Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (101)

Search Parameters:
Keywords = pyran derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2917 KB  
Article
Volatile Organic Compound Profiling of Traditional Multi-Herbal Prescriptions for Chemical Differentiation and Ethnopharmacological Insights
by Sumin Seo, Unyong Kim, Jiyu Kim, Chohee Jeong and Sang Beom Han
Separations 2026, 13(1), 8; https://doi.org/10.3390/separations13010008 - 24 Dec 2025
Viewed by 328
Abstract
Traditional herbal prescriptions composed of multiple botanicals remain central to ethnopharmacological practice; however, their chemical basis and classification remain poorly understood. Non-volatile compound analyses of herbal medicines are well established, but comparative studies focusing on volatile organic compounds (VOCs) across multi-herbal prescriptions are [...] Read more.
Traditional herbal prescriptions composed of multiple botanicals remain central to ethnopharmacological practice; however, their chemical basis and classification remain poorly understood. Non-volatile compound analyses of herbal medicines are well established, but comparative studies focusing on volatile organic compounds (VOCs) across multi-herbal prescriptions are scarce. To enhance the chemical understanding of traditional formulations and clarify prescription-level characteristics, this study applied headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME–GC–MS) to characterize VOC-based chemical signatures in 30 prescriptions composed of 76 herbal ingredients. Multivariate analyses such as principal component analysis, partial least squares discriminant analysis (PLS-DA), and orthogonal PLS-DA (OPLS-DA) enabled systematic differentiation of various prescriptions and identified 25 discriminant VOCs, 9 of which were common among multiple therapeutic categories. These shared compounds, such as 5-hydroxymethylfurfural (5-HMF) and 4H-pyran-4-one derivatives, reflect recurrent chemical patterns associated with broad-spectrum applications, whereas category-specific volatiles (including isopsoralen, senkyunolide, and fenipentol) delineated therapeutic boundaries, even among prescriptions with overlapping botanicals. Capturing both shared and distinct volatile signatures clarified ambiguous boundaries between categories such as cold, inflammation, or diabetes versus kidney disorder prescriptions, thereby linking chemical patterns with ethnopharmacological indications. Together, these findings highlight VOC profiling as a valuable diagnostic and interpretive tool that bridges traditional categorization systems with modern chemical analysis, offering a robust framework for future pharmacological and mechanistic investigations. Such an approach not only substantiates traditional categorization but also provides a practical basis for quality control and pharmacological evaluation of multi-herbal formulations. Full article
Show Figures

Figure 1

24 pages, 24946 KB  
Article
Hybrid Dihydropyrimidinones Targeting AKT Signaling: Antitumor Activity in Hormone-Dependent 2D and 3D Cancer Models
by Amanda Helena Tejada, Samuel José Santos, Gabriel Tofolli Lobo, Abu-Bakr Adetayo Ariwoola, Aryel José Alves Bezerra, Giulia Rodrigues Stringhetta, Izabela Natalia Faria Gomes, Luciane Sussuchi da Silva, Rui Manuel V. Reis, Daniel D’Almeida Preto, Dennis Russowsky and Renato José Silva-Oliveira
Pharmaceutics 2025, 17(11), 1470; https://doi.org/10.3390/pharmaceutics17111470 - 14 Nov 2025
Viewed by 732
Abstract
Background/Objectives: The development of effective oncologic therapies with fewer adverse effects is often limited by the intrinsic and acquired resistance of tumor cells. Hybrid molecules, rationally designed to combine different pharmacophores, represent a promising strategy by providing synergistic effects, dose reduction, and a [...] Read more.
Background/Objectives: The development of effective oncologic therapies with fewer adverse effects is often limited by the intrinsic and acquired resistance of tumor cells. Hybrid molecules, rationally designed to combine different pharmacophores, represent a promising strategy by providing synergistic effects, dose reduction, and a lower risk of resistance. In this study, the antitumor potential and mechanisms of action of 22 novel hybrid compounds derived from xanthene and pyran scaffolds (SJ022–SJ103) were investigated. The hybrids were initially evaluated through in vitro screening in four breast, three ovarian, and two prostate cancer cell lines, followed by the selection of T-47D, OVCAR-3, and LNCaP cells for detailed assays assessing cytotoxicity, apoptosis, cell cycle distribution, DNA damage, caspase-3/7 activity, morphology, and PI3K/AKT/mTOR pathway modulation. Methods: Cytotoxicity assays were performed in the selected cell lines, while mechanistic studies included apoptosis and cell cycle analysis by flow cytometry, γH2AX detection, Western blotting for PI3K/AKT/mTOR pathway proteins, and 3D spheroid assays. Combinatorial effects with hormone therapies (tamoxifen, fulvestrant, and letrozole) and the AKT inhibitor MK2206 were evaluated. AKT silencing by esiRNA and molecular docking was performed to confirm target engagement. Results: SJ028 demonstrated broad activity across all tested cell lines, whereas SJ064 and SJ078 exhibited higher selectivity. Treatments induced apoptosis, S/G2-M arrest, and DNA damage, accompanied by decreased phospho-AKT levels and stable PI3K and mTOR expression. In 3D models, the hybrids increased caspase-3/7 activity and necrotic core expansion. Co-administration with hormone therapies resulted in synergistic effects in breast and ovarian cancer cells, reducing IC50 values by more than 50% in both parental and resistant models, while combinations with MK2206 were antagonistic across all tumor subtypes. AKT silencing abrogated cytotoxicity, and docking confirmed SJ028 binding to AKT. Conclusions: Xanthene- and pyran-based hybrids—particularly SJ028, SJ064, and SJ078—showed strong antitumor activity through apoptosis induction, cell cycle arrest, and PI3K/AKT pathway modulation. Their preserved efficacy in resistant models and synergistic interactions with hormone therapies contrasted with the antagonism observed with AKT inhibition, highlighting their potential as promising candidates for the treatment of hormone-responsive and -resistant cancers. Full article
(This article belongs to the Special Issue Innovative Drug Delivery Strategies for Targeted Cancer Immunotherapy)
Show Figures

