Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = purple-grain wheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1480 KiB  
Article
Purple-Grain Wheat Regulation of Blood Lipids and Blood Glucose in Diet-Induced Hyperlipidemic Mice and Type 2 Diabetic Mice
by Dong Hu, Shasha Cheng, Xiaoyan Wei and Chaoxin Man
Nutrients 2025, 17(8), 1310; https://doi.org/10.3390/nu17081310 - 9 Apr 2025
Viewed by 624
Abstract
Background/Objectives: Disorders of glucose and lipid metabolism can easily lead to metabolic diseases such as hyperlipidemia and diabetes mellitus, with multiple complications. This study evaluated the regulatory effect of purple-grain wheat on glycolipid metabolism. Methods: In this study, we established a hyperlipidemic mouse [...] Read more.
Background/Objectives: Disorders of glucose and lipid metabolism can easily lead to metabolic diseases such as hyperlipidemia and diabetes mellitus, with multiple complications. This study evaluated the regulatory effect of purple-grain wheat on glycolipid metabolism. Methods: In this study, we established a hyperlipidemic mouse model by means of a high-fat diet and a type 2 diabetic mouse model using a high-fat and high-sugar diet combined with streptozotocin, and the mice were intervened with 15 g/(kg·d), 7.5 g/(kg·d), and 3.75 g/(kg·d) doses of purple-grain wheat paste (PWP) for 4 and 5 weeks, respectively. Results: The results revealed that PWP reversed the increase in body weight; increased serum high-density lipoprotein cholesterol; and decreased serum total cholesterol, triglycerides, and low-density lipoproteins. In addition, PWP reversed the decrease in body weight and alleviated the sustained increase in blood glucose in type 2 diabetic mice. Conclusions: PWP shows a significant ability to regulate glycolipid levels, which is related to its functional composition and its ability to act as a prebiotic. In conclusion, PWP can be considered a potential functional food for lowering blood glucose and blood lipids. Full article
(This article belongs to the Special Issue Effects of Dietary Grains on Human Health)
Show Figures

Figure 1

12 pages, 1151 KiB  
Communication
Production of α-Glycerylphosphorylcholine in Fermented Roots, Tubers, and Fruits
by Timothy J. Tse, Farley Chicilo, Daniel J. Wiens, Jianheng Shen, Javier Anleu Alegria, Young Jun Kim, Ji Youn Hong, Jae Kyeom Kim, Eui-Cheol Shin, Martin J. T. Reaney and Youn Young Shim
Foods 2024, 13(19), 3085; https://doi.org/10.3390/foods13193085 - 27 Sep 2024
Cited by 3 | Viewed by 1521
Abstract
Vegetables and fruits, high in starch and sugars, are promising substrates for bioethanol production, but can also yield valuable nootropic compounds, such as α-glycerylphosphorylcholine (α-GPC). This compound is a known cognitive enhancer that works by increasing the release of acetylcholine, a neurotransmitter essential [...] Read more.
Vegetables and fruits, high in starch and sugars, are promising substrates for bioethanol production, but can also yield valuable nootropic compounds, such as α-glycerylphosphorylcholine (α-GPC). This compound is a known cognitive enhancer that works by increasing the release of acetylcholine, a neurotransmitter essential for learning and memory. In this study, select root and tuber crops, as well as fruits, were subjected to Saccharomyces cerevisiae fermentation to observe the co-production of ethanol and α-GPC. The ethanol yields from these substrates were comparable to those from wheat (var. AC Andrew), ranging from 30.44 g/L (beet) to 70.04 g/L (lotus root). Aside from ethanol, α-GPC was also produced, with purple top turnip yielding 0.91 g/L, the second highest concentration after wheat (used as a reference), which produced 1.25 g/L. Although α-GPC yields in the tested substrates were lower than those from cereal grains (e.g., wheat and barley), a noteworthy observation was the production of methanol in many of these substrates. Methanol was detected in all feedstocks except wheat, with concentrations ranging from 0.10 g/L (cassava) to 1.69 g/L (purple top turnip). A linear regression analysis revealed a strong correlation between methanol and α-GPC content (R2 = 0.876; slope = 0.52), suggesting a potential link in their biosynthetic pathways. These feedstocks not only proved effective as substrates for bioethanol production, but also showed potential for generating value-added compounds such as α-GPC. This dual-purpose potential presents new market opportunities for producers by leveraging both biofuel and nootropic compound production. Furthermore, the observed relationship between methanol and α-GPC production warrants further investigation to elucidate the metabolic pathways involved. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

