|
Corn Silage | 12.0 | 20.0 |
Alfalfa Hay | 4.5 | 2.0 |
Polyphyte Hay * | 4.0 | 2.0 |
Corn Meal | 2.0 | 2.2 |
Commercial Concentrate ** | 3.5 | 4.7 |
Hydrogenated Fats | 0.1 | 0.1 |
March | April | May | June | p Value | RMSE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | L | H | L | H | L | H | L | Diet | Time | T × D | ||
BCS | 3.2 | 3.1 | 3.3 | 3.2 | 3.3 | 3.2 | 3.3 | 3.3 | 0.456 | 0.154 | 0.364 | 0.07 |
DMI | 16 | 16.4 | 16 | 16.5 | 16.1 | 16.7 | 16.1 | 16.6 | 0.485 | 0.485 | 0.254 | 0.21 |
CP | 146.9 | 153.3 | 145.7 | 152.1 | 150.1 | 156.3 | 149.8 | 155.2 | 0.062 | 0.065 | 0.942 | 4.27 |
PDIE | 99.2 | 103.3 | 99.1 | 103.1 | 98.6 | 102.9 | 98.9 | 103.2 | 0.564 | 0.127 | 0.745 | 3.21 |
PDIN | 96.2 | 100.2 | 96.5 | 101.2 | 97.01 | 100.2 | 96.3 | 99.8 | 0.567 | 0.432 | 0.321 | 2.54 |
EE | 35.9 | 45.7 | 36.3 | 46.5 | 36 | 46.2 | 36.1 | 46.7 | 0.456 | 0.652 | 0.645 | 1.32 |
NDF | 395.1 | 379.3 | 399 | 379.3 | 397.8 | 385.3 | 396 | 381.7 | 0.048 | 0.462 | 0.486 | 8.76 |
ADF | 279.3 | 242.1 | 277.4 | 239.8 | 278.7 | 241.9 | 278.1 | 244.3 | 0.042 | 0.687 | 0.972 | 12.4 |
ADL | 57.9 | 45.9 | 58.2 | 46.7 | 58.5 | 46.7 | 58.3 | 45.9 | 0.044 | 0.786 | 0.341 | 1.35 |
Ash | 82.1 | 76.8 | 83.1 | 78.3 | 79.3 | 79.2 | 80 | 76.7 | 0.753 | 0.562 | 0.691 | 2.14 |
Starch | 205 | 225.3 | 203.2 | 224.9 | 204.4 | 223.2 | 201.1 | 224.2 | 0.058 | 0.642 | 0.087 | 5.77 |
UFL/kg DM | 0.89 | 0.91 | 0.89 | 0.91 | 0.89 | 0.91 | 0.89 | 0.91 | 0.049 | 0.452 | 0.084 | 0.02 |
SFA | 22.6 | 23.1 | 22.8 | 24 | 22.6 | 24.01 | 22.8 | 23.8 | 0.141 | 0.452 | 0.132 | 2.41 |
MUFA | 23.3 | 20.2 | 22.9 | 20.3 | 23 | 20.4 | 23.5 | 20.1 | 0.872 | 0.135 | 0.245 | 1.85 |
PUFA | 53.9 | 55 | 54.1 | 54.4 | 52.98 | 54.1 | 53.4 | 54.6 | 0.423 | 0.135 | 0.136 | 3.12 |
ω6 | 31.8 | 39.5 | 31.6 | 39.1 | 31.8 | 39.4 | 31.9 | 39 | 0.048 | 0.642 | 0.125 | 1.21 |
ω3 | 21.8 | 15.4 | 20.9 | 15.2 | 21.7 | 15.6 | 21.9 | 15 | 0.037 | 0.521 | 0.761 | 2.01 |
MY | Fat | Protein | Lactose | |||||
---|---|---|---|---|---|---|---|---|
H | L | H | L | H | L | H | L | |
Mean | 11.6 | 11.7 | 90.1 | 85.6 | 42.5 | 41.9 | 46.6 | 46.6 |
March | 12.1 | 11.9 | 80.2 | 77.1 | 42.0 | 42.3 | 46.7 | 46.7 |
April | 13.1 | 13.1 | 90.6 | 84.7 | 42.0 | 41.0 | 47.1 | 46.8 |
May | 11.4 | 11.6 | 91.2 | 88.0 | 42.5 | 41.7 | 46.7 | 46.5 |
June | 9.9 | 10.0 | 100.1 | 92.6 | 43.4 | 42.6 | 45.9 | 46.2 |
p value | ||||||||
Group | 0.658 | 0.008 | 0.095 | 0.752 | ||||