Figure 1

14 pages, 1567 KB  
Article
Determining the Benzo[a]pyrene Degradation, Tolerance, and Adsorption Mechanisms of Kefir-Derived Bacterium Bacillus mojavensis TC-5
by Zhixian Duo, Haohao Li, Zeyu Wang, Zhiwei Zhang, Zhuonan Yang, Aofei Jin, Minwei Zhang, Rui Zhang and Yanan Qin
Foods 2025, 14(15), 2727; https://doi.org/10.3390/foods14152727 - 4 Aug 2025
Viewed by 901
Abstract
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of [...] Read more.
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of such strains in BaP degradation. Bacillus mojavensis TC-5, a strain that degrades BaP, was isolated from kefir grains. Surprisingly, 12 genes encoding dehydrogenases, synthases, and oxygenases, including betB, fabHB, qdoI, cdoA, and bioI, which are related to BaP degradation, were up-regulated by 2.01-fold to 4.52-fold in TC-5. Two potential degradation pathways were deduced. In pathway I, dioxygenase, betaine aldehyde dehydrogenase, and beta-ketoacyl-ACP synthase III FabHB act sequentially on BaP to form 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl via the phthalic acid pathway. In the presence of the cytochrome P450 enzyme, BaP progressively mediates ring cleavage via the anthracene pathway, eventually forming 3-methyl-5-propylnonane in pathway II. Notably, TC-5 achieved an impressive BaP removal efficiency of up to 63.94%, with a degradation efficiency of 32.89%. These results suggest that TC-5 has significant potential for application in addressing food-borne BaP contamination. Moreover, our findings expand the application possibilities of Xinjiang fermented milk products and add to the available green strategies for BaP degradation in food systems. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

11 pages, 548 KB  
Article
Synthesis of Heterocyclic Compounds with a Cineole Fragment in Reactions of α-Pinene-Derived Diol and Monoterpenoid Aldehydes
by Oksana S. Patrusheva, Irina V. Ilyina, Nariman F. Salakhutdinov, Stela T. Dragomanova and Konstantin P. Volcho
Compounds 2025, 5(3), 25; https://doi.org/10.3390/compounds5030025 - 7 Jul 2025
Cited by 1 | Viewed by 980
Abstract
Monoterpenes and their derivatives are important starting compounds in the design of new biologically active substances. In particular, cineole, isolated from eucalyptus essential oil, exhibits a wide range of biological activities. Here, the synthesis of new heterocyclic compounds containing a cineole fragment by [...] Read more.
Monoterpenes and their derivatives are important starting compounds in the design of new biologically active substances. In particular, cineole, isolated from eucalyptus essential oil, exhibits a wide range of biological activities. Here, the synthesis of new heterocyclic compounds containing a cineole fragment by the acid-catalyzed condensation of α-pinene-derived 8-hydroxy-6-hydroxymethyllimonene with monoterpene aldehydes was carried out for the first time. The reactions of 8-hydroxy-6-hydroxymethyllimonene with cuminaldehyde, perillylaldehyde, myrtenal, citral, and geranial were studied in the presence of heterogeneous K10 clay or Lewis acid BF3·Et2O. The main products of these reactions were compounds with the methanopyrano[4,3-b]pyran scaffold having a 1,8-cineole fragment. As a result of this work, five new compounds with the methanopyrano[4,3-b]pyran scaffold were synthesized. The use of BF3·Et2O led to an increase in the yields of target products, compared with the results obtained on K10 clay. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

