Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Marker-Assisted Selection
2.3. The Design of Diagnostic PCR Markers
2.4. Karyotyping
2.5. Analysis of the Total Anthocyanin Content (TAC)
2.6. Histological Analysis of Grains
2.7. Phenotyping
2.8. Statistics
3. Results
3.1. The Crossing Scheme and Marker-Assisted Selection
3.2. Karyotypic Examination of the Lines
3.3. Histological Analysis of Grain Pigmentation
3.4. The TAC of Whole Grains
3.5. Comparative Analysis of Yield-Related Parameters of the Parental and Newly Developed Lines
4. Discussion
4.1. Marker-Assisted Breeding of Black-Grained Lines
4.2. Comparative Evaluation of TACs between the Lines
4.3. The Chromosome Substitutions Affect Leaf Trichomes and Yield-Related Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Z.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Yudina, R.S.; Gordeeva, E.I.; Shoeva, O.Y.; Tikhonova, M.A.; Khlestkina, E.K. Anthocyanins as functional food components. Vavilov J. Genet. Breed. 2021, 25, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Anthocyanins in cereals: Composition and health effects. Food Res. Int. 2018, 109, 232–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Hou, H.; Ma, X.; Sun, S.; Wang, H.; Kong, L. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res. Int. 2020, 138, 109711. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Everson, E.H. Biochemical and physiological studies of wheat grain pigmentation. Agron. J. 1958, 50, 733e734. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Hucl, P.; Shipp, J.; Rabalski, I. Compositional Differences in Anthocyanins from Blue-and Purple-Grained Spring Wheat Grown in Four Environments in Central Saskatchewan. Cereal Chem. 2016, 93, 32–38. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zakharenko, A.M.; Gordeeva, E.I.; Shoeva, O.Y.; Antonova, E.V.; Pikula, K.S.; Koval, L.A.; Khlestkina, E.K.; Golokhvast, K.S. Phytochemical analysis of phenolics, sterols, and terpenes in colored wheat grains by liquid chromatography with tandem mass spectrometry. Molecules 2021, 26, 5580. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Knievel, D.C.; Abdel-Aal, E.S.; Rabalski, I.; Nakamura, T.; Hucl, P. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). J. Cereal Sci. 2009, 50, 113–120. [Google Scholar] [CrossRef]
- Ficco, D.B.; De Simone, V.; Colecchia, S.A.; Pecorella, I.; Platani, C.; Nigro, F.; De Vita, P. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats. J. Agric. Food Chem. 2014, 62, 8686–8695. [Google Scholar] [CrossRef]
- Yang, M.; Koo, I.S.; Song, O.W.; Chun, K.O. Food matrix affecting anthocyanin bioavailability. Curr. Med. Chem. 2011, 18, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; Kelly, M.F. Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation products. Eur. J. Lipid Sci. Technol. 2007, 109, 66–71. [Google Scholar] [CrossRef]
- Li, W.; Shan, F.; Sun, S.; Corke, H.; Beta, T. Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem. 2005, 53, 8533–8536. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tiwari, V.; Vats, S.; Kumari, A.; Chunduri, V.; Kaur, S.; Kapoor, P.; Garg, M. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules 2020, 25, 5785. [Google Scholar] [CrossRef] [PubMed]
- Khlestkina, E.K. Genes determining the coloration of different organs in wheat. Russ. J. Genet. Appl. Res. 2013, 3, 54–65. [Google Scholar] [CrossRef]
- Himi, E.; Taketa, S. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol. Genet. Genom. 2015, 290, 1287–1298. [Google Scholar] [CrossRef]
