Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = pyrolysis kinetics analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 2455 KiB  
Article
Impact of Glycerol and Heating Rate on the Thermal Decomposition of PVA Films
by Ganna Kovtun and Teresa Cuberes
Polymers 2025, 17(15), 2095; https://doi.org/10.3390/polym17152095 - 30 Jul 2025
Viewed by 117
Abstract
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol [...] Read more.
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol films in air, deconvolution of the differential thermogravimetry (DTG) curves during the main degradation stage revealed distinct peaks attributable to the degradation of glycerol, PVA/glycerol complexes, and PVA itself. Isoconversional methods showed that, for pure PVA in air, the apparent activation energy (Ea) increased with conversion, suggesting the simultaneous occurrence of multiple degradation mechanisms, including oxidative reactions, whose contribution changes over the course of the degradation process. In contrast, under an inert atmosphere, Ea remained nearly constant, consistent with degradation proceeding through a single dominant mechanism, or through multiple steps with similar kinetic parameters. For glycerol-plasticized films in air, Ea exhibited reduced dependence on conversion compared with that of pure PVA in air, with values similar to those of pure PVA under inert conditions. These results indicate that glycerol influences the oxidative degradation pathways in PVA films. These findings are relevant to high-temperature processing of PVA-based materials and to the design of thermal treatments—such as sterilization or pyrolysis—where control over degradation mechanisms is essential. Full article
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 240
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

30 pages, 12104 KiB  
Article
Efficacy, Kinetics, and Mechanism of Tetracycline Degradation in Water by O3/PMS/FeMoBC Process
by Xuemei Li, Qingpo Li, Xinglin Chen, Bojiao Yan, Shengnan Li, Huan Deng and Hai Lu
Nanomaterials 2025, 15(14), 1108; https://doi.org/10.3390/nano15141108 - 17 Jul 2025
Viewed by 336
Abstract
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, [...] Read more.
This study investigated the degradation efficacy, kinetics, and mechanism of the ozone (O3) process and two enhanced O3 processes (O3/peroxymonosulfate (O3/PMS) and O3/peroxymonosulfate/iron molybdates/biochar composite (O3/PMS/FeMoBC)), especially the O3/PMS/FeMoBC process, for the degradation of tetracycline (TC) in water. An FeMoBC sample was synthesized by the impregnation–pyrolysis method. The XRD results showed that the material loaded on BC was an iron molybdates composite, in which Fe2Mo3O8 and FeMoO4 accounted for 26.3% and 73.7% of the composite, respectively. The experiments showed that, for the O3/PMS/FeMoBC process, the optimum conditions were obtained at pH 6.8 ± 0.1, an initial concentration of TC of 0.03 mM, an FeMoBC dosage set at 200 mg/L, a gaseous O3 concentration set at 3.6 mg/L, and a PMS concentration set at 30 μM. Under these reaction conditions, the degradation rate of TC in 8 min and 14 min reached 94.3% and 98.6%, respectively, and the TC could be reduced below the detection limit (10 μg/L) after 20 min of reaction. After recycling for five times, the degradation rate of TC could still reach about 40%. The introduction of FeMoBC into the O3/PMS system significantly improved the TC degradation efficacy and resistance to inorganic anion interference. Meanwhile, it enhanced the generation of hydroxyl radicals (OH) and sulfate radicals (SO4•−), thus improving the oxidizing efficiency of TC in water. Material characterization analysis showed that FeMoBC has a well-developed porous structure and abundant active sites, which is beneficial for the degradation of pollutants. The reaction mechanism of the O3/PMS/FeMoBC system was speculated by the EPR technique and quenching experiments. The results showed that FeMoBC efficiently catalyzed the O3/PMS process to generate a variety of reactive oxygen species, leading to the efficient degradation of TC. There are four active oxidants in O3/PMS/FeMoBC system, namely OH, SO4•−, 1O2, and •O2. The order of their contribution importance was OH, 1O2, SO4•−, and •O2. This study provides an effective technological pathway for the removal of refractory organic matter in the aquatic environment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