17 pages, 8658 KiB  
Article
Effect of Sprouted Buckwheat on Glycemic Index and Quality of Reconstituted Rice
by Lingtao Kang, Jiaqian Luo, Zhipeng Su, Liling Zhou, Qiutao Xie and Gaoyang Li
Foods 2024, 13(8), 1148; https://doi.org/10.3390/foods13081148 - 10 Apr 2024
Cited by 3 | Viewed by 2232
Abstract
This study utilized sprouted buckwheat as the main component and aimed to optimize its combination with other grains to produce reconstituted rice with enhanced taste and a reduced glycemic index (GI). The optimal blend comprised wheat flour, sprouted buckwheat flour, black rice flour, [...] Read more.
This study utilized sprouted buckwheat as the main component and aimed to optimize its combination with other grains to produce reconstituted rice with enhanced taste and a reduced glycemic index (GI). The optimal blend comprised wheat flour, sprouted buckwheat flour, black rice flour, and purple potato flour in a ratio of 34.5:28.8:26.7:10.0. Based on this blend, the reconstituted rice processed through extrusion puffing exhibited a purple-black hue; meanwhile, the instant reconstituted rice, produced through further microwave puffing, displayed a reddish-brown color. both imparted a rich cereal flavor. The starch in both types of rice exhibited a V-shaped structure with lower relative crystallinity. Compared to commercial rice, the reconstituted rice and instant reconstituted rice contained higher levels of flavonoids, polyphenols, and other flavor compounds, along with 1.63-fold and 1.75-fold more proteins, respectively. The GI values of the reconstituted rice and the instant reconstituted rice were 68.86 and 69.47, respectively; thus, they are medium-GI foods that can alleviate the increase in blood glucose levels. Full article
Show Figures

Figure 1

13 pages, 820 KiB  
Article
Quality, Nutritional Properties, and Glycemic Index of Colored Whole Wheat Breads
by Hamit Koksel, Buket Cetiner, Vladimir P. Shamanin, Z. Hazal Tekin-Cakmak, Inna V. Pototskaya, Kevser Kahraman, Osman Sagdic and Alexey I. Morgounov
Foods 2023, 12(18), 3376; https://doi.org/10.3390/foods12183376 - 8 Sep 2023
Cited by 16 | Viewed by 6760
Abstract
The main aim of this study was to investigate the quality and nutritional properties (dietary fiber, phenolic, antioxidant contents, and glycemic index) of breads made from whole wheat flours of colored wheats. White (cultivar Agronomicheskaya 5), red (Element 22), purple (EF 22 and [...] Read more.
The main aim of this study was to investigate the quality and nutritional properties (dietary fiber, phenolic, antioxidant contents, and glycemic index) of breads made from whole wheat flours of colored wheats. White (cultivar Agronomicheskaya 5), red (Element 22), purple (EF 22 and Purple 8), and blue (Blue 10) colored wheats were used in the study. The whole wheat flours of Blue 10 and Purple 8 had higher farinograph stability, lower softening degree, and higher quality numbers indicating that they had better rheological properties. Bread produced from whole wheat flour of blue-colored grain had significantly higher loaf volume and better symmetry, crust color, crumb cell structure, and softness values among others (p < 0.05). The whole wheat bread produced using Element 22 had the highest crust and crumb L* color values, while Purple 8 and EF 22 had the lowest crust and crumb L* color values, suggesting that purple-colored grains have a tendency to make whole wheat bread with darker crust and crumb color. Bread produced from cultivar Blue 10 had the lowest firmness values while Element 22 had the highest firmness values. The highest total phenolic content and antioxidant capacity values were obtained from the whole wheat bread sample from purple-colored wheat (Purple 8). The whole wheat flour of Element 22 had the highest total dietary fiber content among all samples (p < 0.05). The differences between whole wheat bread samples in terms of total dietary fiber and glycemic index were not statistically significant. The results of the present study indicated that colored wheats can be used to produce whole wheat breads with higher nutritional properties and acceptable quality characteristics. Full article
Show Figures