- Ye, G.J.; Wei, L.; Chen, W.J.; Zhang, B.; Liu, B.L.; Zhang, H.G. Frame-shift mutation causes the function loss of TaMYB-A1 regulating anthocyanin biosynthesis in Triticum aestivum. Cereal Res. Com. 2017, 45, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Fan, J.; Xi, X.; Zong, Y.; Wang, D.; Zhang, H.; Liu, B. Transcriptome analysis identifies key genes responsible for red coleoptiles in Triticum monococcum. Molecules 2019, 24, 932. [Google Scholar] [CrossRef] [Green Version]
- Shoeva, O.Y.; Gordeeva, E.I.; Khlestkina, E.K. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 2014, 19, 20266–20279. [Google Scholar] [CrossRef]
- Zong, Y.; Xi, X.; Li, S.; Chen, W.; Zhang, B.; Liu, D.; Liu, B.; Wang, D.; Zhang, H. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp. Front. Plant Sci. 2017, 8, 1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Liu, T.; Nan, W.; Jeewani, D.C.; Niu, Y.; Li, C.; Wang, Y.; Shi, X.; Wang, C.; Wang, J.; et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 2018, 69, 2555–2567. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Shen, J.; Zhuang, L.; Wang, Y.; Pu, J.; Feng, Y.; Chu, C.; Wang, X.; Qi, Z. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Mol. Breed. 2013, 31, 195–204. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Luo, M.C.; Zhong, G.Y.; Bransteitter, R.; Desai, A.; Kilian, A.; Dvořák, J. Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 1996, 143, 983–999. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1207354/ (accessed on 20 September 2022). [CrossRef] [PubMed]
- Zheng, Q.; Li, B.; Mu, S.; Zhou, H.; Li, Z. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 2006, 49, 1109–1114. [Google Scholar] [CrossRef]
- Arbuzova, V.S.; Badaeva, E.D.; Efremova, T.T.; Osadchaya, T.S.; Trubacheeva, N.V.; Dobrovolskaya, O.B. A cytogenetic study of the blue-grain line of the common wheat cultivar Saratovskaya 29. Rus. J. Genet. 2012, 4, 785–791. [Google Scholar] [CrossRef]
- Gordeeva, E.; Badaeva, E.; Yudina, R.; Shchukina, L.; Shoeva, O.; Khlestkina, E. Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum chromosome 4Th(4D) in the spring bread wheat Saratovskaya 29 background. Agronomy 2019, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Li, S.; Zhang, K.; Chen, W.; Zhang, B.; Wang, D.; Liu, D.; Liu, B.; Zhang, H. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE 2017, 12, e0181116. [Google Scholar] [CrossRef] [Green Version]
- Grausgruber, H.; Atzgersdorfer, K.; Böhmdorfer, S. Purple and Blue Wheat—Health-Promoting Grains with Increased Antioxidant Activity. Cereal Foods World 2018, 63, 217–220. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Khlestkina, E.K. Wheat, barley, and oat breeding for health benefit components in grain. Plants 2021, 10, 86. [Google Scholar] [CrossRef]
- Sharma, S.; Kapoor, P.; Kaur, S.; Kumar, A.; Sharma, N.; Kumar, A.; Garg, M. Changing Nutrition Scenario: Colored Wheat–A New Perspective. In Physiological, Molecular, and Genetic Perspectives of Wheat Improvement; Springer: Cham, Switzerland, 2021; pp. 71–88. [Google Scholar]
- Gordeeva, E.I.; Shoeva, O.Y.; Khlestkina, E.K. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica 2015, 203, 469–476. [Google Scholar] [CrossRef]
- Plaschke, J.; Ganal, M.W.; Röder, M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995, 91, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Korzun, V.; Börner, A.; Worland, A.J.; Law, C.N.; Röder, M.S. Application of microsatellite markers to distinguish inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.). Euphytica 1997, 95, 149–155. [Google Scholar] [CrossRef]