18 pages, 2162 KiB  
Article
Simultaneous Decontamination for Ammonia Nitrogen and Phosphate Efficiently by Crystal Morphology MgO-Coated Functional Biochar Derived from Sludge and Sunflower Stalk
by Zhiwei Li, Jingxin Huang, Weizhen Zhang, Hao Yu and Yin Wang
Toxics 2025, 13(7), 577; https://doi.org/10.3390/toxics13070577 - 9 Jul 2025
Viewed by 360
Abstract
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed [...] Read more.
Eutrophication driven by nitrogen and phosphorus discharge remains a critical global environmental challenge. This study developed a sustainable strategy for synergistic nutrient removal and recovery by fabricating MgO-coated biochar (Mg-MBC600) through co-pyrolysis of municipal sludge and sunflower stalk (300–700 °C). Systematic investigations revealed temperature-dependent adsorption performance, with optimal nutrient removal achieved at 600 °C pyrolysis. The Mg-MBC600 composite exhibited enhanced physicochemical properties, including a specific surface area of 156.08 m2/g and pore volume of 0.1829 cm3/g, attributable to magnesium-induced structural modifications. Advanced characterization confirmed the homogeneous dispersion of MgO nanoparticles (~50 nm) across carbon matrices, forming active sites for chemisorption via electron-sharing interactions. The maximum adsorption capacities of Mg-MBC600 for nitrogen and phosphorus reached 84.92 mg/L and 182.27 mg/L, respectively. Adsorption kinetics adhered to the pseudo-second-order model, indicating rate-limiting chemical bonding mechanisms. Equilibrium studies demonstrated hybrid monolayer–multilayer adsorption. Solution pH exerted dual-phase control: acidic conditions (pH 3–5) favored phosphate removal through Mg3(PO4)2 precipitation, while neutral–alkaline conditions (pH 7–8) promoted NH4+ adsorption via MgNH4PO4 crystallization. XPS analysis verified that MgO-mediated chemical precipitation and surface complexation dominated nutrient immobilization. This approach establishes a circular economy framework by converting waste biomass into multifunctional adsorbents, simultaneously addressing sludge management challenges and enabling eco-friendly wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Study of Waste Management: Life Cycle Assessment)
Show Figures

