Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (799)

Search Parameters:
Keywords = pumping volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8148 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 (registering DOI) - 2 Aug 2025
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 34
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 70
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 3812 KiB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 121
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 244
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 353
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

17 pages, 7086 KiB  
Article
Study on Evolution of Stress Field and Fracture Propagation Laws for Re-Fracturing of Volcanic Rock
by Honglei Liu, Jiangling Hong, Wei Shu, Xiaolei Wang, Xinfang Ma, Haoqi Li and Yipeng Wang
Processes 2025, 13(8), 2346; https://doi.org/10.3390/pr13082346 - 23 Jul 2025
Viewed by 293
Abstract
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the [...] Read more.
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the in situ stress field, which complicates the design of re-fracturing parameters. To address this, this study adopts an integrated geology–engineering approach to develop a formation-specific geomechanical model, using rock mechanical test results and well-log inversion to reconstruct the reservoir’s initial stress field. The dynamic stress field simulations and re-fracturing parameter optimization were performed for Block Dixi-14. The results show that stress superposition effects induced by multiple fracturing stages and injection–production cycles have significantly altered the current in situ stress distribution. For Well K6, the optimized re-fracturing parameters comprised a pump rate of 12 m3/min, total fluid volume of 1200 m3, prepad fluid ratio of 50–60%, and proppant volume of 75 m3, and the daily gas production increased by 56% correspondingly, demonstrating the effectiveness of the optimized re-fracturing design. This study not only provides a more realistic simulation framework for fracturing volcanic rock gas reservoirs but also offers a scientific basis for fracture design optimization and enhanced gas recovery. The geology–engineering integrated methodology enables the accurate prediction and assessment of dynamic stress field evolution during fracturing, thereby guiding field operations. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

10 pages, 535 KiB  
Article
Gaseous Microemboli and Postoperative Delirium in Coronary Artery Bypass Grafting
by Vladimir Tutuš, Milica Paunović, Nina Rajović, Nataša Milić, Miloš Matković, Radmila Karan, Svetozar Putnik, Nemanja Aleksić, Danijela Trifunović Zamaklar, Marko Jugović, Ilija Bilbija, Selena Nešić and Dejan Marković
J. Clin. Med. 2025, 14(14), 5123; https://doi.org/10.3390/jcm14145123 - 18 Jul 2025
Viewed by 282
Abstract
Background: Postoperative delirium (POD) is a neurocognitive syndrome affecting patients undergoing surgery. It is a frequent complication of coronary artery bypass grafting (CABG) and is associated with higher morbidity, mortality and treatment costs. This study aimed to investigate the relationship between gaseous [...] Read more.
Background: Postoperative delirium (POD) is a neurocognitive syndrome affecting patients undergoing surgery. It is a frequent complication of coronary artery bypass grafting (CABG) and is associated with higher morbidity, mortality and treatment costs. This study aimed to investigate the relationship between gaseous microemboli (GME) load during cardiopulmonary bypass (CPB) and subsequent POD in patients undergoing CABG. Methods: In total, 102 patients undergoing elective on-pump CABG were evaluated in this observational study. An ultrasonic microbubble counter, with probes placed on the arterial and venous lines, was used during CPB to evaluate the GME load for each patient. During the first postoperative week, the patients were examined for the presence of POD. Results: Patients diagnosed with POD had higher number of bubbles in the arterial CPB line (5382.8 (4127.8–6637.8) vs. 2389.4 (2033.9–2745.0), p < 0.001), higher volume of bubbles in both the venous (24.2 µL (16.8–31.6) vs. 12.4 µL (9.7–15.1), p = 0.004) and arterial lines (1.82 µL (1.43–2.21) vs. 0.29 µL (0.22–0.36), p < 0.001), lower quality factor (QF) values (p = 0.039), a lower venoarterial reduction in bubble number (83.0% (77.8–88.1) vs. 92.4% (90.9–93.8), p = 0.001) and a lower venoarterial reduction in bubble volume (88.8% (85.4–92.2) vs. 96.3% (95.2–97.3), p < 0.001) compared to the patients without POD. Older age (p = 0.005), a lower reduction in bubble volume (p < 0.001) and lower QF values (p = 0.004) were significant independent predictors of POD. Conclusions: Our findings indicate a strong association between GME and the occurrence of POD, which entails that all available actions should be implemented to prevent their generation and facilitate the elimination of GME from the CPB circuit. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