Figure 1

23 pages, 5495 KiB  
Article
Light-Induced TaHY5-7A and TaBBX-3B Physically Interact to Promote PURPLE PERICARP-MYB 1 Expression in Purple-Grained Wheat
by Qinqin Jiang, Wenhui Jiang, Ning Hu, Rui Tang, Yuxuan Dong, Hongqi Wu, Tianxiang Liu, Lulu Guan, Hanbing Zhang, Junbin Hou, Guaiqiang Chai and Zhonghua Wang
Plants 2023, 12(16), 2996; https://doi.org/10.3390/plants12162996 - 19 Aug 2023
Cited by 4 | Viewed by 1957
Abstract
Purple-grained wheat (Triticum aestivum L.) is an important germplasm source in crop breeding. Anthocyanin biosynthesis in the pericarps of purple-grained wheat is largely light-dependent; however, the regulatory mechanisms underlying light-induced anthocyanin accumulation in the wheat pericarp remain unknown. Here we determined that [...] Read more.
Purple-grained wheat (Triticum aestivum L.) is an important germplasm source in crop breeding. Anthocyanin biosynthesis in the pericarps of purple-grained wheat is largely light-dependent; however, the regulatory mechanisms underlying light-induced anthocyanin accumulation in the wheat pericarp remain unknown. Here we determined that anthocyanins rapidly accumulate in the pericarps of the purple-grained wheat cultivar Heixiaomai 76 (H76) at 16 days after pollination under light treatment. Using transcriptome sequencing, differential gene expression analysis, and phylogenetic analysis, we identified two key genes involved in light signaling in wheat: ELONGATED HYPOCOTYL 5-7A (TaHY5-7A) and B-BOX-3B (TaBBX-3B). TaHY5-7A and TaBBX-3B were highly expressed in purple-grained wheat pericarps. The heterologous expression of TaHY5-7A partially restored the phenotype of the Arabidopsis (Arabidopsis thaliana) hy5 mutant, resulting in increased anthocyanin accumulation and a shortened hypocotyl. The heterologous expression of TaBBX-3B in wild-type Arabidopsis had similar effects. TaHY5-7A and TaBBX-3B were nucleus-localized, consistent with a function in transcription regulation. However, TaHY5-7A, which lacks a transactivation domain, was not sufficient to activate the expression of PURPLE PERICARP-MYB 1 (TaPpm1), the key anthocyanin biosynthesis regulator in purple pericarps of wheat. TaHY5-7A physically interacted with TaBBX-3B in yeast two-hybrid and bimolecular fluorescence complementation assays. Additionally, TaHY5-7A, together with TaBBX-3B, greatly enhanced the promoter activity of TaPpm1 in a dual luciferase assay. Overall, our results suggest that TaHY5-7A and TaBBX-3B collaboratively activate TaPpm1 expression to promote light-induced anthocyanin biosynthesis in purple-pericarp wheat. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops)
Show Figures

Figure 1

23 pages, 4272 KiB  
Article
Genetic Mapping of Flavonoid Grain Pigments in Durum Wheat
by Natalia Sgaramella, Domenica Nigro, Antonella Pasqualone, Massimo Antonio Signorile, Barbara Laddomada, Gabriella Sonnante, Emanuela Blanco, Rosanna Simeone and Antonio Blanco
Plants 2023, 12(8), 1674; https://doi.org/10.3390/plants12081674 - 17 Apr 2023
Cited by 8 | Viewed by 2854
Abstract
Pigmented cereal grains with high levels of flavonoid compounds have attracted the attention of nutritional science backing the development of functional foods with claimed health benefits. In this study, we report results on the genetic factors controlling grain pigmentation in durum wheat using [...] Read more.
Pigmented cereal grains with high levels of flavonoid compounds have attracted the attention of nutritional science backing the development of functional foods with claimed health benefits. In this study, we report results on the genetic factors controlling grain pigmentation in durum wheat using a segregant population of recombinant inbred lines (RILs) derived from a cross between an Ethiopian purple grain accession and an Italian amber grain cultivar. The RIL population was genotyped by the wheat 25K SNP array and phenotyped for total anthocyanin content (TAC), grain color, and the L*, a*, and b* color index of wholemeal flour, based on four field trials. The mapping population showed a wide variation for the five traits in the different environments, a significant genotype x environment interaction, and high heritability. A total of 5942 SNP markers were used for constructing the genetic linkage map, with an SNP density ranging from 1.4 to 2.9 markers/cM. Two quantitative trait loci (QTL) were identified for TAC mapping on chromosome arms 2AL and 7BS in the same genomic regions of two detected QTL for purple grain. The interaction between the two QTL was indicative of an inheritance pattern of two loci having complementary effects. Moreover, two QTL for red grain color were detected on chromosome arms 3AL and 3BL. The projection of the four QTL genomic regions on the durum wheat Svevo reference genome disclosed the occurrence of the candidate genes Pp-A3, Pp-B1, R-A1, and R-B1 involved in flavonoid biosynthetic pathways and encoding of transcription factors bHLH (Myc-1) and MYB (Mpc1, Myb10), previously reported in common wheat. The present study provides a set of molecular markers associated with grain pigments useful for the selection of essential alleles for flavonoid synthesis in durum wheat breeding programs and enhancement of the health-promoting quality of derived foods. Full article
(This article belongs to the Special Issue Trends and Prospects of Genetic and Molecular Research in Plant)
Show Figures