16 pages, 6103 KB  
Article
Volatile Flavor of Tricholoma matsutake from the Different Regions of China by Using GC×GC-TOF MS
by Yunli Feng, Shaoxiong Liu, Yuan Fang, Jianying Li, Ming Ma, Zhenfu Yang, Lue Shang, Xiang Guo, Rong Hua and Dafeng Sun
Foods 2025, 14(10), 1824; https://doi.org/10.3390/foods14101824 - 21 May 2025
Cited by 2 | Viewed by 1469
Abstract
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate [...] Read more.
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate that a total of 2730 kinds of VOCs were identified from the fruiting bodies of six T. matsutake samples. The primary types of volatile organic compounds identified were 349 alcohols, 92 aldehydes, 146 carboxylic_acids, 311 esters, 742 organoheterocyclic compounds, 630 hydrocarbons, 381 ketones, 51 organic acids, and 28 derivatives and organosulfur compounds. Furthermore, PCA and PLS-DA analysis from the GC×GC-ToF-MS showed that samples from different regions could be distinguished by their VOCs. Network analysis revealed that 33 aroma compounds were identified as markers for distinguishing the samples from the six regions. The sensory attributes sweet, fruity, green, waxy, and floral were found to be more significant to the flavor profile of T. matsutake. 1-Nonanol, 2-Nonanone, Nonanoic acid, ethyl ester, 1-Undecanol, 2-Undecanone, Octanoic acid, ethyl ester, 2H-Pyran, and tetrahy-dro-4-methyl-2-(2-methyl-1-propenyl)- primarily contribute to the differences in the aroma characteristics among six T. matsutake samples. The results also provide a theoretical and practical foundation for the flavor compounds of these precious edible fungi in different regions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

36 pages, 6689 KB  
Article
In Silico and In Vitro Analyses of Strawberry-Derived Extracts in Relation to Key Compounds’ Metabolic and Anti-Tumor Effects
by Lucia Camelia Pirvu, Amalia Stefaniu, Sultana Nita, Nicoleta Radu and Georgeta Neagu
Int. J. Mol. Sci. 2025, 26(8), 3492; https://doi.org/10.3390/ijms26083492 - 8 Apr 2025
Viewed by 1561
Abstract
Plant extracts contain many small molecules that are less investigated. The present paper aims to study in silico physical-chemical, pharmacokinetic, medicinal chemistry and lead/drug-likeness properties and the ability to interfere with the activity of P-glycoprotein (P-gp) transporter and cytochrome P450 (CYP) oxidase system [...] Read more.
Plant extracts contain many small molecules that are less investigated. The present paper aims to study in silico physical-chemical, pharmacokinetic, medicinal chemistry and lead/drug-likeness properties and the ability to interfere with the activity of P-glycoprotein (P-gp) transporter and cytochrome P450 (CYP) oxidase system in humans of phloridzin, phloretin, 4-methylchalcone metabolic series alongside the top three compounds found in the ethanolic extract from strawberries (S), namely 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-pyrrolidinone 5-(cyclohexylmethyl) and hexadecanoic acid. The phloridzin derivatives also were studied for their inhibitory potential upon Bcl-2, TNKS1 and COX-2 molecular targets. In vitro, Caco-2 studies analyzed the cytoprotective and anti-proliferative activity of S and the three phloridzin derivatives (pure compounds) in comparison with their combination 1:1 (GAE/pure compound, w/w), in the range 1 to 50 µg active compounds per test sample. Altogether, it was concluded that phloretin (Phl) can be used alone or in combination with S to support intestinal cell health in humans. Phloridzin (Phd) and phloridzin combined with S were proven ineffective. 4-methylchalcone (4-MeCh) combined with S indicated no advantages, while the pure compound exhibited augmented inhibitory effects, becoming a candidate for combinations with anticancer drugs. Overall, in silico studies revealed possible limitations in the practical use of phloridzin derivatives due to their potential to interfere with the activity of several major CYP enzymes. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