19 pages, 1252 KiB  
Article
Analogy Analysis of Height Exergy and Temperature Exergy in Energy Storage System
by Yan Cui, Tong Jiang and Mulin Liu
Energies 2025, 18(14), 3675; https://doi.org/10.3390/en18143675 - 11 Jul 2025
Viewed by 242
Abstract
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This [...] Read more.
As a pivotal technology and infrastructure component for modern power systems, energy storage has experienced significant advancement in recent years. A fundamental prerequisite for designing future energy storage facilities lies in the systematic evaluation of energy conversion capabilities across diverse storage technologies. This study conducted a comparative analysis between pumped hydroelectric storage (PHS) and compressed air energy storage (CAES), defining the concepts of height exergy and temperature exergy. Height exergy is the maximum work capacity of a liquid due to height differences, while temperature exergy is the maximum work capacity of a gas due to temperature differences. The temperature exergy represents innovation in thermodynamic analysis; it is derived from internal exergy and proven through the Maxwell relation and the decoupling method of internal exergy, offering a more efficient method for calculating energy storage capacity in CAES systems. Mathematical models of height exergy and temperature exergy were established based on their respective forms. A unified calculation formula was derived, and their respective characteristics were analyzed. In order to show the meaning of temperature exergy more clearly and intuitively, a height exergy model of temperature exergy was established through analogy analysis, and it was concluded that the shape of the reservoir was a cone when comparing water volume to heat quantity, intuitively showing that the cold source had a higher energy storage density than the heat source. Finally, a typical hybrid PHS–CAES system was proposed, and a mathematical model was established and verified in specific cases based on height exergy and temperature exergy. It was demonstrated that when the polytropic exponent n = 1.2, the theoretical loss accounted for the largest proportion, which was 2.06%. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 33163 KiB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Viewed by 426
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3815 KiB  
Article
Numerical Simulation and Analysis of Heart–Aorta Fluid–Structure Interaction Based on S-ALE Method
by Xiong Li, Fengchong Lan, Jiqing Chen and Xinzhe Chen
Appl. Sci. 2025, 15(14), 7769; https://doi.org/10.3390/app15147769 - 10 Jul 2025
Viewed by 237
Abstract
The aim of this study is to understand the hemodynamic responses in the heart–aorta system under physiological states and use this understanding to enhance the hemodynamic response analysis of cardiovascular fluid–structure interaction (FSI) models. This article developed a heart–aorta FSI model by constructing [...] Read more.
The aim of this study is to understand the hemodynamic responses in the heart–aorta system under physiological states and use this understanding to enhance the hemodynamic response analysis of cardiovascular fluid–structure interaction (FSI) models. This article developed a heart–aorta FSI model by constructing a structured fluid domain using the S-ALE method. The model realized a cardiac blood pumping pattern by applying a time-varying displacement load to the left ventricle (LV). The simulation reliability of the model was effectively verified by comparing the hemodynamic responses to the literature data. The FSI analysis in different physiological states showed that the altered ejection volume due to changes in LV systole displacement was a key factor influencing the hemodynamic response. As LV systole displacement increased, blood velocity, flow rate, and wall shear stress (WSS) showed a significant linear increase. The effect of changes in blood viscosity on the WSS demonstrated a significant linear correlation. However, the effect on blood velocity and flow rate did not present any significant difference. The S-ALE method used in this paper can rapidly generate fluid domains, providing technical support for the development of personalized medicine in the cardiovascular field. Full article
Show Figures

Figure 1

26 pages, 4486 KiB  
Article
Predicting Groundwater Level Dynamics and Evaluating the Impact of the South-to-North Water Diversion Project Using Stacking Ensemble Learning
by Hangyu Wu, Rong Liu, Chuiyu Lu, Qingyan Sun, Chu Wu, Lingjia Yan, Wen Lu and Hang Zhou
Sustainability 2025, 17(13), 6120; https://doi.org/10.3390/su17136120 - 3 Jul 2025
Viewed by 366
Abstract
This study aims to improve the accuracy and interpretability of deep groundwater level forecasting in Cangzhou, a typical overexploitation area in the North China Plain. To address the limitations of traditional models and existing machine learning approaches, we develop a Stacking ensemble learning [...] Read more.
This study aims to improve the accuracy and interpretability of deep groundwater level forecasting in Cangzhou, a typical overexploitation area in the North China Plain. To address the limitations of traditional models and existing machine learning approaches, we develop a Stacking ensemble learning framework that integrates meteorological, spatial, and anthropogenic variables, including lagged groundwater levels to reflect aquifer memory. The model combines six heterogeneous base learners with a meta-model to enhance prediction robustness. Performance evaluation shows that the ensemble model consistently outperforms individual models in accuracy, generalization, and spatial adaptability. Scenario-based simulations are further conducted to assess the effects of the South-to-North Water Diversion Project. Results indicate that the diversion project significantly mitigates groundwater depletion, with the most overexploited zones showing water level recovery of up to 17 m compared to the no-diversion scenario. Feature importance analysis confirms that lagged water levels and pumping volumes are dominant predictors, aligning with groundwater system dynamics. These findings demonstrate the effectiveness of ensemble learning in modeling complex groundwater behavior and provide a practical tool for water resource regulation. The proposed framework is adaptable to other groundwater-stressed regions and supports dynamic policy design for sustainable groundwater management. Full article
(This article belongs to the Special Issue Sustainable Water Management in Rapid Urbanization)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Hydraulic Performance and Flow Characteristics of a High-Speed Centrifugal Pump Based on Multi-Objective Optimization
by Yifu Hou and Rong Xue
Fluids 2025, 10(7), 174; https://doi.org/10.3390/fluids10070174 - 2 Jul 2025
Viewed by 278
Abstract
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller [...] Read more.
Pump-driven liquid cooling systems are widely utilized in unmanned aerial vehicle (UAV) electronic thermal management. As a critical power component, the miniaturization and lightweight design of the pump are essential. Increasing the operating speed of the pump allows for a reduction in impeller size while maintaining hydraulic performance, thereby significantly decreasing the overall volume and mass. However, high-speed operation introduces considerable internal flow losses, placing stricter demands on the geometric design and flow-field compatibility of the impeller. In this study, a miniature high-speed centrifugal pump (MHCP) was investigated, and a multi-objective optimization of the impeller was carried out using response surface methodology (RSM) to improve internal flow characteristics and overall hydraulic performance. Numerical simulations demonstrated strong predictive capability, and experimental results validated the model’s accuracy. At the design condition (10,000 rpm, 4.8 m3/h), the pump achieved a head of 46.1 m and an efficiency of 49.7%, corresponding to its best efficiency point (BEP). Sensitivity analysis revealed that impeller outlet diameter and blade outlet angle were the most influential parameters affecting pump performance. Following the optimization, the pump head increased by 3.7 m, and the hydraulic efficiency improved by 4.8%. In addition, the pressure distribution and streamlines within the impeller exhibited better uniformity, while the turbulent kinetic energy near the blade suction surface and at the impeller outlet was markedly decreased. This work provides theoretical support and design guidance for the efficient application of MHCPs in UAV thermal management systems. Full article
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Study on the Propulsion Characteristics of a Flapping Flat-Plate Pumping Device
by Ertian Hua, Yang Lin, Sihan Li, Xiaopeng Wu and Mingwang Xiang
Appl. Sci. 2025, 15(13), 7034; https://doi.org/10.3390/app15137034 - 22 Jun 2025
Viewed by 425
Abstract
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance [...] Read more.
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance of hydrofoils operating under simple harmonic and quasi-harmonic flapping motions. Based on the tip vortex phenomenon observed at the channel outlet, the flow channel structure was further designed to inform the structural optimization of bionic pumping devices. Results show both modes generate reversed Kármán vortex streets, but the quasi-harmonic mode induces a displacement in vorticity distribution, whereas that of the simple harmonic motion extends farther downstream. Pumping efficiency under simple harmonic motion consistently outperforms that of quasi-harmonic motion, exceeding its peak by 20.2%. The pumping and propulsion efficiencies show a generally positive correlation with the outlet angle of the channel, both reaching their peak when the outlet angle α is −10°. Compared to an outlet angle of 0°, an outlet angle of −10° results in an 8.5% increase in pumping efficiency and a 10.2% increase in propulsion efficiency. Full article
(This article belongs to the Special Issue Application of Computational Fluid Mechanics in Fluid Machinery)
Show Figures

Figure 1

14 pages, 1795 KiB  
Article
Numerical Simulation Study on the Volumetric Efficiency Loss of CO2 Swash Plate Axial Piston Pumps
by Xiyin Wang and Sanping Zhou
Appl. Sci. 2025, 15(13), 7032; https://doi.org/10.3390/app15137032 - 22 Jun 2025
Viewed by 643
Abstract
With the aim of addressing the low volumetric efficiency of CO2 swashplate axial piston pumps, the influence of four volumetric losses—loss of the CO2 compression retention volume, leakage volume loss of the port pair, leakage volume loss of the plunger pair, [...] Read more.
With the aim of addressing the low volumetric efficiency of CO2 swashplate axial piston pumps, the influence of four volumetric losses—loss of the CO2 compression retention volume, leakage volume loss of the port pair, leakage volume loss of the plunger pair, and leakage volume loss of the slipper pair—on volumetric efficiency was analyzed using a transient numerical simulation method. The numerical simulation results showed that the real physical property model can accurately describe the compression retention characteristics of CO2 under high-pressure conditions. CO2 compression retention volume loss accounted for 28.6% of the volumetric efficiency and was the main factor causing low volumetric efficiency of the piston pump. Leakage volume losses of the slipper pair, the flow distribution pair, and the plunger pair accounted for about 3.4%, 1.5%, and 0.5% of the volumetric efficiency, respectively. These research results provide a reference for volumetric efficiency loss analyses of piston pumps. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop