Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = purine-associated deficiencies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2039 KB  
Article
Metabolomics Plasma Biomarkers Associated with the HRD Phenotype in Ovarian Cancer
by Alessandro Tubita, Claudia De Angelis, Daniela Grasso, Flavia Sorbi, Francesca Castiglione, Lorenzo Anela, Maria Cristina Petrella, Massimiliano Fambrini, Federico Scolari, Andrea Bernini, Giulia Petroni, Serena Pillozzi and Lorenzo Antonuzzo
Metabolites 2026, 16(1), 2; https://doi.org/10.3390/metabo16010002 - 19 Dec 2025
Viewed by 307
Abstract
Background: Ovarian cancer (OC) remains one of the most lethal gynecologic malignancies due to its often-late diagnosis and complex molecular heterogeneity. Understanding the metabolic alterations in OC can provide insights into its pathophysiology and potential therapeutic targets. This study aimed to explore [...] Read more.
Background: Ovarian cancer (OC) remains one of the most lethal gynecologic malignancies due to its often-late diagnosis and complex molecular heterogeneity. Understanding the metabolic alterations in OC can provide insights into its pathophysiology and potential therapeutic targets. This study aimed to explore serum metabolomic profiles and their correlation with clinical and pathological features in OC patients. Materials and Methods: Thirty serum samples were collected from patients diagnosed with ovarian tumors (OTs) (n = 24 malignant, n = 6 benign) and undergoing treatment at Careggi University Hospital. Additionally, 47 samples were obtained from age-matched healthy female donors. Serum samples underwent processing and analysis using an H-NMR (Nuclear Magnetic Resonance) platform to identify a panel of metabolites. Correlation analysis between the metabolomic data and clinical parameters was performed using R software (v.4.4.0). Results: Differential metabolomic profiling showed a significant upregulation of metabolites associated with the purine salvage pathway (i.e., hypoxanthine and inosine) and the ketone bodies axis (i.e., acetone, 3-hydroxybutyrate, and acetate) in samples from ovarian tumor (OT) patients compared to healthy donors. Within malignant OC samples, metabolomic profiles significantly correlated with BRCA1/2 mutation status (BRCA1/2-mutated vs. wild-type) and homologous recombination deficiency (HRD) status. Conclusions: The analysis revealed significant variation in specific metabolites such as betaine, creatinine, carnitine, glycerol, and mannose; notably, a downregulation of these metabolites was observed in HRD-positive patients. The study identifies significant metabolomic alterations in OC, implicating pathways such as purine salvage and ketone bodies. Intriguingly, consistent variation in specific metabolites across BRCA/HRD phenotypes underscores their potential as OC biomarkers. Further research is needed to validate these findings and explore their prognostic and therapeutic implications. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

12 pages, 827 KB  
Review
Metabolic Impact of XOR Inhibitors Use and Discontinuation
by Mai Sekine and Kimiyoshi Ichida
Gout Urate Cryst. Depos. Dis. 2025, 3(2), 9; https://doi.org/10.3390/gucdd3020009 - 9 Jun 2025
Viewed by 6318
Abstract
Xanthine oxidoreductase (XOR) is the only enzyme responsible for uric acid production and is essential for preventing gout. While XOR inhibitors effectively reduce serum urate levels, they also influence purine salvage and de novo pathways, as well as energy metabolism, raising concerns about [...] Read more.
Xanthine oxidoreductase (XOR) is the only enzyme responsible for uric acid production and is essential for preventing gout. While XOR inhibitors effectively reduce serum urate levels, they also influence purine salvage and de novo pathways, as well as energy metabolism, raising concerns about metabolic adaptation and rebound effects upon treatment discontinuation. In this review, we outline the fundamental regulatory mechanisms of purine metabolism and summarize the mechanisms of action of XOR inhibitors and their associated metabolic effects with reference to XOR deficiency, type I xanthinuria. Furthermore, we discuss the impact of discontinuing XOR inhibitors and examine their potential for rebound. Full article
Show Figures

Figure 1

30 pages, 3834 KB  
Review
Preparation and Efficacy Evaluation of Antihyperuricemic Peptides from Marine Sources
by Kun Qiao, Qiongmei Huang, Tongtong Sun, Bei Chen, Wenmei Huang, Yongchang Su, Hetong Lin and Zhiyu Liu
Nutrients 2024, 16(24), 4301; https://doi.org/10.3390/nu16244301 - 12 Dec 2024
Cited by 3 | Viewed by 2557
Abstract
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel [...] Read more.
Marine-derived foods, often called blue foods, are promising sustainable alternatives to conventional food sources owing to their abundant amino acids and high protein content. Current treatments for hyperuricemia, a chronic condition attributed to purine metabolism disorders, are associated with various side effects. Novel peptide xanthine oxidase inhibitors have been discovered in the hydrolyzed products of marine fish and invertebrate proteins, which have demonstrated promising therapeutic potential by reducing uric acid levels in vitro and in vivo. This review explores the potential therapeutic effects of xanthine oxidase inhibitors derived from marine fish and invertebrates, summarizes the methods for extracting bioactive peptides from marine organisms, and emphasizes the impact of different proteases on the structure–activity relationship of bioactive peptides. The hypouricemic effects of these bioactive peptides warrant further verification. There is consensus on the in vitro chemical methods used to verify the xanthine oxidase inhibitory effects of these peptides. Considering several cell and animal model development strategies, this review summarizes several highly recognized modeling methods, proposes strategies to improve the bioavailability of bioactive peptides, and advocates for a diversified evaluation system. Although the screening and evaluation methods for antihyperuricemic peptides have been shown to be feasible across numerous studies, they are not optimal. This review examines the deficiencies in bioavailability, synthesis efficiency, and evaluation mechanisms in terms of their future development and proposes potential solutions to address these issues. This review provides a novel perspective for the exploration and application of marine-derived hypouricemic bioactive peptides. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 6667 KB  
Article
Red Blood Cells from Individuals with Lesch–Nyhan Syndrome: Multi-Omics Insights into a Novel S162N Mutation Causing Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency
by Julie A. Reisz, Monika Dzieciatkowska, Daniel Stephenson, Fabia Gamboni, D. Holmes Morton and Angelo D’Alessandro
Antioxidants 2023, 12(9), 1699; https://doi.org/10.3390/antiox12091699 - 31 Aug 2023
Cited by 8 | Viewed by 4751
Abstract
Lesch–Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol [...] Read more.
Lesch–Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol is used to alleviate gout, other symptoms are less understood, impeding treatment. Herein, we present a high-throughput multi-omics analysis of red blood cells (RBCs) from three pediatric siblings carrying a novel S162N HPRT1 mutation. RBCs from both parents—the mother, a heterozygous carrier, and the father, a clinically healthy control—were also analyzed. Global metabolite analysis of LN RBCs shows accumulation of glycolytic intermediates upstream of pyruvate kinase, unsaturated fatty acids, and long chain acylcarnitines. Similarly, highly unsaturated phosphatidylcholines are also elevated in LN RBCs, while free choline is decreased. Intracellular iron, zinc, selenium, and potassium are also decreased in LN RBCs. Global proteomics documented changes in RBC membrane proteins, hemoglobin, redox homeostasis proteins, and the enrichment of coagulation proteins. These changes were accompanied by elevation in protein glutamine deamidation and methylation in the LN children and carrier mother. Treatment with allopurinol incompletely reversed the observed phenotypes in the two older siblings currently on this treatment. This unique data set provides novel opportunities for investigations aimed at potential therapies for LN-associated sequelae. Full article
(This article belongs to the Special Issue Blood Cells and Redox Homeostasis in Health and Disease)
Show Figures