21 pages, 3262 KB  
Article
Synthesis, Anti-Inflammatory, and Molecular Docking Studies of New Heterocyclic Derivatives Comprising Pyrazole, Pyridine, and/or Pyran Moieties
by Mohamed A. M. Abdel Reheim, Hend S. Abdel Rady, Omnia A. Mohamed, Abdelfattah Hassan, Ibrahim S. Abdel Hafiz, Hala M. Reffat, Fahmy Gad Elsaid, Mamdouh Eldesoqui, Dalal Sulaiman Alshaya, Abdelnaser A. Badawy, Eman Fayad and Aboubakr H. Abdelmonsef
Pharmaceuticals 2025, 18(3), 335; https://doi.org/10.3390/ph18030335 - 26 Feb 2025
Cited by 2 | Viewed by 3290
Abstract
Introduction: Inhibiting cyclooxygenase-2 (COX-2) is a potential strategy in inflammation therapy. Thus, developing COX-2 inhibitors plays a pivotal role in efficient inflammation treatment. This study discloses the synthesis of new heterocyclic compounds incorporating pyridine, pyran, and/or pyrazole moieties as COX-2 inhibitors. Methods: [...] Read more.
Introduction: Inhibiting cyclooxygenase-2 (COX-2) is a potential strategy in inflammation therapy. Thus, developing COX-2 inhibitors plays a pivotal role in efficient inflammation treatment. This study discloses the synthesis of new heterocyclic compounds incorporating pyridine, pyran, and/or pyrazole moieties as COX-2 inhibitors. Methods: In this study, the Claisen–Schmidt reaction of 1-(5-hydroxy-1,3-diphenyl-1H-pyrazol-4-yl)ethan-1-one 1 and p-methoxybenzaldehyde in ethanol containing aqueous sodium hydroxide (10%) led to the formation of 1-(5-hydroxy-1,3-diphenyl-1H-pyrazol-4-yl)-3-(4-methoxyphenyl)prop-2-en-1-one) 2. The latter compound was allowed to react as a key precursor with various nucleophiles such as ethyl cyanoacetate, malononitrile, cyclohexanone, ethyl acetoacetate, hydrazine, cyano acid hydrazide, hydrazide, and/or thiosemicarbazide to yield new heterocyclic derivatives comprising pyridine, pyran, and/or pyrazole moieties 315, according to the Michael addition reaction. The newly synthesized compounds were depicted using spectroscopic techniques such as IR, 1H-NMR, 13C-NMR, and MS. Moreover, their anti-inflammatory efficiency was in vitro evaluated by means of protein denaturation inhibition and cell membrane protection assay. Results: The results of 2−ΔΔct values of COX-2 expression for compounds 6, 11, 12, and 13 were 6.6, 2.9, 25.8, and 10.1, respectively. Therefore, compound 12, followed by 13, 11, and 6, showed potent anti-inflammatory properties by in vitro evaluation. Further, an in silico molecular docking study was performed on the best-docked compounds and reference drug (Diclofenac) to investigate their binding affinities against the active site of the target enzyme. The obtained results from the in silico study aligned with the biological evaluation. Conclusions: The studies open new doors for designing new heterocycles containing pyridine, pyran, and/or pyrazole moieties as potent anti-inflammatory agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 3483 KB  
Article
Non-Steroidal FXR Agonistic Dimeric 2-Methyl-4-(1-glycerol)furan with Lipid-Lowering Activities from Marine-Derived Nocardiopsis sp. ZSN1
by Yongjun Jiang, Zhen Lei, Jiebin Fang, Yanping Wu and Chengpeng Sun
Mar. Drugs 2025, 23(3), 92; https://doi.org/10.3390/md23030092 - 20 Feb 2025
Viewed by 1043
Abstract
Five novel 2-methyl-4-(1-glycerol)furan (MGF) dimers, namely nocardifuran A (1), 13-acetyl-nocardifuran A (2), 15-epi-nocardifuran A (3), nocardifuran B (4), and nocardifuran C (5), were isolated from the Gause liquid fermentation [...] Read more.
Five novel 2-methyl-4-(1-glycerol)furan (MGF) dimers, namely nocardifuran A (1), 13-acetyl-nocardifuran A (2), 15-epi-nocardifuran A (3), nocardifuran B (4), and nocardifuran C (5), were isolated from the Gause liquid fermentation of the marine-derived Nocardiopsis sp. ZSN1. Their structures were elucidated through HRESIMS, 1D and 2D NMR spectroscopic data analysis, and ECD calculations. Compounds 14 were identified as derivatives of MGF with its rearrangement of furan or pyran derivatives, while compound 5 was identified as the derivative of MGF with an indole derivative. These MGF dimers, representing a new structural class, were isolated from a marine microorganism for the first time, thereby enhancing chemical diversity. Screening for farnesoid X receptor (FXR) agonistic activity revealed that MGF dimers could activate FXR. Furthermore, bioactivity evaluations demonstrated that these types of compounds exhibited lipid-lowering activity with lower cytotoxicity in vitro. Consequently, our findings not only contribute to the chemical diversity of marine-derived MGF-type natural products but also offer potential insights into the development of MGF dimers as lead compounds for FXR agonists in the dysregulation of hepatic lipid metabolism. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Graphical abstract