Time | 0.009 | 0.006 | 0.048 | 0.541 | ||||
T × G | 0.064 | 0.089 | 0.098 | 0.315 | ||||
RMSE | 2.694 | 1.635 | 0.258 | 0.212 |
Group | Significance | RMSE | ||||
---|---|---|---|---|---|---|
H | L | G | T | G × T | ||
C4:0 | 3.768 | 3.91 | 0.937 | 0.465 | 0.603 | 0.737 |
C6:0 | 1.755 | 1.607 | 0.099 | 0.049 | 0.319 | 0.331 |
C8:0 | 1.199 | 1.009 | 0.995 | 0.035 | 0.743 | 0.412 |
C10:0 | 1.220 | 1.987 | 0.045 | 0.034 | 0.046 | 1.263 |
C11:0 | 0.092 | 0.073 | 0.048 | 0.321 | 0.122 | 0.066 |
C12:0 | 1.893 | 1.610 | 0.271 | 0.024 | 0.104 | 1.007 |
C13:0 | 0.020 | 0.019 | 0.598 | 0.305 | 0.499 | 0.063 |
C14:0 | 11.30 | 11.32 | 0.729 | 0.241 | 0.254 | 1.754 |
C14:1 | 1.265 | 1.514 | 0.931 | 0.661 | 0.705 | 0.987 |
C15:0 | 1.554 | 1.528 | 0.303 | 0.629 | 0.154 | 0.853 |
C15:1 cis-10 | 0.127 | 0.137 | 0.550 | 0.279 | 0.579 | 0.011 |
C16:0 | 30.71 | 30.45 | 0.173 | 0.318 | 0.517 | 1.698 |
C16:1 | 1.396 | 1.322 | 0.572 | 0.839 | 0.087 | 0.087 |
C17:0 | 1.348 | 1.266 | 0.998 | 0.678 | 0.070 | 0.863 |
C17:1 cis-10 | 1.208 | 1.543 | 0.610 | 0.026 | 0.038 | 0.087 |
C18:0 | 10.70 | 10.80 | 0.619 | 0.895 | 0.340 | 0.863 |
C18:1 cis-9 | 24.07 | 22.79 | 0.271 | 0.035 | 0.489 | 1.210 |
C18:1 trans-9 | 2.450 | 2.097 | 0.805 | 0.730 | 0.908 | 0.865 |
C18:2 (LA) n6 | 2.584 | 2.473 | 0.284 | 0.314 | 0.806 | 0.653 |
C18:3n3 (ALA) | 0.834 | 0.540 | 0.620 | 0.131 | 0.730 | 0.065 |
C18:3n6 (GLA) | 0.098 | 0.089 | 0.469 | 0.614 | 0.358 | 0.015 |
C20:0 | 0.212 | 0.229 | 0.127 | 0.748 | 0.954 | 0.053 |
C20:1 | 0.071 | 0.129 | 0.813 | 0.041 | 0.992 | 0.021 |
CLA 9c 11t | 0.079 | 0.054 | 0.042 | 0.027 | 0.110 | 0.055 |
CLA 10t 12c | 0.022 | 0.013 | 0.035 | 0.041 | 0.036 | 0.001 |
C21:0 | 0.051 | 0.035 | 0.333 | 0.571 | 0.180 | 0.003 |
C20:3n6 | 0.060 | 0.081 | 0.855 | 0.791 | 0.338 | 0.043 |
C20:3n3 | 0.072 | 0.086 | 0.439 | 0.275 | 0.686 | 0.026 |
C23:0 | 0.025 | 0.017 | 0.412 | 0.882 | 0.201 | 0.051 |
C20:4n6 | 0.159 | 0.162 | 0.084 | 0.358 | 0.082 | 0.021 |
C22:2n6 cis-13.16 | 0.030 | 0.017 | 0.124 | 0.218 | 0.381 | 0.003 |
C24:0 | 0.051 | 0.032 | 0.447 | 0.141 | 0.574 | 0.033 |
C20:5n3 | 0.099 | 0.101 | 0.813 | 0.029 | 0.237 | 0.031 |
C22:6n3 | 0.103 | 0.094 | 0.305 | 0.351 | 0.206 | 0.042 |
C22:5n3 | 0.033 | 0.028 | 0.459 | 0.895 | 0.315 | 0.003 |
SFA | 66.11 | 66.81 | 0.452 | 0.021 | 0.046 | 1.003 |
MUFA | 29.72 | 29.54 | 0.423 | 0.034 | 0.021 | 1.213 |
PUFA | 4.170 | 3.742 | 0.042 | 0.015 | 0.032 | 0.213 |
PUFA N6 | 2.933 | 2.820 | 0.351 | 0.089 | 0.352 | 0.123 |
PUFA N3 | 1.142 | 0.850 | 0.019 | 0.026 | 0.032 | 0.088 |
N6/N3 | 2.570 | 3.330 | 0.024 | 0.037 | 0.040 | 0.081 |
TOTAL CLA | 0.101 | 0.068 | 0.005 | 0.023 | 0.036 | 0.022 |
DI (kg) | Cost March | Cost April | Cost May | Cost June | SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | L | H | L | H | L | H | L | H | L | |||
CS | 12.0 | 20.0 | 0.96 | 1.60 | 0.96 | 1.60 | 0.96 | 1.60 | 0.96 | 1.60 | - | - |
AH | 4.5 | 2.0 | 0.86 | 0.38 | 0.86 | 0.38 | 0.86 | 0.38 | 0.86 | 0.38 | - | - |
PH | 4.0 | 2.0 | 0.66 | 0.33 | 0.66 | 0.33 | 0.66 | 0.33 | 0.66 | 0.33 | - | - |
CM | 2.0 | 2.2 | 0.60 | 0.66 | 0.56 | 0.62 | 0.52 | 0.57 | 0.51 | 0.66 | - | - |
C | 3.5 | 4.7 | 1.76 | 2.36 | 1.67 | 2.25 | 1.62 | 2.18 | 1.58 | 2.12 | - | - |
HF | 0.1 | 0.1 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | - | - |
TMR | 26.1 | 32.7 | 5.01 | 5.50 | 4.88 | 5.34 | 4.79 | 5.24 | 4.73 | 5.16 | 0.251 | 0.01 |
H | L | H vs. L/Day | H vs. L/120 Days | |
---|---|---|---|---|
MCY (%) | 25.1 | 24.3 | 0.8 | |
Mozzarella cheese, kg | 58.2 | 56.8 | +1.4 | +168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infascelli, L.; Musco, N.; Iommelli, P.; Vassalotti, G.; Capezzuto, F.; Zicarelli, F.; Morittu, V.M.; Spina, A.A.; Infascelli, F.; Tudisco, R. Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding. Animals 2025, 15, 2050. https://doi.org/10.3390/ani15142050
Infascelli L, Musco N, Iommelli P, Vassalotti G, Capezzuto F, Zicarelli F, Morittu VM, Spina AA, Infascelli F, Tudisco R. Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding. Animals. 2025; 15(14):2050. https://doi.org/10.3390/ani15142050
Chicago/Turabian StyleInfascelli, Lorenzo, Nadia Musco, Piera Iommelli, Giuseppe Vassalotti, Francesco Capezzuto, Fabio Zicarelli, Valeria Maria Morittu, Anna Antonella Spina, Federico Infascelli, and Raffaella Tudisco. 2025. "Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding" Animals 15, no. 14: 2050. https://doi.org/10.3390/ani15142050
APA StyleInfascelli, L., Musco, N., Iommelli, P., Vassalotti, G., Capezzuto, F., Zicarelli, F., Morittu, V. M., Spina, A. A., Infascelli, F., & Tudisco, R. (2025). Diet with High Forage:Concentrate Ratio Improves Milk Nutritional Properties and Economic Sustainability of Buffalo Breeding. Animals, 15(14), 2050. https://doi.org/10.3390/ani15142050