Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = qaidam basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5410 KiB  
Article
Mineral Phase Transformation and Leaching Behavior During the Roasting–Acid–Leaching Process of Clay-Type Lithium Ore in the Qaidam Basin
by Xiaoou Zhang, Jing Zhao, Yan Li, Dong An, Huaigang Cheng, Yuliang Ma and Huiping Song
Minerals 2025, 15(8), 777; https://doi.org/10.3390/min15080777 - 24 Jul 2025
Viewed by 175
Abstract
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching [...] Read more.
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching rate was achieved with 65 ppm extraction, which established intermediate-sized samples as optimal. During acid leaching, adsorbed lithium ions with a phyllosilicate interlayer were released via the ion exchange process instead of mineral dissolution, as verified by the Li-O/S-O peak shifts in the FTIR spectra. The roasting induced hydroxyl elimination, carbonate decomposition, and silicate restructuring but triggered lithium encapsulation via mineral phase reorganization, which caused a sharp leaching rate decline. Effective lithium extraction requires integrated particle size screening, acid-leaching optimization, and roasting-induced phase encapsulation disruption. This study established theoretical foundations for clay-type lithium ore exploitation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 8399 KiB  
Article
Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China
by Liang Guo, Yuanyuan Ding, Haisong Fang, Chunxue An, Wanjun Jiang and Nuan Yang
Water 2025, 17(14), 2074; https://doi.org/10.3390/w17142074 - 11 Jul 2025
Viewed by 278
Abstract
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid [...] Read more.
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid regions. This study integrated hydrochemical analysis, stable isotopes, and inverse hydrochemical modeling to identify groundwater recharge sources, hydrochemical evolution, and controlling mechanisms in an arid endorheic watershed, northwestern China. A stable isotope signature indicated that groundwater is primarily recharged by high-altitude meteoric precipitation and glacial snowmelt. The regional hydrochemical type evolved from HCO3·Cl-Ca·Mg·Na types in phreatic aquifers to more complex HCO3·Cl-Ca·Mg Na and HCO3·Cl-Na Mg types in confined aquifers and a Cl-Mg·Na type in high-salinity groundwater. The dissolution of halite, gypsum, calcite, K-feldspar, and albite was identified as the primary source of dissolved substances and a key factor controlling the hydrochemical characteristics. Meanwhile, hydrochemical evolution is influenced by cation exchange, mineral dissolution–precipitation, and carbonate equilibrium mechanisms. Inverse hydrochemical modeling demonstrated that high-salinity groundwater has experienced intensive evaporation and quantified the transfer amounts of associated minerals. This study offers deeper insight into hydrochemical evolution in the Golmud River watershed and elucidates mineral transport and enrichment mechanisms, providing a theoretical basis for investigating hydrochemical metallogenic processes. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

20 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Viewed by 409
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

18 pages, 33192 KiB  
Article
Fault Cycling and Its Impact on Hydrocarbon Accumulation: Insights from the Neogene Southwestern Qaidam Basin
by Zhaozhou Chen, Zhen Liu, Jun Li, Fei Zhou, Zihao Feng and Xinruo Ma
Energies 2025, 18(13), 3571; https://doi.org/10.3390/en18133571 - 7 Jul 2025
Viewed by 310
Abstract
Building upon the geological cycle theory, this study proposes fault cycles as a critical component of tectonic cyclicity in petroliferous basins. Focusing on reservoir-controlling faults in the southwestern Qaidam Basin, we systematically analyze fault architectures and identify three distinct fault activation episodes: the [...] Read more.
Building upon the geological cycle theory, this study proposes fault cycles as a critical component of tectonic cyclicity in petroliferous basins. Focusing on reservoir-controlling faults in the southwestern Qaidam Basin, we systematically analyze fault architectures and identify three distinct fault activation episodes: the Lulehe Formation (LLH Fm.), the upper part of the Xiaganchaigou Formation (UXG Fm.), and the Shizigou Formation (SZG Fm.). Three types of fault cycle models are established. These fault cycles correlate with the evolution of regional tectonic stress fields, corresponding to the Cenozoic transition from extensional to compressional stress regimes in the basin. Mechanistic analysis reveals the hierarchical control of fault cycles in hydrocarbon systems: the early cycle governs the proto-basin geometry and low-amplitude structural trap development; the middle cycle affects the source rock distribution; and the late cycle controls trap finalization and hydrocarbon migration. This study proposes a fault cycle-controlled accumulation model, providing a dynamic perspective that shifts from conventional static fault concepts to reveal fault activity periodicity and its critical multi-phase control over hydrocarbon migration and accumulation, essential for exploration in multi-episodic fault provinces. Full article
(This article belongs to the Special Issue Petroleum Exploration, Development and Transportation)
Show Figures