15 pages, 1796 KB  
Article
Rh(III)-Catalyzed Double Annulation of 3-Phenyl-1,2,4-oxadiazoles with 2-Diazo-1,3-diketones: Access to Pyran-Fused Isoquinolines
by Enshen Zhang, Mei Sun and Lvlv Gao
Molecules 2025, 30(1), 149; https://doi.org/10.3390/molecules30010149 - 2 Jan 2025
Cited by 1 | Viewed by 1793
Abstract
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording [...] Read more.
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions. Full article
Show Figures

Graphical abstract

6 pages, 1114 KB  
Proceeding Paper
Synthesis of New O- and S-Containing Polyheteroatomic Systems Based on 3-Substituted Pyran-2-Ones with Lawesson’s Reagent
by Dinara Ch. Kurenkova, Ekaterina M. Arzyamova, Olga A. Mazhukina and Alevtina Yu. Yegorova
Chem. Proc. 2024, 16(1), 18; https://doi.org/10.3390/ecsoc-28-20106 - 9 Dec 2024
Viewed by 1103
Abstract
In recent years, Lawesson’s reagent has been explored for the synthesis of both open-chain P,S-containing derivatives and P,S-heterocyclic systems, with potential biological activity. The character of the interaction between arylmethylene-2H-pyran-2-ones and Lawesson’s reagent depends on the structure and position of the substituent in [...] Read more.
In recent years, Lawesson’s reagent has been explored for the synthesis of both open-chain P,S-containing derivatives and P,S-heterocyclic systems, with potential biological activity. The character of the interaction between arylmethylene-2H-pyran-2-ones and Lawesson’s reagent depends on the structure and position of the substituent in the aromatic ring of the substrate and on the polarity of the reaction medium. Three main pathways were shown to be realized for this group of compounds. In the absence of a substituent in the ring, the reaction proceeds as a classical thionation followed by S-heterocyclization. In the presence of the electron-withdrawing group, the enol form of the substrate is stabilized, which promotes the formation of a new pyran ring or a phosphorus-sulfur-organic compound. Full article
Show Figures