Figure 1

12 pages, 2197 KB  
Article
Chronic Vitamin E Deficiency Dysregulates Purine, Phospholipid, and Amino Acid Metabolism in Aging Zebrafish Skeletal Muscle
by Trent D. Henderson, Jaewoo Choi, Scott W. Leonard, Brian Head, Robyn L. Tanguay, Carrie L. Barton and Maret G. Traber
Antioxidants 2023, 12(6), 1160; https://doi.org/10.3390/antiox12061160 - 26 May 2023
Cited by 6 | Viewed by 3815
Abstract
Muscle wasting occurs with aging and may be a result of oxidative stress damage and potentially inadequate protection by lipophilic antioxidants, such as vitamin E. Previous studies have shown muscular abnormalities and behavioral defects in vitamin E-deficient adult zebrafish. To test the hypothesis [...] Read more.
Muscle wasting occurs with aging and may be a result of oxidative stress damage and potentially inadequate protection by lipophilic antioxidants, such as vitamin E. Previous studies have shown muscular abnormalities and behavioral defects in vitamin E-deficient adult zebrafish. To test the hypothesis that there is an interaction between muscle degeneration caused by aging and oxidative damage caused by vitamin E deficiency, we evaluated long-term vitamin E deficiency in the skeletal muscle of aging zebrafish using metabolomics. Zebrafish (55 days old) were fed E+ and E− diets for 12 or 18 months. Then, skeletal muscle samples were analyzed using UPLC-MS/MS. Data were analyzed to highlight metabolite and pathway changes seen with either aging or vitamin E status or both. We found that aging altered purines, various amino acids, and DHA-containing phospholipids. Vitamin E deficiency at 18 months was associated with changes in amino acid metabolism, specifically tryptophan pathways, systemic changes in the regulation of purine metabolism, and DHA-containing phospholipids. In sum, while both aging and induced vitamin E deficiency did have some overlap in altered and potentially dysregulated metabolic pathways, each factor also presented unique alterations, which require further study with more confirmatory approaches. Full article
(This article belongs to the Special Issue Advances in Vitamin E Research)
Show Figures

Graphical abstract

15 pages, 1090 KB  
Review
COVID-19 and One-Carbon Metabolism
by Joanna Perła-Kaján and Hieronim Jakubowski
Int. J. Mol. Sci. 2022, 23(8), 4181; https://doi.org/10.3390/ijms23084181 - 10 Apr 2022
Cited by 21 | Viewed by 8439
Abstract
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of [...] Read more.
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 3283 KB  
Article
Combined Targeted and Untargeted Profiling of HeLa Cells Deficient in Purine De Novo Synthesis
by Lucie Mádrová, Olga Součková, Radana Brumarová, Dana Dobešová, Jan Václavík, Štěpán Kouřil, Julie de Sousa, Jaroslava Friedecká, David Friedecký, Veronika Barešová, Marie Zikánová and Tomáš Adam
Metabolites 2022, 12(3), 241; https://doi.org/10.3390/metabo12030241 - 13 Mar 2022
Cited by 3 | Viewed by 3375
Abstract
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly [...] Read more.
Three genetically determined enzyme defects of purine de novo synthesis (PDNS) have been identified so far in humans: adenylosuccinate lyase (ADSL) deficiency, 5-amino-4-imidazole carboxamide-ribosiduria (AICA-ribosiduria), and deficiency in bifunctional enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS). Clinical signs of these defects are mainly neurological, such as seizures, psychomotor retardation, epilepsy, autistic features, etc. This work aims to describe the metabolic changes of CRISPR-Cas9 genome-edited HeLa cells deficient in the individual steps of PDNS to better understand known and potential defects of the pathway in humans. High-performance liquid chromatography coupled with mass spectrometry was used for both targeted and untargeted metabolomic analyses. The statistically significant features from the untargeted study were identified by fragmentation analysis. Data from the targeted analysis were processed in Cytoscape software to visualize the most affected metabolic pathways. Statistical significance of PDNS intermediates preceding deficient enzymes was the highest (p-values 10 × 10−7–10 × 10−15) in comparison with the metabolites from other pathways (p-values of up to 10 × 10−7). Disturbed PDNS resulted in an altered pool of adenine and guanine nucleotides. However, the adenylate energy charge was not different from controls. Different profiles of acylcarnitines observed among deficient cell lines might be associated with a specific enzyme deficiency rather than global changes related to the PDNS pathway. Changes detected in one-carbon metabolism might reduce the methylation activity of the deficient cells, thus affecting the modification state of DNA, RNA, and proteins. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Graphical abstract