- Röder, M.S.; Korzun, V.; Wendehake, K.; Plaschke, J.; Tixier, M.H.; Leroy, P.; Ganal, M.W. A microsatellite map of wheat. Genetics 1998, 149, 2007–2023. [Google Scholar] [CrossRef]
- Ganal, M.W.; Röder, M.S. Microsatellite and SNP Markers in Wheat Breeding. In Genomics-Assisted Crop Improvement; Springer: Dordrecht, The Netherlands, 2007; pp. 1–24. [Google Scholar]
- Shoeva, O.Y.; Dobrovolskaya, O.B.; Leonova, I.N.; Salina, E.A.; Khlestkina, E.K. The B-, G- and S-genomic Chi genes in family Triticeae. Biol. Plant. 2016, 60, 279–284. [Google Scholar] [CrossRef]
- Rayburn, A.L.; Gill, B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Molec. Biol. Rep. 1986, 4, 102–109. [Google Scholar] [CrossRef]
- Bedbrook, R.J.; Jones, J.; O’Dell, M.; Thompson, R.J.; Flavell, R.B. A molecular description of telomeric heterochromatin in Secale species. Cell 1980, 19, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Linc, G.; Molnar-Lang, M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003, 122, 396–400. [Google Scholar] [CrossRef]
- Badaeva, E.D.; Ruban, A.S.; Aliyeva-Schnorr, L.; Municio, C.; Hesse, S.; Houben, A. In Situ Hybridization to Plant Chromosomes. In Fluorescence In Situ Hybridization (FISH); Liehr, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 477–494. [Google Scholar]
- Salina, E.A.; Leonova, I.N.; Efremova, T.T.; Röder, M.S. Wheat genome structure: Translocations during the course of polyploidization. Funct. Integr. Genom. 2006, 6, 71–80. [Google Scholar] [CrossRef]
- Adonina, I.G.; Shcherban, A.B.; Zorina, M.V.; Mehdiyeva, S.P.; Timonova, E.M.; Salina, E.A. Genetic features of triticale–wheat hybrids with vaviloid-type spike branching. Plants 2022, 11, 58. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Hucl, P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Mursalimov, S.R.; Gracheva, N.V.; Glagoleva, A.Y.; Börner, A.; Khlestkina, E.K. Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Sci. Rep. 2020, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- King, C. New Possibilities with Purple Wheat. 5 May 2017. Available online: https://www.topcropmanager.com/new-possibilities-with-purple-wheat-20050/ (accessed on 20 September 2022).
- Bustos, D.V.; Riegel, R.; Calderini, D.F. Anthocyanin content of grains in purple wheat is affected by grain position, assimilate availability and agronomic management. J. Cereal Sci. 2012, 55, 257–264. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Mattoo, A.K.; Garg, M.; Dutt, S.; Singh, B.; Ortiz Rios, R.O. Developing germplasm and promoting consumption of anthocyanin-rich grains for health benefits. Front. Sustain. Food Syst. 2022, 6, 867897. [Google Scholar] [CrossRef]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Garg, M. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef] [Green Version]
- Martinek, P.; Jirsa, O.; Vaculová, K.; Chrpová, J.; Watanabe, N.; Burešová, V.; Kopecký, D.; Štiasna, K.; Vyhnánek, T.; Trojan, V. Use of wheat gene resources with different grain colour in breeding. Tag. Ver. Pflanz. Saatgutkaufleute Osterr. 2013, 64, 75–78. [Google Scholar]
- Dhua, S.; Kumar, K.; Kumar, Y.; Singh, L.; Sharanagat, V.S. Composition, characteristics and health promising prospects of black wheat: A review. Trends Food Sci. Technol. 2021, 112, 780–794. [Google Scholar] [CrossRef]