Figure 1

24 pages, 28055 KiB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 307
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

20 pages, 3744 KiB  
Article
Potassium Fulvate Alleviates Salt–Alkali Stress and Promotes Comprehensive Growth of Oats in Saline–Alkali Soils of the Qaidam Basin
by Xin Jin, Jie Wang, Xinyue Liu, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1982; https://doi.org/10.3390/plants14131982 - 28 Jun 2025
Viewed by 446
Abstract
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil [...] Read more.
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil properties, and rhizosphere microbial communities in the saline–alkali soils of the Qaidam Basin. The results showed that PF significantly enhanced both aboveground and belowground biomass and improved root morphological traits, with the higher application rate (150 kg·hm−2) showing superior performance. PF also effectively improved soil nutrient conditions (organic matter, ammonium nitrogen, and potassium), reduced the integrated salinity–alkalinity index, significantly optimized the composition of rhizosphere soil cations (increased K+ and Ca2+; decreased Na+ and Mg2+), and induced a marked reshaping of the composition and structure of rhizosphere microbial communities. Notably, microbial β-diversity exhibited a significant regulatory effect on the comprehensive growth of oats. Structural equation modeling (SEM) revealed that PF primarily promoted oat growth indirectly by improving soil physicochemical properties (direct effect = 0.94), while the microbial community structure served as a synergistic ecological mediator. This study clarifies the regulatory mechanisms of PF in oat cultivation under alpine saline–alkali conditions, providing both theoretical and practical support for improving soil quality, enhancing forage productivity, and promoting sustainable agriculture in cold regions. Full article
Show Figures

Figure 1

25 pages, 1306 KiB  
Article
Comparative Study on Production Performance of Different Oat (Avena sativa) Varieties and Soil Physicochemical Properties in Qaidam Basin
by Wenqi Wu, Ronglin Ge, Jie Wang, Xiaoli Wei, Yuanyuan Zhao, Xiaojian Pu and Chengti Xu
Plants 2025, 14(13), 1978; https://doi.org/10.3390/plants14131978 - 28 Jun 2025
Viewed by 380
Abstract
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of [...] Read more.
Oats (Avena sativa L.) are forage grasses moderately tolerant to saline-alkali soil and are widely used for the improvement and utilization of saline-alkali land. Using the oat varieties collected from the Qaidam Basin as experimental materials, based on the analysis data of the main agronomic traits, quality, and soil physical and chemical properties of different oat varieties at the harvest stage. The hay yield of Molasses (17,933.33 kg·hm−2) was the highest (p < 0.05), the plant height (113.59 cm) and crude fat (3.02%) of Qinghai 444 were the highest (p < 0.05), the fresh-dry ratio (2.62), crude protein (7.43%), and total salt content in plants (68.33 g·kg−1) of Qingtian No. 1 were the highest (p < 0.05), and the Relative forage value (RFV) of Baler (122.96) was the highest (p < 0.05). In the 0–15 cm and 15–30 cm soil layers of different oat varieties, the contents of pH, EC, total salt, Ca2+, Mg2+, and HCO3 showed a decreasing trend at the harvest stage compared to the seedling stage, while the contents of organic matter, total nitrogen, Cl, and SO42− showed an increasing trend. The contents of K+ and Na+ maintained a relatively balanced relationship between the seedling stage and the harvest stage in the two soil layers. Qingtian No. 1, Qingyin No. 1, and Molasses all rank among the top three in terms of production performance and soil physical and chemical properties, and they are the oat varieties suitable for cultivation in the research area. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