27 pages, 1920 KB  
Review
Interaction between Metformin, Folate and Vitamin B12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies
by Manon D. Owen, Bernadette C. Baker, Eleanor M. Scott and Karen Forbes
Int. J. Mol. Sci. 2021, 22(11), 5759; https://doi.org/10.3390/ijms22115759 - 28 May 2021
Cited by 54 | Viewed by 17286
Abstract
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and [...] Read more.
Metformin is the first-line treatment for many people with type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM) to maintain glycaemic control. Recent evidence suggests metformin can cross the placenta during pregnancy, thereby exposing the fetus to high concentrations of metformin and potentially restricting placental and fetal growth. Offspring exposed to metformin during gestation are at increased risk of being born small for gestational age (SGA) and show signs of ‘catch up’ growth and obesity during childhood which increases their risk of future cardiometabolic diseases. The mechanisms by which metformin impacts on the fetal growth and long-term health of the offspring remain to be established. Metformin is associated with maternal vitamin B12 deficiency and antifolate like activity. Vitamin B12 and folate balance is vital for one carbon metabolism, which is essential for DNA methylation and purine/pyrimidine synthesis of nucleic acids. Folate:vitamin B12 imbalance induced by metformin may lead to genomic instability and aberrant gene expression, thus promoting fetal programming. Mitochondrial aerobic respiration may also be affected, thereby inhibiting placental and fetal growth, and suppressing mammalian target of rapamycin (mTOR) activity for cellular nutrient transport. Vitamin supplementation, before or during metformin treatment in pregnancy, could be a promising strategy to improve maternal vitamin B12 and folate levels and reduce the incidence of SGA births and childhood obesity. Heterogeneous diagnostic and screening criteria for GDM and the transient nature of nutrient biomarkers have led to inconsistencies in clinical study designs to investigate the effects of metformin on folate:vitamin B12 balance and child development. As rates of diabetes in pregnancy continue to escalate, more women are likely to be prescribed metformin; thus, it is of paramount importance to improve our understanding of metformin’s transgenerational effects to develop prophylactic strategies for the prevention of adverse fetal outcomes. Full article
(This article belongs to the Special Issue Micronutrients in Metabolic Health)
Show Figures

Figure 1

10 pages, 1591 KB  
Article
Interspecies Metabolic Complementation in Cystic Fibrosis Pathogens via Purine Exchange
by Hafij Al Mahmud, Jiwasmika Baishya and Catherine A. Wakeman
Pathogens 2021, 10(2), 146; https://doi.org/10.3390/pathogens10020146 - 1 Feb 2021
Cited by 7 | Viewed by 3722
Abstract
Cystic fibrosis (CF) is a genetic disease frequently associated with chronic lung infections caused by a consortium of pathogens. It is common for auxotrophy (the inability to biosynthesize certain essential metabolites) to develop in clinical isolates of the dominant CF pathogen Pseudomonas aeruginosa [...] Read more.
Cystic fibrosis (CF) is a genetic disease frequently associated with chronic lung infections caused by a consortium of pathogens. It is common for auxotrophy (the inability to biosynthesize certain essential metabolites) to develop in clinical isolates of the dominant CF pathogen Pseudomonas aeruginosa, indicating that the CF lung environment is replete in various nutrients. Many of these nutrients are likely to come from the host tissues, but some may come from the surrounding polymicrobial community within the lungs of CF patients as well. To assess the feasibility of nutrient exchange within the polymicrobial community of the CF lung, we selected P. aeruginosa and Staphylococcus aureus, two of the most prevalent species found in the CF lung environment. By comparing the polymicrobial culture of wild-type strains relative to their purine auxotrophic counterparts, we were able to observe metabolic complementation occurring in both P. aeruginosa and S. aureus when grown with a purine-producing cross-species pair. While our data indicate that some of this complementation is likely derived from extracellular DNA freed by lysis of S. aureus by the highly competitive P. aeruginosa, the partial complementation of S. aureus purine deficiency by P. aeruginosa demonstrates that bidirectional nutrient exchange between these classic competitors is possible. Full article
(This article belongs to the Special Issue Microbial Interactions during Infection)
Show Figures

Figure 1

16 pages, 1371 KB  
Article
The Key Role of Purine Metabolism in the Folate-Dependent Phenotype of Autism Spectrum Disorders: An In Silico Analysis
by Jan Geryk, Daniel Krsička, Markéta Vlčková, Markéta Havlovicová, Milan Macek and Radka Kremlíková Pourová
Metabolites 2020, 10(5), 184; https://doi.org/10.3390/metabo10050184 - 6 May 2020
Cited by 16 | Viewed by 6167
Abstract
Folate deficiency in the critical developmental period has been repeatedly associated with an increased risk of Autism spectrum disorders (ASD), but the key pathophysiological mechanism has not yet been identified. In this work, we focused on identifying genes whose defect has similar consequences [...] Read more.
Folate deficiency in the critical developmental period has been repeatedly associated with an increased risk of Autism spectrum disorders (ASD), but the key pathophysiological mechanism has not yet been identified. In this work, we focused on identifying genes whose defect has similar consequences to folate depletion in the metabolic network. Within the Flux Balance Analysis (FBA) framework, we developed a method of blocked metabolites that allowed us to define the metabolic consequences of various gene defects and folate depletion. We identified six genes (GART, PFAS, PPAT, PAICS, ATIC, and ADSL) whose blocking results in nearly the same effect in the metabolic network as folate depletion. All of these genes form the purine biosynthetic pathway. We found that, just like folate depletion, the blockade of any of the six genes mentioned above results in a blockage of purine metabolism. We hypothesize that this can lead to decreased adenosine triphosphate (ATP) and subsequently, an S-adenosyl methionine (SAM) pool in neurons in the case of rapid cell division. Based on our results, we consider the methylation defect to be a potential cause of ASD, due to the depletion of purine, and consequently S-adenosyl methionine (SAM), biosynthesis. Full article
(This article belongs to the Special Issue Folate Absorption and Metabolism)
Show Figures

Figure 1

16 pages, 1535 KB  
Review
Renal Reabsorption of Folates: Pharmacological and Toxicological Snapshots
by Sophia L Samodelov, Zhibo Gai, Gerd A Kullak-Ublick and Michele Visentin
Nutrients 2019, 11(10), 2353; https://doi.org/10.3390/nu11102353 - 2 Oct 2019
Cited by 30 | Viewed by 7841
Abstract
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate [...] Read more.
Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications. Full article
(This article belongs to the Special Issue Dietary Folate and Human Health)
Show Figures

Figure 1

15 pages, 891 KB  
Review
Yeast to Study Human Purine Metabolism Diseases
by Bertrand Daignan-Fornier and Benoît Pinson
Cells 2019, 8(1), 67; https://doi.org/10.3390/cells8010067 - 17 Jan 2019
Cited by 40 | Viewed by 9538
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and [...] Read more.
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast. Full article
Show Figures

Figure 1

Back to TopTop