Figure 1

29 pages, 5081 KiB  
Article
Production, Characterization, and Application of KOH-Activated Biochar from Rice Straw for Azo Dye Adsorption
by Megananda Eka Wahyu, Damayanti Damayanti and Ho Shing Wu
Biomass 2025, 5(3), 40; https://doi.org/10.3390/biomass5030040 - 1 Jul 2025
Viewed by 409
Abstract
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using [...] Read more.
This study explored the production and activation of biochar from rice straw residue for dye adsorption applications. Rice straw, a widely available but underutilized biomass, was processed to isolate lignin and generate biochar through pyrolysis at 450 °C and 550 °C. Activation using chemical agents (e.g., KOH and NaOH) was performed to enhance surface area and porosity. Among the tested conditions, KOH activation at a char-to-agent ratio of 1:3 produced activated carbon at 800 °C with the highest BET surface area (835.2 m2/g), and high fixed carbon (44.4%) after HCl washing. Thermogravimetric analysis was used to investigate pyrolysis kinetics, with activation energies determined using the Kissinger, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose models. The brown solid showed a higher activation energy (264 kJ/mol) compared to isolated lignin (194 kJ/mol), indicating that more energy is required for decomposition. The AC was evaluated for the adsorption of methylene blue (MB) and methyl orange (MO) from aqueous solutions. Both dyes followed the Langmuir isotherm model, indicating that monolayer adsorption occurred. The maximum adsorption capacities reached 222 mg/g for MB and 244 mg/g for MO at 303 K, with higher values at elevated temperatures. Adsorption followed a pseudo-second-order kinetic model and was governed by a physisorption mechanism, as supported by thermodynamic analysis (ΔH < 20 kJ/mol and Ea < 40 kJ/mol). These findings demonstrate that KOH-activated biochar from rice straw residue is a high-performance, low-cost adsorbent for dye removal, contributing to sustainable biomass utilization and wastewater treatment. Full article
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 454
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Synthesis and Application of FeMg-Modified Hydrochar for Efficient Removal of Lead Ions from Aqueous Solution
by Jelena Petrović, Marija Koprivica, Marija Ercegović, Marija Simić, Jelena Dimitrijević, Mladen Bugarčić and Snežana Trifunović
Processes 2025, 13(7), 2060; https://doi.org/10.3390/pr13072060 - 29 Jun 2025
Viewed by 311
Abstract
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent [...] Read more.
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent pyrolysis at 300 °C to obtain Fe/Mg-pyro-hydrochar (FeMg-PHC). The material’s structural and morphological changes after Pb2+ adsorption were examined using FTIR. FTIR revealed chemisorption and ion exchange as key mechanisms, shown by decreased hydroxyl, carbonyl, and metal–oxygen peaks after Pb2+ adsorption. Adsorption tests under varying pH, contact time, and initial Pb2+ concentrations revealed optimal removal at pH 5. Kinetic modeling indicated that the process follows a pseudo-second-order model, suggesting chemisorption as the dominant mechanism. Isotherm analysis showed that the Sips model best describes the equilibrium, with a maximum theoretical adsorption capacity of 157.24 mg/g. Overall, the simple two-step synthesis—HTC followed by pyrolysis—combined with metal doping yields a highly effective and sustainable adsorbent for Pb2+ ion removal from wastewater. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 8657 KiB  
Article
Synergistic Enhancement of Rhodamine B Adsorption by Coffee Shell Biochar Through High-Temperature Pyrolysis and Water Washing
by Xurundong Kan, Yao Suo, Bingfei Shi, Yan Zheng, Zaiqiong Liu, Wenhui Ma, Xianghong Li and Jianqiang Zhang
Molecules 2025, 30(13), 2769; https://doi.org/10.3390/molecules30132769 - 27 Jun 2025
Viewed by 407
Abstract
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their [...] Read more.
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their potential for removing Rhodamine B (RhB) from aqueous solution. Structural and surface analyses indicated that a higher pyrolysis temperature enhanced pore development and aromaticity, whereas water washing effectively removed inorganic ash, thereby exposing additional active sites. Among all samples, water-washed biochar pyrolyzed at 700 °C (WCB700) exhibited the highest surface area (273.6 m2/g) and adsorption capacity (193.5 mg/g). The adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption, and the equilibrium data fit the Langmuir model, suggesting monolayer coverage. Mechanism analysis highlighted the roles of π–π stacking, hydrogen bonding, electrostatic interaction, and pore filling. Additionally, WCB700 retained more than 85% of its original capacity after five regeneration cycles, demonstrating excellent stability and reusability. This study presents an economical approach to valorizing coffee waste as well as provides mechanistic insights into optimizing biochar surface chemistry for enhanced dye removal. These findings support the application of engineered biochar in scalable and sustainable wastewater treatment technologies. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

16 pages, 6652 KiB  
Article
Combustion Characteristics of Moxa Floss Under Nitrogen Atmosphere
by Yukun Feng, Yifan Wu, Pengzhou Du, Yang Ma and Zhaoyi Zhuang
Fuels 2025, 6(2), 48; https://doi.org/10.3390/fuels6020048 - 13 Jun 2025
Viewed by 447
Abstract
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier [...] Read more.
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) of their carbonized products in nitrogen environment. Through TG-DTG analysis, the thermal degradation patterns of the twelve moxa floss samples under nitrogen atmosphere were systematically examined to elucidate their pyrolysis behaviors, with particular emphasis on the influence of pyrolysis temperature and leaf-to-floss ratio on combustion characteristics. The pyrolysis process occurred in three distinct stages, with the most significant mass loss (120–430 °C) observed in the second stage. Higher leaf–fiber ratios and longer storage years were found to promote more complete pyrolysis. Kinetic analysis was performed to fit thermogravimetric data, establishing a reaction kinetic model for moxa pyrolysis. Results indicated that samples with higher leaf–fiber ratios required greater activation energy, while storage duration showed negligible impact. Notably, Nanyang moxa demanded higher pyrolysis energy than Qichun moxa. FTIR analysis identified the primary components of carbonized products as water, ester compounds, flavonoids, and cellulose. These findings suggest that moxa carbonization products retain chemical reactivity, demonstrating potential applications in adsorption and catalysis processes. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