18 pages, 2835 KiB  
Article
Rhizosphere Growth-Promoting Bacteria Enhance Oat Growth by Improving Microbial Stability and Soil Organic Matter in the Saline Soil of the Qaidam Basin
by Xin Jin, Xinyue Liu, Jie Wang, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1926; https://doi.org/10.3390/plants14131926 - 23 Jun 2025
Cited by 1 | Viewed by 523
Abstract
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, [...] Read more.
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, can expand winter feed reserves and partly alleviate grazing pressure on native rangelands. However, genetic improvement alone has not been sufficient to address the environmental challenges. This issue is particularly severe in the Qaidam Basin, where soil salinization, characterized by high pH, poor soil structure, and low nutrient availability, significantly limits crop performance. Rhizosphere growth-promoting bacteria (PGPR) are environmentally friendly biofertilizers known to enhance crop growth, yield, and soil quality, but their application in the saline soil of the Qaidam Basin remains limited. We evaluated two PGPR application rates (B1 = 75 kg hm−2 and B2 = 150 kg hm−2) on ‘Qingtian No. 1’ oat, assessing plant growth, soil physicochemical properties, and rhizosphere microbial communities. The results indicated that both treatments significantly increased oat productivity, raised the comprehensive growth index, augmented soil organic matter, and lowered soil pH; B1 chiefly enhanced above-ground biomass and fungal community stability, whereas B2 more strongly promoted root development and bacterial community stability. Structural equation modeling showed that PGPR exerted direct effects on the comprehensive growth index and indirect effects through soil and microbial pathways, with soil properties contributing slightly more than microbial factors. Notably, rhizosphere organic matter, fungal β-diversity, and overall microbial community stability emerged as positive key drivers of the comprehensive growth index. These findings provide a theoretical basis for optimizing PGPR dosage in alpine forage systems and support the sustainable deployment of microbial fertilizers under saline soil conditions in the Qaidam Basin. Full article
Show Figures

Figure 1

20 pages, 5757 KiB  
Article
Temporal and Spatial Variation Characteristics of Precipitation Isohyets on the Qinghai–Tibet Plateau from 1961 to 2023
by Xuan Liu, Qiang Zhou, Yonggui Ma, Zemin Zhi, Rui Liu and Weidong Ma
Atmosphere 2025, 16(6), 698; https://doi.org/10.3390/atmos16060698 - 10 Jun 2025
Viewed by 1008
Abstract
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate [...] Read more.
Under a warming–humidifying climate, precipitation patterns on the Qinghai–Tibet Plateau have significantly shifted due to a water imbalance in its solid–liquid structure. Using monthly precipitation data (1961–2023), we analyzed the spatial distribution and dynamics of 200 mm and 400 mm isohyets through climate propensity rates and centroid center migration. The results show: (1) precipitation increased significantly (4.17 mm/decade), decreasing spatially from southeast to northwest. Regionally, it increased in areas like the southern Qinghai Plateau region, but declined in the southern Himalayas and central–southern Altyn−Tagh Mountains. (2) The 200 mm line migrated northward in southern Qiangtang, shrank around Qaidam Basin, with an overall northeastward shift; the 400 mm line moved westward in eastern Qiangtang and Hehuang Valley, northward in southern Qinghai, trending northwest. (3) From 1961 to 1990 and 1991 to 2023, the 200 mm isohyet’s centroid shifted 49 km north and 17 km east, while the 400 mm isohyet moved 22 km north and 19 km west. (4) Vertically, the 200 mm isohyet ascended by 7.11 m/decade, while the 400 mm line rose more slowly (2.61 m/decade). These changes indicate a significant shift in precipitation distribution, impacting regional hydrological processes. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 5913 KiB  
Article
Salinity Effect on Soil Bacterial and Archaeal Diversity and Assembly in Phragmites australis Salt Marshes in the Qaidam Basin, China
by Pengcheng Zhu, Yuhui Wang, Wenyi Sheng, Mingyang Yu, Wei Wei, Wenlong Sun, Jian Gao, Zhenwei Xu, Ming Cao, Yuzhi Wang, Lele Liu and Weihua Guo
Microorganisms 2025, 13(6), 1253; https://doi.org/10.3390/microorganisms13061253 - 29 May 2025
Viewed by 453
Abstract
Extreme environments foster phylogenetically diverse microorganisms and unique community assembly patterns. Plateau saline marsh lakes represent understudied extreme habitats characterized by dual stressors of high salinity and low temperature. Here, we analyzed the soil bacterial and archaeal diversity in three salt marshes of [...] Read more.
Extreme environments foster phylogenetically diverse microorganisms and unique community assembly patterns. Plateau saline marsh lakes represent understudied extreme habitats characterized by dual stressors of high salinity and low temperature. Here, we analyzed the soil bacterial and archaeal diversity in three salt marshes of the Qaidam Basin on the Qinghai-Tibetan Plateau, China. While the bacterial and archaeal alpha diversity showed no significant differences among the three salt marshes, the community composition varied significantly. Notably, soil salinity (indicated by electric conductivity, EC) exerted opposing effects on microbial diversity—suppressing bacterial while promoting archaeal communities. Stochastic processes were the predominant mechanism for both bacterial and archaeal community assembly, where the weights were, in descending order, drift, homogeneous selection, and dispersal limitation. Network analysis revealed predominantly positive co-occurrence patterns within both bacterial and archaeal communities. We did not find a direct relationship between any bacterial or archaeal co-occurrence network properties and soil EC, but there was a significant correlation of network complexity to microbial diversity, which was influenced by EC. Our findings indicate distinct responses of bacterial and archaeal diversity to varying salinity levels, while the underlying assembly processes appear to be conserved in driving shifts in community diversity in plateau salt marsh wetlands. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 6008 KiB  
Article
Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators
by Siyu Bai, Wei Zhang, An’an Chen, Luyuan Jiang, Xuejiao Wu and Yixue Huo
Remote Sens. 2025, 17(10), 1697; https://doi.org/10.3390/rs17101697 - 12 May 2025
Viewed by 343
Abstract
Snow cover variations significantly affect the stability of regional water supply and terrestrial ecosystems in arid northwest China. This study comprehensively evaluates snow resource changes since 2000 by integrating multisource remote sensing datasets and analyzing four key indicators: snow cover area (SCA), snow [...] Read more.
Snow cover variations significantly affect the stability of regional water supply and terrestrial ecosystems in arid northwest China. This study comprehensively evaluates snow resource changes since 2000 by integrating multisource remote sensing datasets and analyzing four key indicators: snow cover area (SCA), snow phenology (SP), snow depth (SD), and snow water equivalent (SWE). The results reveal a slight downtrend in SCA over the past two decades, with an annual decline rate of 7.13 × 103 km2. The maximum SCA (1.28 × 106 km2) occurred in 2010, while the minimum (7.25 × 105 km2) was recorded in 2014. Spatially, SCA peaked in December in the north and January in the south, with high-altitude subregions (Ili River Basin (IRB), Tarim River Region (TRR), North Kunlun Mountains (NKM), and Qaidam Basin (QDB)) maintaining stable summer snow cover due to low temperatures and high precipitation. Analysis of snow phenology indicates a significant shortening of snow cover duration (SCD), with 62.40% of the study area showing a declining trend, primarily driven by earlier snowmelt. Both SD and SWE exhibited widespread declines, affecting 75.09% and 84.85% of the study area, respectively. The most pronounced SD reductions occurred in TRR (94.44%), while SWE losses were particularly severe in North Tianshan Mountains (NTM, 94.61%). The total snow mass in northwest China was estimated at 108.95 million tons, with northern Xinjiang accounting for 66.24 million tons (60.8%), followed by southern Xinjiang (37.44 million tons) and the Hexi Inland Region (5.27 million tons). Consistency analysis revealed coherent declines across all indicators in 55.56% of the study area. Significant SD and SCD reductions occurred in TRR and Tuha Basin (THB), while SWE declines were widespread in NTM and IRB, driven by rising temperatures and decreased snowfall. The findings underscore the urgent need for adaptive strategies to address emerging challenges for water security and ecological stability in the region. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 18492 KiB  
Article
A Hybrid Framework for Production Prediction in High-Water-Cut Oil Wells: Decomposition-Feature Enhancement-Integration
by Zhendong Li, Qihao Qian, Huazhan Guo, Tong Wu, Haidong Cui and Bingqian Zhu
Processes 2025, 13(5), 1467; https://doi.org/10.3390/pr13051467 - 11 May 2025
Viewed by 574
Abstract
The forecasting of high-water-cut oil well production faces challenges of strong nonlinearity and nonstationarity due to reservoir heterogeneity and multiscale dynamic characteristics. This study proposes a hybrid CEEMDAN-SR-BiLSTM framework based on a “decomposition-feature enhancement-integration” architecture. The framework employs Complete Ensemble Empirical Mode Decomposition [...] Read more.
The forecasting of high-water-cut oil well production faces challenges of strong nonlinearity and nonstationarity due to reservoir heterogeneity and multiscale dynamic characteristics. This study proposes a hybrid CEEMDAN-SR-BiLSTM framework based on a “decomposition-feature enhancement-integration” architecture. The framework employs Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to suppress mode mixing, reconstructs high-, medium-, and low-frequency subsequences using Hilbert-Huang Transform (HHT) combined with tercile thresholding, and finally achieves multiscale feature fusion prediction through a Bayesian-optimized bidirectional long short-term memory network (BiLSTM). Interpretability analysis based on SHapley Additive exPlanations (SHAP) values reveals the contribution degrees of parameters such as water injection volume and flowing pressure to different frequency components, establishing a mapping between production data features and physical mechanisms of oil well production. This mapping, integrated with physical mechanisms including wellbore transient flow, injection-production response lag, and reservoir pressure evolution, enables mechanistic interpretation of production phenomena and quantitative decoupling and prediction of multiscale dynamics. Experimental results show that the framework achieves a root-mean-square error (RMSE) of 3.75 in forecasting a high-water-cut well (water cut = 87.6%) in the Qaidam Basin, reducing errors by 26.0% and 50.0% compared to CEEMDAN-BiLSTM and BiLSTM models, respectively, with a coefficient of determination (R2) reaching 0.954. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