Figure 1

6 pages, 366 KB  
Proceeding Paper
In Silico Studies of Khellin and Related Furochromenes by Modified POM Analysis
by Renata Gašparová
Chem. Proc. 2024, 16(1), 2; https://doi.org/10.3390/ecsoc-28-20203 - 14 Nov 2024
Viewed by 1590
Abstract
POM (Petra/Osiris/Molinspiration) analysis and related in silico tools are well-established methods used to evaluate the potential of molecules to become drug candidates by predicting their biological activity and calculating various physicochemical properties, ADME parameters, or toxicity. Khellin 1 is a well-known component of [...] Read more.
POM (Petra/Osiris/Molinspiration) analysis and related in silico tools are well-established methods used to evaluate the potential of molecules to become drug candidates by predicting their biological activity and calculating various physicochemical properties, ADME parameters, or toxicity. Khellin 1 is a well-known component of the Ammi visnaga (khella) plant used for centuries in folk medicine for the treatment of urinary tract pain associated with kidney stones. Modern medicine has found the importance of khellin in the treatment of psoriasis, angina pectoris, or vitiligo. However, the oral use of khellin is limited by its potential adverse effects, such as dizziness, constipation, headache, itching, or lack of appetite. Many natural or synthetic furopyrrole derivatives have been extensively studied and reported to possess numerous biological effects, including anticancer, anti-inflammatory, or antimicrobial. The present in silico study is aimed at revealing the most promising drug candidates based on favorable pharmacokinetic parameters and toxicological characteristics. A modified POM analysis of sixteen furochromenes was performed using Molinspiration, Osiris, and SwissADME software. Studied structures were selected due to the modifications of the khellin skeleton. Substitution of the furan or pyran ring, modification of one or both methoxy groups, or hydrogenation of one or both heterocyclic rings were included. The results of this preliminary in silico investigation suggest all furopyrroles have good oral bioavailability and a high level of gastrointestinal absorption. The bioactivity score prediction shows their ability to act predominantly as ion channel modulators or enzyme inhibitors. All compounds exhibit a low risk of being irritants; nine of them exhibit a low risk of being mutagenic, tumorigenic, or having reproductive effects. Full article
Show Figures

Figure 1

15 pages, 5602 KB  
Article
Analysis of Different Strains Fermented Douchi by GC×GC-TOFMS and UPLC–Q-TOFMS Omics Analysis
by Liqiang Sui, Sugui Wang, Xin Wang, Lingling Su, Huilong Xu, Wei Xu, Lixia Chen and Hua Li
Foods 2024, 13(21), 3521; https://doi.org/10.3390/foods13213521 - 4 Nov 2024
Cited by 3 | Viewed by 1852
Abstract
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. [...] Read more.
Douchi is a kind of soybean-fermented food in China. To explore the common and differential compounds in different Douchi, Douchi was fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, respectively, and co-fermented by the three strains in this study. The common and characteristic flavor compounds and common and characteristic non-volatile components of different strains of fermented Douchi were explored through GC×GC-TOFMS and UPLC–Q-TOFMS omics analysis. The result suggested that Pyrazines, ketones, and alkenes such as tetramethyl-pyrazine, 2,5-dimethyl pyrazine, furaneol, 2,3-butanedione, gamma-terpinene might contribute to the basic flavor of the Douchi fermented by A. niger, R. arrhizus, and B. circulans. Peptides, amines, and flavonoids, such as N–acetylhistamine, 7,3′,4′–trihydroxyflavone, (3S,8As)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione might contribute to the basic function of the above three Douchi. The common metabolic pathways involved in the fermentation were isoflavonoid biosynthesis, flavonoid biosynthesis, etc. Ketones and esters such as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 3-octanone, 5-methylfurfural and nonanal contributed to the unique flavor, while betaine, oleanolic acid, saikosaponin D and leucine might contribute to the unique function of A. niger fermented Douchi. Alkenes, pyrazine, and ketones such as α-terpinene, ethyl-pyrazine, dihydro-3-methyl-2(3H)-furanone, and linalool might contribute to unique flavor, while cordycepin, 2-Phenylacetamide might contributed to the unique function of R. arrhizus fermented Douchi. The unique flavor of B. circulans fermented Douchi might derived from ketones and esters such as 3-acetyl-2-butanone, 2-tridecanone, propionic acid-2-phenylethyl ester, while vitexin, astragalin, and phenethylamine might contribute to the unique function. Compared with single-strain fermented Douchi, the flavor substances and non-volatile components in multi-strain fermented Douchi were more abundant, such as hexadecanoic acid methyl ester, benzeneacetic acid ethyl ester, 9,12-octadecadienoic acid ethyl ester, nuciferine, and erucamide. It was speculated that there were common and differential substances in Douchi fermented by Aspergillus niger, Rhizopus arrhizus, and Bacillus circulans, which might contribute to the basic and unique flavor and function. Compared with single-strain fermented Douchi, the flavor substances and metabolites in multi-strain fermented Douchi were more abundant. This study provided a reference for the research of flavor and functional substances of Douchi. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