Figure 1

19 pages, 906 KiB  
Review
Purple Wheat: Food Development, Anthocyanin Stability, and Potential Health Benefits
by Tamer H. Gamel, Syed Muhammad Ghufran Saeed, Rashida Ali and El-Sayed M. Abdel-Aal
Foods 2023, 12(7), 1358; https://doi.org/10.3390/foods12071358 - 23 Mar 2023
Cited by 26 | Viewed by 4761
Abstract
Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source [...] Read more.
Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source of energy and protein in human diet. Purple wheat is currently processed into a variety of foods with potent antioxidant properties, which have been demonstrated by in vitro studies. However, the health impacts of purple wheat foods in humans still require further investigations. Meanwhile, anthocyanins are vulnerable molecules that require special stabilization treatments during food preparation and processing. A number of stabilization methods such as co-pigmentation, self-association, encapsulation, metal binding, and adjusting processing conditions have been suggested as a means to diminish the loss of anthocyanins in processed foods and dietary supplements. The present review was intended to provide insights about purple wheat food product development and its roles in human health. In addition, methods for stabilizing anthocyanins during processing were briefly discussed. Full article
Show Figures

Figure 1

19 pages, 3370 KiB  
Article
Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines
by Elena Gordeeva, Olesya Shoeva, Sergey Mursalimov, Irina Adonina and Elena Khlestkina
Agronomy 2022, 12(12), 2934; https://doi.org/10.3390/agronomy12122934 - 23 Nov 2022
Cited by 13 | Viewed by 2213
Abstract
Enrichment of grains with anthocyanins is considered a feasible approach to improving the nutritional properties of bread wheat. Here, two black-grained substitution lines with either 4B or 4D chromosomes substituted by wheatgrass (Thinopyrum ponticum) 4Th were created via marker-assisted combining the [...] Read more.
Enrichment of grains with anthocyanins is considered a feasible approach to improving the nutritional properties of bread wheat. Here, two black-grained substitution lines with either 4B or 4D chromosomes substituted by wheatgrass (Thinopyrum ponticum) 4Th were created via marker-assisted combining the anthocyanin biosynthesis regulatory genes Pp-1, Pp3 (Purple pericarp), and Ba1 (Blue aleurone) in the genetics background of cv. Saratovskaya 29. The black grains manifested the simultaneous accumulation of anthocyanins in aleurone, and the pericarp layers resulted in the highest total anthocyanin content (TAC), which amounted to approximately the sum of TACs of the purple and blue grains. The lines with substitution 4Th(4B) had long trichomes on the leaves, whereas the lines with substitution 4Th(4D) did not differ from parental cv. Saratovskaya 29. Despite the chromosome substitution having a positive effect on the main spike length, the other yield-related traits (grain weight per main spike, the spike number per plant, and the 1000-grain weight) were decreased in the lines with chromosome substitution. The developed lines together with the parental ones constitute a valuable model for comparative studies and genetic stock for breeding commercial wheat cultivars featuring high levels of anthocyanins in grains. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 2935 KiB  
Article
Bioaccessibility and Antioxidant Activity of Polyphenols from Pigmented Barley and Wheat
by Borkwei Ed Nignpense, Sajid Latif, Nidhish Francis, Christopher Blanchard and Abishek Bommannan Santhakumar
Foods 2022, 11(22), 3697; https://doi.org/10.3390/foods11223697 - 18 Nov 2022
Cited by 24 | Viewed by 3213
Abstract
Polyphenols in pigmented cereals are believed to enhance health outcomes through their antioxidant properties. This study aimed to characterise polyphenols from Hordeum vulgare (purple barley), Triticum turgidum (purple wheat) and Triticum aestivum (blue wheat) in order to evaluate their bioaccessibility and antioxidant activity. [...] Read more.
Polyphenols in pigmented cereals are believed to enhance health outcomes through their antioxidant properties. This study aimed to characterise polyphenols from Hordeum vulgare (purple barley), Triticum turgidum (purple wheat) and Triticum aestivum (blue wheat) in order to evaluate their bioaccessibility and antioxidant activity. An ultra-high performance liquid chromatography mass spectrometry coupled with an online 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) system was used to identify the polyphenols and quantify their relative antioxidant levels. Simulated gastrointestinal digestion of the cereals allowed for the assessment of polyphenol bioaccessibility using benchtop assays. Between cereals, the bioaccessible phenolic content was similar following digestion, but the antioxidant activity was significantly different (purple barley > purple wheat > blue wheat; p < 0.01). Among the polyphenols identified, flavan-3-ols and anthocyanins were the least bioaccessible whereas flavones were the most bioaccessible after digestion. This study demonstrated that these pigmented cereal varieties are sources of bioaccessible polyphenols with antioxidant activity. These findings may aid in utilising these pigmented grains for the future design and development of novel functional food products with enhanced health properties. Full article
Show Figures

Graphical abstract

14 pages, 284 KiB  
Article
Antioxidant Capacity and Profiles of Phenolic Acids in Various Genotypes of Purple Wheat
by Vladimir P. Shamanin, Zeynep H. Tekin-Cakmak, Elena I. Gordeeva, Salih Karasu, Inna Pototskaya, Alexandr S. Chursin, Violetta E. Pozherukova, Gorkem Ozulku, Alexey I. Morgounov, Osman Sagdic and Hamit Koksel
Foods 2022, 11(16), 2515; https://doi.org/10.3390/foods11162515 - 20 Aug 2022
Cited by 47 | Viewed by 3860
Abstract
The total phenolic content, phenolic compositions, and antioxidant capacity in the grain of 40 purple wheat genotypes were studied. In this study, purple wheats were investigated in terms of their composition of free and bound phenolic acids and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. The [...] Read more.
The total phenolic content, phenolic compositions, and antioxidant capacity in the grain of 40 purple wheat genotypes were studied. In this study, purple wheats were investigated in terms of their composition of free and bound phenolic acids and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. The free phenolic content ranged from 164.25 to 271.05 mg GAE/100 g DW and the bound phenolic content was between 182.89–565.62 mg GAE/100 g wheat. The total phenolic content of purple wheat samples ranged from 352.65 to 771.83 mg GAE/100 g wheat. Gallic acid, protocatechuic acid, catechin, 4-hydroxybenzoic acid, syringic acid, ellagic acid, m-coumaric acid, o-coumaric acid, chrysin, caffeic acid, p-coumaric acid, ferulic acid, quercetin, kaempferol, rutin, sinapic acid, and chlorogenic acid were detected by HPLC system. Gallic acid, benzoic acid derivatives, and dominant phenolics, which are frequently found in cereals, were also dominant in purple wheat samples and were found in free fractions. The antioxidant capacity was assessed using the DPPH method. The antioxidant capacity (AA%) in the free phenolic extracts of the purple wheats was between 39.7% and 59.5%, and the AA% values of bound phenolic extract of the purple wheat varied between 42.6% and 62.7%. This study suggested that purple wheat samples have high phenolic compound content as antioxidant potential and therefore consumption of purple wheat-containing food products may provide health benefits. Full article
12 pages, 811 KiB  
Article
Chemical, Functional, and Technological Features of Grains, Brans, and Semolina from Purple and Red Durum Wheat Landraces
by Afef Ladhari, Giandomenico Corrado, Youssef Rouphael, Francesca Carella, Giuseppina Rita Nappo, Cinzia Di Marino, Anna De Marco and Domenico Palatucci
Foods 2022, 11(11), 1545; https://doi.org/10.3390/foods11111545 - 25 May 2022
Cited by 7 | Viewed by 3084
Abstract
A main reason of the increasing interest in cereal landraces is their potential to offer more diversified and functional staple food. For instance, landraces are an underexploited resource of pigmented varieties, appreciated for the high accumulation of phytochemicals with known health benefits. This [...] Read more.
A main reason of the increasing interest in cereal landraces is their potential to offer more diversified and functional staple food. For instance, landraces are an underexploited resource of pigmented varieties, appreciated for the high accumulation of phytochemicals with known health benefits. This study characterized the chemical, functional, and technological features of the bran, semolina, and grains of two durum wheat (Triticum turgidum L. subsp. durum, Desf.) landraces, named ‘Purple’ and ‘Red’ for their grain color, collected in Ethiopia and grown and sold in southern Italy as a niche product. Specifically, we analyzed the protein content, dry gluten, ash, total polyphenols, anthocyanins, proanthocyanidins, and specific phenolic acids. We also evaluated the antioxidant activity using DPPH- and ABTS-based methods. The two landraces had positive nutritional features, such as a high protein content, a rich and composite range of secondary metabolites (which include specific phenolic acids and anthocyanins), and antioxidant activities in all the fractions analyzed. The germplasm under investigation therefore has a well-justified potential to yield functional products and to diversify durum wheat-based foods. Full article
Show Figures

Figure 1

27 pages, 1799 KiB  
Article
Phytochemical Analysis of Phenolics, Sterols, and Terpenes in Colored Wheat Grains by Liquid Chromatography with Tandem Mass Spectrometry
by Mayya P. Razgonova, Alexander M. Zakharenko, Elena I. Gordeeva, Olesya Yu. Shoeva, Elena V. Antonova, Konstantin S. Pikula, Liudmila A. Koval, Elena K. Khlestkina and Kirill S. Golokhvast
Molecules 2021, 26(18), 5580; https://doi.org/10.3390/molecules26185580 - 14 Sep 2021
Cited by 21 | Viewed by 4320
Abstract
The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here [...] Read more.
The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed. Full article
(This article belongs to the Special Issue Biochemical Role of Pigments in the Plant Life)
Show Figures

Figure 1

15 pages, 1791 KiB  
Article
Impact of Nitrogen Rate in Conventional and Organic Production Systems on Yield and Bread Baking Quality of Soft Red Winter Wheat
by Ammar Al-Zubade, Timothy Phillips, Mark A. Williams, Krista Jacobsen and David Van Sanford
Agronomy 2021, 11(9), 1683; https://doi.org/10.3390/agronomy11091683 - 24 Aug 2021
Cited by 5 | Viewed by 2195
Abstract
Soft red winter wheat (SRW) is characterized by high yield and relatively low protein content. In Kentucky, there is growing demand from local artisan bread bakers for regionally produced flour, requiring production of grain with increased protein content and/or strength. The objective of [...] Read more.
Soft red winter wheat (SRW) is characterized by high yield and relatively low protein content. In Kentucky, there is growing demand from local artisan bread bakers for regionally produced flour, requiring production of grain with increased protein content and/or strength. The objective of this two-year field experiment was to evaluate the effect of nitrogen (N) management on five cultivars of winter wheat on yield and bread baking quality traits of modern and landrace SRW cultivars (Triticum aestivum L.). All five cultivars were evaluated using two N application rates in conventional and organic production systems. All traits measured were significantly affected by the agricultural production system and N rate, although plant height and other quality traits varied by study year. Significantly higher yields were achieved in the conventional system at a relatively low N rate (67.2 kg ha−1) in both study years (2017–2019) (p < 0.01). Results were variable by cultivar and a locally bred, high-yielding cultivar (Pembroke 2014) had the highest lactic acid solvent retention capacity score and thousand kernel weight of the cultivars evaluated. In addition, a landrace cultivar (Purple Straw) had the highest grain N and plant height. A French soft wheat, Soissons, had the highest sedimentation value and Pembroke 2016 achieved the highest yield. The findings from this study suggest the possibility of attaining a desirable grain with quality traits of SRW wheat that meets the needs of local bread wheat production in Kentucky through improving the optimization of cultivar selection, N management and specific considerations for conventional and organic systems. Full article
Show Figures

Figure 1

16 pages, 1160 KiB  
Article
Effect of Sowing Date on Bioactive Compounds and Grain Morphology of Three Pigmented Cereal Species
by Romina Beleggia, Donatella B. M. Ficco, Franca M. Nigro, Valentina Giovanniello, Salvatore A. Colecchia, Ivano Pecorella and Pasquale De Vita
Agronomy 2021, 11(3), 591; https://doi.org/10.3390/agronomy11030591 - 20 Mar 2021
Cited by 16 | Viewed by 3285
Abstract
Recently, the interest in improving the content of bioactive compounds for enhancing the nutritional value of cereal-based products has largely increased, and several strategies, both genetic and agronomic, were proposed. Here, we report the preliminary results of the effect of two sowing periods [...] Read more.
Recently, the interest in improving the content of bioactive compounds for enhancing the nutritional value of cereal-based products has largely increased, and several strategies, both genetic and agronomic, were proposed. Here, we report the preliminary results of the effect of two sowing periods (winter and spring) on the accumulation of bioactive compounds (i.e., anthocyanins, carotenoids, minerals) and grain morphology in three pigmented cereal species (barley, bread and durum wheat). The results showed that with delayed sowing time, a significant reduction in yield was observed in all species, less in barley (50.4%) than in wheat (70.3% and 66.5% for bread and durum, respectively). On the contrary, the carotenoids accumulation was favored (increased by 12.2%, 15.7% and 27.8% for barley, bread and durum wheat, respectively), as well as those of anthocyanins although strongly dependent on the genotype (i.e., considering only the purple genotypes, the anthocyanins increase by 4.6%, 35.4% and 72.8% in barley, bread and durum wheat, respectively). For minerals compounds, our study highlighted a strong environmental influence even when the pigmented genotypes accumulated more minerals than commercial ones, while the morphometric seed traits were less influenced by this agronomic practice. Therefore, by exploiting the genetic variability for the accumulation of anthocyanins and carotenoids in the grain and by optimizing the sowing time, it could be possible to increase the nutritional value of the final cereal-based products. Full article
Show Figures

Figure 1

15 pages, 3131 KiB  
Article
The Strategy for Marker-Assisted Breeding of Anthocyanin-Rich Spring Bread Wheat (Triticum aestivum L.) Cultivars in Western Siberia
by Elena Gordeeva, Vladimir Shamanin, Olesya Shoeva, Tatyana Kukoeva, Alexey Morgounov and Elena Khlestkina
Agronomy 2020, 10(10), 1603; https://doi.org/10.3390/agronomy10101603 - 20 Oct 2020
Cited by 24 | Viewed by 6541
Abstract
In wheat, anthocyanin pigments can be accumulated in pericarp tissues (under control of the Pp genes) resulting in purple-colored grain. In the current study, a strategy, based on the use of molecular and morphological markers, was applied to create purple-grained bread wheat cultivars [...] Read more.
In wheat, anthocyanin pigments can be accumulated in pericarp tissues (under control of the Pp genes) resulting in purple-colored grain. In the current study, a strategy, based on the use of molecular and morphological markers, was applied to create purple-grained bread wheat cultivars adapted to the West Siberian region. The breeding scheme started from crossing of recipients (elite cultivars and lines) with donor lines carrying dominant alleles of the complementary genes Pp3 and Pp-D1. The F2 hybrids passed three-step marker-assisted selection, and those having dominant Pp-D1Pp-D1Pp3Pp3 genotypes were backcrossed with the recurrent parents. The desired BC1F2-3 progenies were selected using morphological marker, while BC1F3 also passed through field evaluation. At this stage, 120 lines were selected and planted in individual 1 m2 “breeding nursery (BN) plots” for assessment of heading dates, duration of vegetation period, resistance to powdery mildew, stem and leaf rusts, protein and gluten content, as well as productivity. After these investigations, a total of 17 promising anthocyanin-rich purple-grained lines characterized by multiple resistance and having best yield/quality characteristics were finally candidates for selection of commercial cultivars adapted to the West Siberian climate and suitable for functional food production. Full article
(This article belongs to the Special Issue Cereal Biofortification: Strategies, Challenges and Benefits)
Show Figures

Figure 1

Back to TopTop