19 pages, 6947 KiB  
Article
Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD
by Xiaotong Zhang, Yuanbo Zheng, Qian Zhang, Kai Wu, Qinwei Yu and Jianming Yang
Polymers 2025, 17(12), 1593; https://doi.org/10.3390/polym17121593 - 6 Jun 2025
Viewed by 736
Abstract
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs [...] Read more.
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 1013 s−1 for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H2, CO, H2O, CH3N, C2H2, and C2H4. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H2. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 1697 KiB  
Article
Removal of Hexavalent Chromium from Wastewater Originating from Spent Bricks by Modified Biochars Derived from Honeybee Biomass
by Rafał Olchowski, Kinga Morlo, Joanna Dobrzyńska and Ryszard Dobrowolski
Molecules 2025, 30(11), 2421; https://doi.org/10.3390/molecules30112421 - 31 May 2025
Viewed by 426
Abstract
The removal of Cr(VI) from wastewater is a crucial task due to its high toxicity. In this study, slumgum-originated biochar materials were obtained by three different methods: high-temperature pyrolysis with H3PO4 or CO2 and the high-temperature treatment of CO [...] Read more.
The removal of Cr(VI) from wastewater is a crucial task due to its high toxicity. In this study, slumgum-originated biochar materials were obtained by three different methods: high-temperature pyrolysis with H3PO4 or CO2 and the high-temperature treatment of CO2-activated slumgum-originated biochar in an Ar atmosphere. The obtained materials were subjected to physicochemical characterization (nitrogen adsorption/desorption isotherms, CHN elemental analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy) and tested for their adsorption properties towards Cr(VI) ions. The solution pH, contact time, and effects of the Cr(VI) concentration on Cr(VI) adsorption onto biochar materials were studied. The kinetics and isotherm experimental data were best fitted to the Elovich (R2 = 0.848) and Freundlich (R2 = 0.965) theoretical models for H3PO4-modified biochar. The highest adsorption capacity (45.0 mg g−1) for Cr(VI) was obtained for biochar modified with H3PO4. It was stated that the relatively fast rate of Cr(VI) adsorption onto this biochar (equilibrium reached within 120 min) is related to its mesoporous structure. The mechanism of Cr(VI) adsorption onto H3PO4-modified biochar was studied in detail. The obtained biochar was successfully applied for efficient Cr(VI) removal from wastewater originating from spent bricks with a low biochar dosage (4.0 g L−1). Full article
Show Figures

Graphical abstract

34 pages, 3535 KiB  
Article
Effect of Particle Size and Heating Rate on Formation of Polycyclic Aromatic Hydrocarbons During Corn Cob Biomass Pyrolysis
by Teka Tesfaye Mengesha, Venkata Ramayya Ancha, Abebe Nigussie, Million Merid Afessa and Ramchandra Bhandari
Sustainability 2025, 17(11), 4962; https://doi.org/10.3390/su17114962 - 28 May 2025
Viewed by 602
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) in biochar, as opposed to those in pyrolysis liquid products that exit the reactor without adhering to the solid product, are particularly undesirable due to their environmental persistence and potential toxicity. When applied as a soil amendment, biochar containing PAHs poses risks to soil ecosystems and human health. Their formation during pyrolysis presents a significant challenge in biochar production, requiring the optimization of pyrolysis process parameters to minimize PAH content for safe soil amendment applications. This study explored the effects of particle size and heating rate on PAH formation during corn cob pyrolysis. Thermogravimetric analysis (TGA) was employed to heat corn cob powder of varying sample masses from ambient temperature to 550 °C at heating rates of 5, 10, and 20 °C/min. Simultaneously, the Chemical Reaction Engineering and Chemical Kinetics (CRECK) model simulated the pyrolysis of spherical corn cob biomass particles with a radius ranging from 1 to 40 mm, using feedstock chemical compositions as inputs. Tar species generated from the solid biomass model were introduced into a gas-phase batch reactor model to evaluate PAH formation. The results demonstrate that the particle size and heating rate significantly affect PAH formation, shedding light on the complex dynamics of biomass pyrolysis. A single spherical particle with a radius close to 1 mm approximates ideal TGA conditions by minimizing temperature and mass transfer limitations. The CRECK model suggested that a particle radius of 5–10 mm, combined with a low heating rate of 5 °C/min, optimally reduces PAH formation. Future research should focus on using thermogravimetric analysis coupled with gas chromatography–mass spectrometry (TGA-GC-MS) to comprehensively quantify PAH species formation. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

15 pages, 2034 KiB  
Article
Synthesis Gas Production from Co-Pyrolysis of Straw Biomass and Polyethylene Agricultural Film and Kinetic Analysis
by Zhen Zhao and Lei Wang
Catalysts 2025, 15(6), 517; https://doi.org/10.3390/catal15060517 - 23 May 2025
Viewed by 471
Abstract
The co-pyrolysis of straw biomass and polyethylene film at different mass ratios was carried out in a small fixed-bed reactor with CaO as catalyst. The resulting synthesis gas production, liquid and solid products, and pyrolysis kinetics were studied by gas chromatography and thermogravimetric [...] Read more.
The co-pyrolysis of straw biomass and polyethylene film at different mass ratios was carried out in a small fixed-bed reactor with CaO as catalyst. The resulting synthesis gas production, liquid and solid products, and pyrolysis kinetics were studied by gas chromatography and thermogravimetric analysis. The results showed that with increasing proportion of plastic in the feedstock, co-pyrolysis had a synergistic effect on the CH4 yield, reaching as high as 3.124 mol CH4/kg feedstock, while the H2 and CO yields continuously decreased. Comparing the experimental and theoretical yields of synthesis gas, the trends for CO and CH4 were consistent, but those of H2 and CO2 differed widely. Examining the influence of element mass ratios in the feedstock on the synthesis gas composition, it was found that the biomass and plastics affected the formation of oxygen- and hydrogen-containing gases, respectively. The activation energy and pre-exponential factor showed increasing and decreasing trends, respectively, when the feedstock proportions and heating rate changed. Fitted linear correlation coefficients for all pyrolysis stages exceeded 0.99. Full article
(This article belongs to the Collection Catalytic Conversion of Biomass to Bioenergy)
Show Figures

Figure 1

12 pages, 4364 KiB  
Article
Synergistic Nitrogen-Doping and Defect Engineering in Hard Carbon: Unlocking Ultrahigh Rate Capability and Long-Cycling Stability for Sodium-Ion Battery Anodes
by Na Li, Hongpeng Li and Haibo Huang
Materials 2025, 18(10), 2397; https://doi.org/10.3390/ma18102397 - 21 May 2025
Viewed by 582
Abstract
Hard carbon (HC) anodes for sodium-ion batteries (SIBs) face challenges such as sluggish Na⁺ diffusion kinetics and structural instability. Herein, we propose a synergistic nitrogen-doping and defect-engineering strategy to unlock ultrahigh-rate capability and long-term cyclability in biomass-derived hard carbon. A scalable synthesis route [...] Read more.
Hard carbon (HC) anodes for sodium-ion batteries (SIBs) face challenges such as sluggish Na⁺ diffusion kinetics and structural instability. Herein, we propose a synergistic nitrogen-doping and defect-engineering strategy to unlock ultrahigh-rate capability and long-term cyclability in biomass-derived hard carbon. A scalable synthesis route is developed via hydrothermal carbonization of corn stalk, followed by controlled pyrolysis with urea, achieving uniform nitrogen incorporation into the carbon matrix. Comprehensive characterization reveals that nitrogen doping introduces tailored defects, expands interlayer spacing, and optimizes surface pseudocapacitance. The resultant N-doped hard carbon (NC-2) delivers a remarkable reversible capacity of 259 mAh g−1 at 0.1 A g−1 with 91% retention after 100 cycles. And analysis demonstrates a dual Na⁺ storage mechanism combining surface-driven pseudocapacitive adsorption (89% contribution at 1.0 mV s−1) and diffusion-controlled intercalation facilitated by reduced charge transfer resistance (56.9 Ω) and enhanced ionic pathways. Notably, NC-2 exhibits exceptional rate performance (124.0 mAh g−1 at 1.0 A g−1) and sustains 95% capacity retention over 500 cycles at 1.0 A g−1. This work establishes a universal defect-engineering paradigm for carbonaceous materials, offering fundamental insights into structure–property correlations and paving the way for sustainable, high-performance SIB anodes. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Figure 1

Back to TopTop