- Laikova, L.I.; Arbuzova, V.S.; Efremova, T.T. Cytological Studies of Common Wheat Monosomic Series. EWAC Newsletter, 2001. In Proceedings of the 11th EWAC conference, Novosibirsk, Russia, 24–28 July 2000; pp. 133–137. [Google Scholar]
- Gupta, P.K.; Mir, R.R.; Mohan, A.; Kumar, J. Wheat genomics: Present status and future prospects. Int. J. Plant Gen. 2008, 2008, 896451. [Google Scholar] [CrossRef] [Green Version]
- Helguera, M.; Rivarola, M.; Clavijo, B.; Martis, M.M.; Vanzetti, L.S.; Gonzalez, S.; Garbus, I.; Leroy, P.; Simková, H.; Valárik, M.; et al. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci. 2015, 233, 200–212. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Q.; Li, R.; Lu, Y.; Zhou, S.; Han, H.; Liu, W.; Li, X.; Yang, X.; Li, L. Identification of Genetic Loci on Chromosome 4B for Improving the Grain Number per Spike in Pre-Breeding Lines of Wheat. Agronomy 2022, 12, 171. [Google Scholar] [CrossRef]
- Maystrenko, O.I. Identification and location of genes controlling leaf hairing in young plants of common wheat. Genetika 1976, 12, 5–15. [Google Scholar]
- Dobrovolskaya, O.B.; Pshenichnikova, T.A.; Arbuzova, V.S.; Lohwasser, U.; Röder, M.S.; Börner, A. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 2007, 155, 285–293. [Google Scholar] [CrossRef]
- Doroshkov, A.V.; Afonnikov, D.A.; Dobrovolskaya, O.B.; Pshenichnikova, T.A. Interactions between leaf pubescence genes in bread wheat as assessed by high throughput phenotyping. Euphytica 2016, 207, 491–500. [Google Scholar] [CrossRef]
- Soliman, K.M.; Qualset, C.O. Evaluation of Alien Chromosome Addition and Recombinant Isolines of Wheat. Crop sci. 1984, 24, 142–147. [Google Scholar] [CrossRef]
- Martinek, P.; Škorpík, M.; Chrpová, J.; Fučík, P.; Schweiger, J. Development of the new wheat variety Skorpion with blue grain. Czech J. Genet. Plant Breed. 2013, 49, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Mu, S.M.; Li, Z.S.; Zhou, H.P.; Yu, L. Cytogenetic identification of blue-grained wheat. Acta Genet. Sin. 1986, 13, 259–261. [Google Scholar]
- Guan, P.; Lu, L.; Jia, L.; Kabir, M.R.; Zhang, J.; Lan, T.; Peng, H. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Yang, Y.; Fan, P.; Liu, J.; Xing, H.; Liu, Y.; Feng, D. Genome-wide identification and characterization of germin and germin-like proteins (GLPs) and their response under powdery mildew stress in wheat (Triticum aestivum L.). Plant Mol. Biol. Rep. 2021, 39, 821–832. [Google Scholar] [CrossRef]
- Shen, X.; Yuan, Y.; Zhang, H.; Guo, Y.; Zhao, Y.; Li, S.; Kong, F. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes 2019, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Davies, P.; Bansal, U.; Pasam, R.; Hayden, M.; Trethowan, R. Relationship between resistance and tolerance of crown rot in bread wheat. Field Crops Res. 2021, 265, 108106. [Google Scholar] [CrossRef]
- Jaafar, S.S.N.; Baron, J.; Siebenhandl-Ehn, S.; Rosenau, T.; Böhmdorfer, S.; Grausgruber, H. Increased anthocyanin content in purple pericarp× blue aleurone wheat crosses. Plant Breed. 2013, 132, 546–552. [Google Scholar] [CrossRef]
- Žofajová, A.; Pšenáková, I.; Havrlentová, M.; Piliarová, M. Accumulation of total anthocyanins in wheat grain. Agric. Pol’nohospod. 2012, 58, 50–56. [Google Scholar] [CrossRef]
Marker | Chromosome | Annealing Temperature, °C | Length of PCR Products, bp | |
---|---|---|---|---|
S29P or S29PF/S29 | 4Th | |||
Pp3_diagnostic | 2A | 65–56 | ~405/~420 | |
Xgwm0328 | 2A | 55 | 195/183 | |
Xgwm0044 | 7D | 60 | 173–175/171 | |
Xgwm0111 | 7D | 55 | 198/221 | |
Xgwm0676 | 7D | 50 | ~190/119 | - |
Xgwm0066 | 4B | 60 | 150 | - |
Xgwm0251 | 4B | 55 | ~210 | - |
Wms0375 | 4B | 65–56 | ~190 | - |
Xgwm0888 * | 4B | 60 | 197 | - |
Xgwm0910 * | 4B | 55 | 148 | - |
Xgwm0624 | 4D | 55 | 120 | - |
Xgwm1163 * | 4D | 55 | ~140 | |
Xgwm1397 * | 4D | 55 | ~150 | ~130 |
Xgwm1706 * | 4D | 55 | - | ~380 |
Xgwm3156 * | 4D | 55 | ~180 | - |
Xgwm4001 * | 4D | 55 | ~250 | ~220 |
Xgwm4736 * | 4D | 55 | ~250 | - |
ThMyc4E | 4Th | 65–56 | - | ~200 |
# | Name | Pp-A1 (7A) | Pp-D1 (7D) | Pp3 (2A) | Pericarp Color | Coleoptile Color | Aleurone Color | Chr Substitution | Ref. |
---|---|---|---|---|---|---|---|---|---|
1. | Saratovskaya 29 * | d | r | r | no | light red | no | no | |
2. | i:S29Pp3P | d | r | d | no | light red | no | no | [32] |
3. | i:S29Pp-D1PF | d | d | r | no | dark red | no | no | [32] |
4. | i:S29Pp3PPp-D1PF | d | d | d | purple | dark red | no | no | current study |
5. | s:S29Ba14Th(4D) | d | r | r | no | light red | blue | 4Th(4D) | [27] |
6. | s:S29Ba14Th(4B) | d | r | r | no | light red | blue | 4Th(4B) | current study |
7. | s:S29Ba14Th(4B) Pp-D1PF | d | d | r | no | dark red | blue | 4Th(4B) | current study |
8. | s:S29Ba14Th(4D) Pp3PPp-D1PF | d | d | d | purple | dark red | blue | 4Th(4D) | current study |
9. | s:S29Ba14Th(4B) Pp3PPp-D1PF | d | d | d | Purple | dark red | blue | 4Th(4B) | current study |
Trait\Line | S29 | i:S29 Pp3PPp-D1PF | s:S29Ba1 4Th(4B) | s:S29Ba1 4Th(4D) | s:S29Ba1 4Th(4B)Pp3PPp-D1PF | s:S29Ba1 4Th(4D)Pp3P Pp-D1PF |
---|---|---|---|---|---|---|
Plant height, cm | 96.4 ± 4.7 ab | 97.9 ± 5.2 bc | 95.0 ± 3.7 ab | 92.1 ± 4.6 a | 99.6 ± 5.5 bc | 101.2 ± 5.1 c |
Number of spikes per plant | 3.2 ± 1.1 b | 2.8 ± 0.9 b | 2.0 ± 1.1 ab | 2.6 ± 1.1 a | 2.1 ± 0.7 ab | 2.3 ± 1.3 ab |
Main spike length, cm | 7.0 ± 0.7 ab | 6.7 ± 0.7 a | 8.3 ± 0.8 cd | 7.0 ± 0.5 ab | 8.5 ± 0.7 d | 7.5 ± 0.8 bc |
Number of grains per main spike | 32.1 ± 3.4 ab | 28.7 ± 4.1 a | 34.6 ± 5.4 b | 31.5 ± 4.2 ab | 33.6 ± 4.2 b | 32.6 ± 5.7 ab |
Number of grains per plant | 78.1 ± 36.1 a | 66.1 ± 22.3 a | 78.5 ± 39.3 a | 86.1 ± 22.2 a | 85.0 ± 24.9 a | 85.0 ± 52.0 a |
Grain weight per main spike, g | 1.3 ± 0.2 c | 1.1 ± 0.2 b | 0.8 ± 0.2 a | 0.9 ± 0.2 a | 0.9 ± 0.2 ab | 0.9 ± 0.2 ab |
Grain weight per plant, g | 2.9 ± 1.5 b | 2.3 ± 0.9 b | 1.6 ± 0.9 a | 2.1 ± 0.5 ab | 2.2 ± 0.8 ab | 2.1 ± 1.4 ab |
TGW, g | 36.8 ± 3.3 c | 34.1 ± 3.5 c | 20.5 ± 2.9 a | 24.1 ± 1.6 b | 25.7 ± 3.8 b | 24.3 ± 4.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeeva, E.; Shoeva, O.; Mursalimov, S.; Adonina, I.; Khlestkina, E. Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines. Agronomy 2022, 12, 2934. https://doi.org/10.3390/agronomy12122934
Gordeeva E, Shoeva O, Mursalimov S, Adonina I, Khlestkina E. Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines. Agronomy. 2022; 12(12):2934. https://doi.org/10.3390/agronomy12122934
Chicago/Turabian StyleGordeeva, Elena, Olesya Shoeva, Sergey Mursalimov, Irina Adonina, and Elena Khlestkina. 2022. "Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines" Agronomy 12, no. 12: 2934. https://doi.org/10.3390/agronomy12122934
APA StyleGordeeva, E., Shoeva, O., Mursalimov, S., Adonina, I., & Khlestkina, E. (2022). Fine Points of Marker-Assisted Pyramiding of Anthocyanin Biosynthesis Regulatory Genes for the Creation of Black-Grained Bread Wheat (Triticum aestivum L.) Lines. Agronomy, 12(12), 2934. https://doi.org/10.3390/agronomy12122934