16 pages, 21540 KiB  
Article
Responses of Terrestrial Water Storage to Climate Change in the Closed Alpine Qaidam Basin
by Liang Chang, Qunhui Zhang, Xiaofan Gu, Rui Duan, Qian Wang and Xiangzhi You
Hydrology 2025, 12(5), 105; https://doi.org/10.3390/hydrology12050105 - 28 Apr 2025
Viewed by 611
Abstract
Terrestrial water storage (TWS) in the Qaidam Basin in western China is highly sensitive to climate change. The GRACE mascon products provide variations of TWS anomalies (TWSAs), greatly facilitating the exploration of water storage dynamics. However, the main meteorological factors affecting the TWSA [...] Read more.
Terrestrial water storage (TWS) in the Qaidam Basin in western China is highly sensitive to climate change. The GRACE mascon products provide variations of TWS anomalies (TWSAs), greatly facilitating the exploration of water storage dynamics. However, the main meteorological factors affecting the TWSA dynamics in this region need to be comprehensively investigated. In this study, variations in TWSAs over the Qaidam Basin from 2002 to 2024 were analyzed using three GRACE mascon products with CSR, JPL, and GSFC. The groundwater storage anomalies (GWAs) were extracted through GRACE and GLDAS products. The impact of meteorological elements on TWSAs and GWAs was identified. The results showed that the GRACE mascon products showed a significant increasing trend with a rate of 0.51 ± 0.13 mm per month in TWSAs across the entire basin from 2003 to 2016. The groundwater part accounted for the largest proportion and was the main contributor to the increase in TWS for the entire basin. In addition to the dominant role of precipitation, other meteorological elements, particularly air humidity and solar radiation, were also identified as important contributors to TWSA and GWA variations. This study highlighted the climatic effect on water storage variations, which have important implications for local water resource management and ecological conservation under ongoing climate change. Full article
(This article belongs to the Special Issue GRACE Observations for Global Groundwater Storage Analysis)
Show Figures