13 pages, 3027 KB  
Article
Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix
by Patricija Paulsone, Julija Pervenecka, Elmars Zarins, Valdis Kokars and Aivars Vembris
Solids 2024, 5(4), 520-532; https://doi.org/10.3390/solids5040035 - 19 Oct 2024
Cited by 1 | Viewed by 2133
Abstract
Organic solid-state lasers are highly promising devices known for their low-cost fabrication processes and compact sizes and the tunability of their emission spectrum. These lasers are in high demand across various industries including biomedicine, sensors, communications, spectroscopy, and military applications. A key requirement [...] Read more.
Organic solid-state lasers are highly promising devices known for their low-cost fabrication processes and compact sizes and the tunability of their emission spectrum. These lasers are in high demand across various industries including biomedicine, sensors, communications, spectroscopy, and military applications. A key requirement for light-emitting materials used in a light-amplifying medium is a low threshold value of the excitation energy of the amplified spontaneous emission (ASE). A newly synthesized non-symmetric red-light-emitting laser dye, Ethyl 2-(2-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-6-tert butyl-4H-pyran-4-ylidene)-2-cyanoacetate (KTB), has shown great promise in meeting this requirement. KTB, with its attached bulky trityloxyethyl groups, has the ability to form amorphous thin films from a solution using a wet-casting method. Recent experiments have demonstrated that KTB exhibits a low ASE threshold value. This study focused on investigating the optical and amplified spontaneous emission properties of KTB in poly(N-vinylcarbazole) (PVK), polysulfone (PSU), and polystyrene (PS) matrices at various concentrations. The results showed that as the concentration of the dye increased, a redshift of the photoluminescence and ASE spectra occurred due to the solid-state solvation effect. The lowest ASE threshold value of 9 µJ/cm2 was achieved with a 20 wt% concentration of KTB in a PVK matrix, making it one of the lowest excitation threshold energies reported to date. Full article
Show Figures

Figure 1

9 pages, 2233 KB  
Communication
New Meroterpenoids and α-Pyrone Derivatives Isolated from the Mangrove Endophytic Fungal Strain Aspergillus sp. GXNU-Y85
by Chungu Wang, Fanfan Wang, Pingfang Tao, Yuanling Shao, Qing Li, Minmin Gu, Zhixin Liao and Feng Qin
Mar. Drugs 2024, 22(6), 277; https://doi.org/10.3390/md22060277 - 13 Jun 2024
Cited by 3 | Viewed by 1891
Abstract
Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, [...] Read more.
Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (59). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 μM. Full article
(This article belongs to the Special Issue Bio-Active Products from Mangrove Ecosystems 2.0)
Show Figures

Graphical abstract

11 pages, 2275 KB  
Article
Relaxant Activity of 4H-Pyran and 1,6-Dihydropyridine Derivatives on Isolated Rat Trachea
by Samuel Estrada-Soto, Soledad Alemán-Pantitlán, Emmanuel Gaona-Tovar, Fernando Hernández-Borja, Yolanda Alcaraz, Rafael Villalobos-Molina and Miguel A. Vázquez
Drugs Drug Candidates 2024, 3(2), 342-352; https://doi.org/10.3390/ddc3020020 - 11 Apr 2024
Cited by 1 | Viewed by 2329
Abstract
Derivatives of 4H-pyrans and 1,6-dihydropyridines have generated considerable attention due to their interesting biological and therapeutic values. Their pharmacological activities include vasorelaxant, anticarcinogenic, antimicrobial, and antioxidant activities. Thus, the aim of the current work is to determine the relaxant effect of synthesized 4H-pyran [...] Read more.
Derivatives of 4H-pyrans and 1,6-dihydropyridines have generated considerable attention due to their interesting biological and therapeutic values. Their pharmacological activities include vasorelaxant, anticarcinogenic, antimicrobial, and antioxidant activities. Thus, the aim of the current work is to determine the relaxant effect of synthesized 4H-pyran and 1,6-dihydropyridine derivatives with potential anti-asthmatic properties on the smooth muscle airway, with a possible Ca2+-channel blockade as a mechanism of action due to their analogy with 1,4-dihidropyridines. 4H-pyrans and 1,6-dihydropyridines were achieved using multicomponent reactions by microwave and conventional heating. Also, test samples were evaluated ex vivo to determine their relaxant effect on isolated rat tracheal rings pre-contracted with carbachol. All compounds evaluated showed a significant relaxant effect on carbachol-induced contraction in tracheal rat rings. Compounds 4b, 4e, 7a, and 8d were the most potent from the entire series and were also more potent than theophylline, used as a positive control. In conclusion, in the current work some relaxant compounds of the airway smooth muscle with potential to be developed as anti-asthmatic drugs were obtained. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

Back to TopTop