Figure 1

34 pages, 10060 KiB  
Article
Regional Seismicity of the Northeastern Tibetan Plateau Revealed by Crustal Magnetic Anomalies
by Guoming Gao, Yecheng Li, Guofa Kang, Chunhua Bai and Limin Wen
Appl. Sci. 2025, 15(8), 4331; https://doi.org/10.3390/app15084331 - 14 Apr 2025
Viewed by 488
Abstract
The northeastern Tibetan Plateau (NETP) is located at the front of the northeastward expansion of the Tibetan Plateau and is a tectonically active region with complex faults and intense seismicity. In this study, based on the high-order geomagnetic field model EMM2017, the crustal [...] Read more.
The northeastern Tibetan Plateau (NETP) is located at the front of the northeastward expansion of the Tibetan Plateau and is a tectonically active region with complex faults and intense seismicity. In this study, based on the high-order geomagnetic field model EMM2017, the crustal magnetic anomalies and Curie point depths (CPDs) in the NETP and adjacent areas were investigated. The relationship between the magnetic anomalies, CPDs, and seismic activity was assessed. The results show that strong earthquakes occur mainly in areas where the magnetic anomalies are negative or have a strong-to-weak transition. The CPD is located at 18–42 km. In the NETP, a shallow CPD corresponds to high heat flow. In contrast, in surrounding areas, a deep CPD corresponds to low heat flow. The northeast area from Bayan Har to the Qilian orogenic belt, and the region with a deep CPD in the Qaidam Basin, record the northeastward flow of the Tibetan Plateau. High-magnitude earthquakes are associated with depth changes in the CPD and areas with a shallow CPD. The frequent seismic activity in the NETP can be attributed to the northeastward flow of the Tibetan Plateau caused by a deep heat flux. The results can be used as a reference for the prediction of strong regional earthquakes. Full article
Show Figures

Figure 1

22 pages, 4038 KiB  
Article
Available Nitrogen as the Determinant of Variability in Soil Microbial Communities Throughout Lycium chinense Growth Zones in the Qaidam Basin, Qinghai, China
by Qianqian Su, Jie Li, Jingui Wang, Gang Li, Yang Sun, Xiaoqin Liu, Lan Luo, Xinrui Wang and Guilong Zhang
Agriculture 2025, 15(5), 496; https://doi.org/10.3390/agriculture15050496 - 25 Feb 2025
Viewed by 600
Abstract
Understanding the compositional and functional dynamics of soil microbial communities is crucial for optimizing soil fertility and promoting agricultural sustainability. In this study, the spatial variability of soil properties and microbial communities was investigated across four Lycium chinense growing regions (Golmud, Dengle, Delingha [...] Read more.
Understanding the compositional and functional dynamics of soil microbial communities is crucial for optimizing soil fertility and promoting agricultural sustainability. In this study, the spatial variability of soil properties and microbial communities was investigated across four Lycium chinense growing regions (Golmud, Dengle, Delingha and Ulan) around Qaidam Basin in China, aiming to explore their relationships and implications for soil management. Soil samples were collected from four Lycium chinense growing regions around the Qaidam Basin, China, and analyzed for changes in bacterial and fungal communities using high-throughput amplicon sequencing targeting the 16S rRNA gene and ITS region, respectively. The results showed spatial heterogeneity of soil fertility around the Qinghai Basin. The soil organic matter peaked at 17.89 g/kg in WL, compared to a low of 6.72 g/kg in GLMD, while soil nitrate concentrations reached a maximum of 188.91 mg/kg in WL versus 47.48 mg/kg in GLMD. The soil nitrate and ammonium concentrations emerged as a key factor influencing the β-diversity of microbial communities, despite having no significant effect on α-diversity. Through network analysis and Z-P plots, 53 keystone microbial taxa such as Truepera, Metarhizium, and Gemmatimonas were identified, which were closely associated with nitrogen fixation, nitrification, and denitrification, suggesting essential roles in nitrogen cycling and ecosystem stability. Furthermore, the nutrient-rich eastern regions had more complex microbial co-occurrence networks and a greater abundance of keystone microbial species compared to the nutrient-poor western regions. In conclusion, this study offers insights into soil management to enhance soil health and promote sustainable agricultural production in high-altitude areas. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop